
Lifelong Multi-Agent Path Finding
for Online Pickup and Delivery Tasks

Hang Ma Jiaoyang Li T. K. Satish Kumar Sven Koenig
University of Southern California

Tsinghua University

May 11, 2017
AAMAS



Multi-Agent Path Finding

Find collision-free paths for all agents from their current
locations to their predefined goal locations in a known
environment.

a1

a2

g1

g2



Time Step 0

a1

a2

g1

g2



Time Step 1

a1

a2

g1

g2



Time Step 2

a1a2

g2



Time Step 3

a1

a2



Motivated by Real-World Applications:

Automated aircraft-towing vehicles, warehouse robots, office
robots, and game characters in video games.



Amazon Warehouse Robots1

Tasks: Move inventory shelves from storage locations to
inventory stations or vice versa.

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

Figure 5: The Kiva demonstration facility.

Acknowledgments
Building a working MVS requires a core set of great me-
chanical, electrical, and software engineers. It is yet an-
other thing to turn it into a commercial product and manage
the manufacture, assembly, and deployment of these sys-
tems. We thank the world-class Kiva employees who have
breathed life into this vision.

References
Boutilier, C.; Shoham, Y.; and Wellman, M. P. 1997. Eco-
nomic principles of multi-agent systems. Artificial Intelli-
gence 94(1):1–6.
Butenko, S.; Murphey, R.; and Pardos, P. M., eds. 2003.
Cooperative Control: Models, Applications and Algo-
rithms. Springer.
Gilmour, K. 2003. Amazon warehouse, amazon adventure.
Internet Magazine.
Hazard, C. J.; Wurman, P. R.; and D’Andrea, R. 2006.
Alphabet soup: A testbed for studying resource allocation
in multi-vehicle systems. In Proceedings of the 2006 AAAI
Workshop on Auction Mechanisms for Robot Coordination,
23–30.
Jennings, N. R., and Bussmann, S. 2003. Agent-based con-
trol systems: Why are they suited to engineering complex
systems? IEEE Control Systems Magazine 61–73.
Jennings, N. R. 1996. Coordination techniques for dis-
tributed artificial intelligence. In O’Hare, G. M. P., and
Jennings, N. R., eds., Foundations of Distributed Artificial
Intelligence. Wiley. 187–210.

Konolige, K.; Fox, D.; Ortiz, C.; Agno, A.; Eriksen, M.;
Limketkai, B.; Ko, J.; Morisset, B.; Schulz, D.; Stewart,
B.; and Vincent, R. 2004. Centibots: Very large scale dis-
tributed robotic teams. In Proceedings of the International
Symposium on Experimental Robotics.
Lesser, V. R. 1999. Cooperative multiagent systems: A
personal view of the state of the art. IEEE Transactions on
Knowledge and Data Engineering 11(1):133–142.
Malone, T. W.; Fikes, R. E.; Grant, K. R.; and Howard,
M. T. 1988. Enterprise: A market-like task scheduler for
distributed computing environments. In Huberman, B. A.,
ed., The Ecology of Computation. North Holland.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter. Cambridge: The MIT Press.
Simmons, R.; Smith, T.; Dias, M. B.; Goldberg, D.; Hersh-
berger, D.; Stentz, A.; and Zlot, R. 2002. A layered archi-
tecture for coordination of mobile robots. In Schultz, A.,
and Parker, L., eds., Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer.
Wellman, M. P., and Wurman, P. R. 1998. Market-aware
agents for a multiagent world. Robotics and Autonomous
Systems 24:115–25.

1759

1P. R. Wurman, R. D’Andrea, and M. Mountz. “Coordinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses”. In: AI Magazine 29.1 (2008), pp. 9–20.



Multi-Agent Pickup and Delivery (MAPD) Problem

I Existing research on multi-agent path finding — a
“one-shot” version:
One pre-determined task for each agent — navigates to its
goal location.

I MAPD — a “lifelong” version of multi-agent path finding:
I A task can enter the system at any time.
I Agents have to constantly attend to a stream of new tasks.



MAPD Algorithms

1. Decoupled Task Assignment and Path Finding
I Token Passing (TP): Greedy task assignment and no task

reassignment.
I Token Passing with Task Swaps (TPTS): Local task

reassignment between two agents.

2. Centralized Task Assignment and Path Finding
CENTRAL

Roughly:
I Effectiveness: TP < TPTS < CENTRAL
I Efficiency: CENTRAL < TPTS < TP



Tasks

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

Figure 5: The Kiva demonstration facility.

Acknowledgments
Building a working MVS requires a core set of great me-
chanical, electrical, and software engineers. It is yet an-
other thing to turn it into a commercial product and manage
the manufacture, assembly, and deployment of these sys-
tems. We thank the world-class Kiva employees who have
breathed life into this vision.

