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ABSTRACT
In this paper, we formalize and study the Moving Agents in For-

mation (MAiF) problem, that combines the tasks of finding short

collision-free paths for multiple agents and keeping them in close

adherence to a desired formation. Previous work includes controller-

based algorithms, swarm-based algorithms, and potential-field-

based algorithms. They usually focus on only one or the other of

these tasks, solve the problem greedily without systematic search,

and thus generate costly solutions or even fail to find solutions in

congested environments. In this paper, we develop a two-phase

search algorithm, called SWARM-MAPF, whose first phase is in-

spired by swarm-based algorithms (in open regions) and whose

second phase is inspired by multi-agent path-finding (MAPF) algo-

rithms (in congested regions). In the first phase, SWARM-MAPF

selects a leader among the agents and finds a path for it that is

sufficiently far away from the obstacles so that the other agents

can preserve the desired formation around it. It also identifies the

critical segments of the leader’s path where the other agents can-

not preserve the desired formation and the refinement of which

has thus to be delegated to the second phase. In the second phase,

SWARM-MAPF refines these segments. Theoretically, we prove that

SWARM-MAPF is complete. Empirically, we show that SWARM-

MAPF scales well and is able to find close-to-optimal solutions.
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1 INTRODUCTION
Planning paths for multiple agents in known congested environ-

ments is an important problem that arises in many real-world appli-

cations of multi-agent systems. Examples include aircraft-towing

vehicles [19], warehouse robots [31], and video game characters
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[18]. In many applications, it is also important for the agents to

move in a specific formation while avoiding obstacles. For example,

unmanned vehicles have to move in specific formations in order

to transport large objects or maintain a communication network.

Game characters or army personnel have to move in specific for-

mations in order to protect vulnerable agents. These applications

involve two key tasks: (a) planning collision-free paths for multiple

agents, and (b) keeping the agents in formation. Task (a) can be

addressed with multi-agent path finding (MAPF) algorithms, which

typically minimize one of several possible metrics on the path costs.

MAPF is NP-hard to solve optimally [17, 33]. It can be solved via re-

ductions to other well-studied combinatorial problems [5, 10, 28, 32]

or with dedicated MAPF algorithms [14, 15, 22–26, 29, 30]. Task (b)

can be addressed with formation-control algorithms, which try to

restore the desired formation in case it is compromised because

of obstacles. Examples include behavior-based [1], leader-follower

[3], virtual-structure [12], potential-field [11], graph-based [4], and

other swarm-based algorithms [9, 13, 21]. However, these algo-

rithms often do not work well in congested environments and

provide no completeness guarantees.

We thus study the Moving Agents in Formation (MAiF) problem
in congested environments to bridge the gap between algorithms

that focus on tasks (a) or (b) exclusively. MAiF is a problem related

to MAPF where a desired formation is given and the task is to

plan collision-free paths for all agents that balance between the

minimization of the makespan and a close adherence to the desired

formation at all times. To the best of our knowledge, none of the

previous work in AI or robotics is directly applicable to MAiF. A

first attempt, presented in [18], calls a MAPF algorithm repeatedly

to solve MAiF. However, the agents do not always restore the de-

sired formation when it is compromised after they move around

obstacles.

We organize the paper as follows. In Section 2, we define MAiF

formally and introduce a distance metric that measures the differ-

ence between two formations in a Cartesian system. In Section 3,

we present a leader-follower controller, adapted from formation-

control algorithms, and analyze its drawbacks with respect to its

solution quality in congested environments. In Section 4, we present

joint-state A*, adapted from MAPF algorithms. Although joint-state

A* is able to find Pareto-optimal solutions, it is extremely time-

consuming and does not scale to large numbers of agents. In Sec-

tion 5, we present SWARM-MAPF, a novel two-phase algorithm

that combines the ideas of formation-control and MAPF. It uses a

loose coupling between a swarm-based first phase and a MAPF-

based second phase. A swarm-based algorithm is used in the first

phase for open parts of the environment where all agents can move



Figure 1: A MAiF instance on a 4-neighbor grid. The first di-
mension is horizontal, and the second dimension is vertical.
In the left figure, the hatched circles show the locations of all
agents after applying the optimal translation∆x∗ = (3,−1) to
the goal locations. In the right figure, the green line shows
the path of the leader.

in the desired formation. CBS-M, a novel MAPF-based algorithm,

is used in the second phase for congested parts of the environment

where the desired formation has to be temporarily compromised.