References
Boutilier, C.; Shoham, Y.; and Wellman, M. P. 1997. Eco-
nomic principles of multi-agent systems. Artificial Intelli-
gence 94(1):1–6.
Butenko, S.; Murphey, R.; and Pardos, P. M., eds. 2003.
Cooperative Control: Models, Applications and Algo-
rithms. Springer.
Gilmour, K. 2003. Amazon warehouse, amazon adventure.
Internet Magazine.
Hazard, C. J.; Wurman, P. R.; and D’Andrea, R. 2006.
Alphabet soup: A testbed for studying resource allocation
in multi-vehicle systems. In Proceedings of the 2006 AAAI
Workshop on Auction Mechanisms for Robot Coordination,
23–30.
Jennings, N. R., and Bussmann, S. 2003. Agent-based con-
trol systems: Why are they suited to engineering complex
systems? IEEE Control Systems Magazine 61–73.
Jennings, N. R. 1996. Coordination techniques for dis-
tributed artificial intelligence. In O’Hare, G. M. P., and
Jennings, N. R., eds., Foundations of Distributed Artificial
Intelligence. Wiley. 187–210.

Konolige, K.; Fox, D.; Ortiz, C.; Agno, A.; Eriksen, M.;
Limketkai, B.; Ko, J.; Morisset, B.; Schulz, D.; Stewart,
B.; and Vincent, R. 2004. Centibots: Very large scale dis-
tributed robotic teams. In Proceedings of the International
Symposium on Experimental Robotics.
Lesser, V. R. 1999. Cooperative multiagent systems: A
personal view of the state of the art. IEEE Transactions on
Knowledge and Data Engineering 11(1):133–142.
Malone, T. W.; Fikes, R. E.; Grant, K. R.; and Howard,
M. T. 1988. Enterprise: A market-like task scheduler for
distributed computing environments. In Huberman, B. A.,
ed., The Ecology of Computation. North Holland.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter. Cambridge: The MIT Press.
Simmons, R.; Smith, T.; Dias, M. B.; Goldberg, D.; Hersh-
berger, D.; Stentz, A.; and Zlot, R. 2002. A layered archi-
tecture for coordination of mobile robots. In Schultz, A.,
and Parker, L., eds., Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer.
Wellman, M. P., and Wurman, P. R. 1998. Market-aware
agents for a multiagent world. Robotics and Autonomous
Systems 24:115–25.

1759

g1

s2

g2

s1



Executing Task

In order to execute a task, the agent has to move from its
current location via the pickup location to the delivery location:

1. When the agent reaches the pickup location, it starts to
execute the task.

2. When it reaches the delivery location, it finishes the task.

g1

s1



Free Agents

Free Agents:

g1

s1

a2

a1



Occupied Agents

Occupied Agents:

g1

s1a2

a1



Assignment of Agents to Tasks

I A free agent can be assigned to any unexecuted task.

I An occupied agent has to finish executing its current task.



Objective of MAPD

Finish executing each task as quickly as possible.



Effectiveness of a MAPD algorithm

Service time: the average number of timesteps needed to
finish executing each task after it enters the system.
An algorithm solves a MAPD instance ⇐⇒ Service time of all
tasks is bounded.



Service time: 7+7
2 = 7

g1

s2

g2

s1

a2

a1



Solvability

Not every MAPD instance is solvable.

s1 a1 a2 g1



Well-Formed MAPD Instances

Being well-formed (based on [M. Cáp et al 2015]2): a sufficient
condition that makes MAPD instances solvable.
Intuition: agents should only be allowed to rest (that is, stay
forever) in locations, called parking locations, where they
cannot block other agents.

2M. Cáp, J. Vokrı́nek, and A. Kleiner. “Complete Decentralized Method for On-Line Multi-Robot Trajectory
Planning in Well-formed Infrastructures”. In: International Conference on Automated Planning and Scheduling.
2015, pp. 324–332.



Parking Locations

I Task Parking Locations: all pickup and delivery locations
of tasks
(storage locations, inventory stations, etc.)

I Non-task Parking Locations:
I All initial locations of agents
I Additional designated parking locations

g1

s2

g2

s1

a1 a2

a3



Well-Formed MAPD Instances

1. # tasks is finite;
2. # non-task parking locations ≥ # agents;
3. For any two parking locations, there exists a path between

them that traverses no other parking locations.

a1 a2 a1 a2 a1 a2



MAPD Algorithms

We present

1. Two Decoupled Algorithms:
complete for well-formed MAPD instances (solve all
well-formed instances)

I Token Passing (TP)
I Token Passing with Task Swaps (TPTS)

2. One Centralized Algorithm:
CENTRAL



A Running Example

Unexecuted Tasks: task1, task2.
Agent a1 and agent a2 are resting.
Agent a3 is assigned to task1 and on the way to the pickup
location s1.

a1

a2a3

s1

g1

s2

g2



Token Passing (TP)

Based on an idea similar to Cooperative A*3:

I Token: a synchronized shared block of memory that
contains the current paths of all agents, set of unexecuted
task, and agent assignments.

I Only one agent has access to the token at each time.
I Each agent assigns itself a task, plan its path, and passes

the token to the next agent.

3D. Silver. “Cooperative Pathfinding”. In: Artificial Intelligence and Interactive Digital Entertainment. 2005,
pp. 117–122.



TP: Key Idea

I A task can only be assigned once.
I Once an agent is assigned to a task, it cannot be assigned

to other tasks until it finishes the task.



TP: Running Example

Task Available for Assignment: task2.
Agent a1 and agent a2 request for token.

a1

a2a3

s1

g1

s2

g2



TP: Agent a1’s Turn

Agent a1 Has Token

1. it cannot assign itself to any task because agent a2 rests in
g2, the only task available to it;

2. it has to rest in a parking location that will not create any
deadlock;

3. it can continue to rest in its current location.

s1

g1

s2

g2



TP: Agent a2’s Turn

Agent a2 Has Token

1. it assigns itself to task2;
2. task2 is no longer available to other agents;
3. it plans a cost-minimal collision-free path to execute task2.

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s1

g1

s2

g2



TP: Animation

s2

g2



TP: Animation

s2

g2



TP: Animation



TP: Completeness

Theorem
All well-formed MAPD instances are solvable, and TP solves
them.



Improving the Effectiveness of TP

TP is simple but can be made more effective:

I A task with an assigned agent can be assigned a new
agent (as long as the task has not been executed).



Token Passing with Task Swaps (TPTS)

An agent is allowed to grab a task from another agent if it can
finish the task earlier.



TPTS: Running Example

Tasks Available for Assignment: task1, task2.
Agent a1 and agent a2 request for token.

a1

a2a3

s1

g1

s2

g2



TPTS: Agent a1’s Turn

Agent a1 has token.
Agent a1 grabs task1 from agent a3.

s1

g1

s2

g2



TPTS: Agent a3 Making Decisions

Agent a3 has token.
Agent a3 moves to a parking location that will not create any
deadlock in the future.

s1

g1

s2

g2



TPTS: Agent a2’s Turn

Agent a2 has token.
Agent a2 grabs task1 from agent a1.

s1

g1

s2

g2



TPTS: Agent a1 Making Decisions

Agent a1 has token.
Agent a1 assigns itself to task2.

s1

g1

s2

g2



TPTS: Completeness

Theorem
TPTS solves all well-formed MAPD instances.



Centralized MAPD Algorithm: CENTRAL

CENTRAL assigns agents to tasks in a centralized way:
1. assigns parking locations to all free agents using

Hungarian method;
2. plans paths for all of them from their current locations to

their assigned parking locations by solving the resulting
“one-shot” multi-agent path-finding problem.



CENTRAL: Running Example

Tasks available for assignment: task1, task2

a1

a2a3

s1

g1

s2

g2



CENTRAL: Candidate Parking Locations

Pickup locations s1 and s2 + three additional “good” parking
locations, one for each agent:

s1

g1

s2

g2



CENTRAL: Assignment of Parking Locations to
Agents

CENTRAL uses Hungarian method to find a cost-minimal
assignment from parking locations to agents (pickup locations
have priority over other parking locations):



CENTRAL: Path Finding

CENTRAL plans collision-free paths for all agents from their
current locations to their assigned parking locations.
CENTRAL plans paths to delivery locations only when agents
reach pickup locations.

s1

g1

s2

g2



Comparisons of Three Algorithms

a1

a2a3

s1

g1

s2

g2

s1

g1

s2

g2

s1

g1

s2

g2

s1

g1

s2

g2



Small Simulated Warehouse Environment

Figure: 21× 35 4-neighbor grid with 50 agents. Gray cells are
inventory stations and storage locations. Colored circles are the initial
locations of agents.



Experimental Results: 500 Random Tasks, 10 to 50
Agents

I Effectiveness
1. Service Time:

CENTRAL < TPTS < TP
2. Throughput – # tasks executed per 100 timesteps:

TP < TPTS < CENTRAL
3. Makespan – timestep when all tasks are finished:

CENTRAL < TPTS < TP
I Runtime per Timestep:

TP < 10 milliseconds
TPTS < 200 milliseconds
CENTRAL < 4,000 milliseconds



Large Simulated Warehouse Environment

Figure: 81× 81 4-neighbor grid with 500 agents.



Results for TP: 1000 Random Tasks, 100 to 500
Agents

100 agents: ∼ 0.09 seconds per timestep
500 agents: ∼ 6 seconds per timestep

agents 100 200 300 400 500
service time 463.25 330.19 301.97 289.08 284.24

runtime (milliseconds) 90.83 538.22 1,854.44 3,881.11 6,121.06



Takeaways

MAPD: A “lifelong” version of multi-agent path finding.
Three Algorithms:

I Decoupled and complete for well-formed MAPD instances:
TP, TPTS.

I Centralized: CENTRAL.

Task Assignment Effort: TP < TPTS < CENTRAL
Effectiveness: TP < TPTS < CENTRAL
Efficiency: CENTRAL < TPTS < TP


	Motivations
	MAPD
	MAPD Algorithms
	Experimental Evaluation