CBS-M can also be used as a stand-alone MAiF algorithm to solve

MAiF. It produces solutions that minimize the makespan and uses

novel combinatorial search algorithms to try to keep the agents in

close adherence to the desired formation. Theoretically, we prove

that SWARM-MAPF is complete for all MAiF instances, and CBS-M

minimizes the makespan. Experimentally, in Section 6, we show

that SWARM-MAPF scales well and produces solutions that keep

all agents in the desired formation better than CBS-M with only a

small loss of optimality in makespan.

2 PROBLEM DEFINITION
In this section, we formalize MAiF in a Cartesian system: We are

given an undirected graphG = (V ,E) in a d-dimensional Cartesian

system. The vertices V correspond to locations, and the edges E
correspond to transitions between locations. A location vi ∈ V can

be recognized by its coordinates vi = (vi1, . . . , vid ) ∈ R
d
. We are

also given a set ofM agents {ai |i = 1, . . . ,M}, each with a unique

start location si ∈ V and a unique goal location дi ∈ V . Time is

discretized into timesteps. Between successive timesteps, every

agent can either move to an adjacent location or wait at its current

location. A path πi for agent ai is a sequence of locations, one for
each timestep, that moves agent ai from its start location si to its

goal location дi . πi (t) ∈ V is the location of agent ai at timestep t .
Agents remain at their goal locations forever after their paths end.

A collision between the paths of agents ai and aj is either a vertex
collision ⟨ai ,aj ,v, t⟩, i.e., agents ai and aj are at the same location

v at the same timestep t , or an edge collision ⟨ai ,aj ,u,v, t⟩, i.e.,
agent ai moves from location u to location v and agent aj moves

from location v to location u at the same timestep t . A solution is

a set of M paths {πi |i = 1, . . . ,M}, one for each agent, such that

no two paths collide. The makespan of a solution is the maximum

length of all paths in the solution, i.e., max1≤i≤M |πi |.

Formation. The notion of a formation captures the relative lo-

cations between agents and can be specified by the coordinates

of all agents. The formation at timestep t is an M-tuple ℓ(t) =
⟨π1(t), . . . ,πM(t)⟩ specified by the coordinates of the locations

of all agents at timestep t . The desired formation is an M-tuple

ℓд = ⟨g1, . . . gM⟩ specified by the coordinates of the goal locations

of all agents. The formation distance F (ℓ, ℓ′) between two forma-

tions ℓ and ℓ′ characterizes the least effort needed to transform for-

mation ℓ to formation ℓ′. It is defined as the sum of the L1-distances
over all agents between the two locations of the same agent after

applying any translation ∆x to ℓ′, minimized over all such transla-

tions. Formally, let ℓ = ⟨u1, . . . uM⟩ and ℓ′ = ⟨v1, . . . vM⟩. Then,

F (ℓ, ℓ′) =min

∆x

M∑
i=1

| |ui − (vi + ∆x)| |1

=

d∑
j=1

min

∆xj

M∑
i=1

|(ui j − vi j ) − ∆xj |

=

d∑
j=1

M∑
i=1

|(ui j − vi j ) − ∆x∗j |, (1)

where, for each dimension j, ∆x∗j is the median of all differences

ui j − vi j .
1
The formation deviation F (t) at timestep t is the for-

mation distance between the formation ℓ(t) at timestep t and the

desired formation ℓд , i.e., F (t) = F (ℓ(t), ℓд). The total formation
deviation is the sum of the formation deviations over all timesteps,

i.e.,

∑
t F (t). Figure 1 (left) shows an example: The differences be-

tween the coordinates of the start and goal locations for every agent

in every dimension {si1−gi1 |i = 1, 2, 3} and {si2−gi2 |i = 1, 2, 3} are

{3, 4, 3} and {−2,−1, 2}, respectively. Therefore, at timestep 0, the

optimal translation is ∆x∗ = (3,−1), and the formation deviation

at timestep 0 is thus F (0) = 5.

Objective. The quality of a MAiF solution {πi |i = 1, . . . ,M} is

evaluated by both its makespan and its total formation deviation. It

is not easy tominimize bothmetrics simultaneously or any algebraic

combination of them. However, minimizing only one of them is

insufficient. MAPF algorithms can produce MAiF solutions that

minimize the makespan but do not attempt to maintain the desired

formation, while the dummy solution of keeping all agents idle in

the desired formation minimizes the total formation deviation but

prevents the agents from reaching their goal locations.

3 LEADER-FOLLOWER CONTROLLER
The leader-follower controller is a classic class of algorithms in

formation control which has been widely studied and applied in

robotics. As the name implies, the leader-follower controller selects

one of the agents as the leader and treats the other agents as the fol-

lowers. The leader tries to find a path toward its goal location, while

each follower follows the leader by keeping its relative location to

the leader in close adherence to the desired formation.

We adapt a simple leader-follower controller to MAiF. It first

arbitrarily chooses an agent a∗ as the leader and plans a shortest

path π∗
for it by ignoring the other agents. At each timestep t , the

leader a∗ moves one step along its planned path π∗
. Once the next

location π∗(t + 1) of the leader a∗ is determined, the followers (i.e.,

all agents except for agent a∗) try to move toward their desired

1
We use the fact that the median minimizes the sum of the absolute differences to M
numbers. The subgradient of the L1-norm is the L1-norm

d |x |
dx = sign(x ). Therefore,

differentiating

∑M
i=1 |(ui j − vi j ) −∆xj | with respect to ∆xj yields

∑M
i=1 −sign((ui j −

vi j ) − ∆xj ), which is 0 only if the number of positive items equals the number of

negative items. This happens when ∆xj is the median of all differences ui j − vi j .



Figure 2: Two MAiF instances on a 4-neighbor grid. The
black cells indicate obstacles. The first dimension is horizon-
tal, and the second dimension is vertical. In each figure, the
blue line shows the path of the leader.

locations that are determined relative to the leader in the formation.

To be more specific, the next location of follower ai is

πi (t + 1) = argmin

v ∈S
| |(v − π∗(t + 1)) − (gi − g∗)| |1, (2)

where д∗ is the goal location of agent a∗ and S ⊆ V consists of the

current location πi (t) of agent ai and its adjacent locations.

The leader-follower controller is not complete. Figure 2 shows

two examples. Assume that agent a1 is selected as the leader in

both examples. In Figure 2 (left), agent a2 moves one step toward

the right following agent a1 at every timestep but gets stuck at

location (2, 1) after agent a1 arrives at location (2, 3) at timestep 2.

While agent a1 continues moving toward its goal location, agent a2
always waits at location (2, 1) because this location is closest to its

desired location. In Figure 2 (right), agent a1 moves from location

(0, 0) to location (1, 0) at timestep 0, following its planned path. If

we assign a move to agent a2 before agent a3, agent a2 moves to

location (1, 1) in order to stay in formation. Then, agent a3 has

nowhere to move.

4 JOINT-STATE A*
Joint-state A* [6] is a straightforward algorithm for solving MAPF

optimally. It applies A* in anM-agent joint state space. The states

assign each of theM agents a different location. Agent ai is assigned
its start location si and it goal location дi , respectively, in the start

and goal states. The operators assign each of the agents a non-

colliding move or wait action.

We adapt joint-state A* to MAiF by considering both the

makespan and the total formation deviation when computing the

д-value and admissible h-value of each node in the A* search tree.

For a node n at timestep t , the д-value for the makespan is

Cmд(n) = t , (3)

while the д-value for the total formation deviation is

Cf д(n) =
t∑

k=0

F (k). (4)

We design an admissible h-value Cmh (n) for the makespan as the

minimum number of timesteps needed for all agents to reach their

goal locations, which can be estimated as the maximum of the

distances from the current location π i (t) of each agent ai to its

goal location дi , i.e.,

Cmh (n) = max

1≤i≤M
dist(πi (t),дi ), (5)

where dist(u,v) is the distance between locations u and v on graph

G . We also design an admissible h-valueCf h (n) for the total forma-

tion deviation as the sum of the formation deviations after timestep

t under the best-case assumption that all agents move one step

toward the desired formation at every timestep. For example, if

graph G is a 4-neighbor grid with unit-sized cells, the best circum-

stances are that the formation deviation decreases byM with every

timestep, i.e.,

Cf h (n) =

⌊F (t )/M ⌋∑
j=1

(F (t) −M · j). (6)

Hence, there are two f -values for each node n, namely a makespan

f -valueCm (n) = Cmд(n) +Cmh (n) and a total formation deviation

f -value Cf (n) = Cf д(n) +Cf h (n).
We use the ϵ-constraint algorithm [8] to obtain the Pareto fron-

tier of this bi-objective optimization problem. In particular, we

replace A* with focal search [20]. Like A*, the focal search uses

an OPEN list to prioritize its nodes n in increasing order of their

makespan f -values Cm (n). Unlike A*, the focal search also uses a

FOCAL list that consists of all nodes currently in the OPEN list

whose makespan f -values are no larger than ϵ minn∈OPENCm (n),
where ϵ ≥ 1 is a user-provided parameter. The focal list prioritizes

its nodes n in increasing order of their total formation deviation

f -valuesCf (n). At each iteration, the focal search expands the node
in the FOCAL list (rather than the OPEN list) with the minimum

total formation deviation f -value. The focal search is guaranteed

to find a solution whose makespan Cm is at most ϵ times larger

than the minimum makespan and whose total formation deviation

is the minimum total formation deviation among all solutions with

the same makespan Cm . We can obtain some points on the Pareto

frontier by varying ϵ .
Joint-state A* is complete and Pareto optimal. However, due to

the exponential state space, joint-state A* is extremely inefficient.

Many techniques exist to speed up joint-state A* for MAPF, such as

independence detection [25], operator decomposition [25], partial

expansions [7], and sub-dimensional expansions [29]. However,

most of these techniques are based on the assumption that the

objective can be decomposed into M independent cost functions,

one for each agent. But agents in MAiF have a joint cost function

where the total formation deviation relies on the relative locations

of all agents. Thus, most of these techniques do not apply to MAiF,

and we add only operator decomposition to joint-state A*. But, even

after adding this technique, joint-state A* still scales poorly in the

number of agents, as shown in the experimental section.

5 SWARM-MAPF
In this section, we present our novel two-phase MAiF algorithm,

called SWARM-MAPF, which leverages ideas from both formation

control and MAPF, and is complete and efficient. It tackles the

combined task of MAiF by dividing the problem into sub-problems

and the planning into two phases. In the first phase, the leader is
chosen to be the agent with the smallest number of timesteps when

the desired formation has to be compromised. The other agents are

the followers. Then, the path of the leader is divided into segments of

two types. For segments where all agents can move in the desired



formation (e.g., in open regions), SWARM-MAPF uses a swarm-

based algorithm. For segments where the desired formation has to

be compromised (e.g., in regions with obstacles), SWARM-MAPF

uses a novel hierarchical MAPF-based algorithm, called CBS-M, to

move the agents around the obstacles as quickly as possible while

still trying to keep the total formation deviation small. CBS-M

can also be used as a stand-alone MAiF algorithm that minimizes

the makespan only but biases its searches toward solutions with

small total formation deviation. SWARM-MAPF is not guaranteed

to provide optimal solutions for either of the two objectives. But we

demonstrate experimentally that it often produces solutions that

keep all agents in close adherence to the desired formation with

only a small loss of optimality in the makespan.

5.1 Phase I: Leader Path Generation
In Phase I, SWARM-MAPF chooses a leader among all agents and

partitions its path into open and congested segments. In each open

segment, the agents form the desired formation and follow the

leader, while, in each congested segment, their paths are planed in

Phase II.

5.1.1 Choosing the Leader and Its Path. A formation-blocking
location for an agent is one where the desired formation cannot

be kept by the remaining agents when the agent is at it. The total
formation-blocking value of a path is the number of formation-

blocking locations on it. In Phase I, SWARM-MAPF chooses the

agent a∗ as the leader whose path minimizes the total formation-

blocking value among all paths for all agents of lengths no larger

than wB, where w ≥ 1 is a user-provided parameter and B is a

lower bound on the makespan. In this paper, SWARM-MAPF uses

B = max1≤i≤M dist(si ,дi ).
To do so, SWARM-MAPF performs a best-first search for each

agent ai to find a path πi with the minimum total formation-

blocking value subject to the constraint that the path length is

no larger than wB. It breaks ties in favor of shorter paths. Then,

SWARM-MAPF chooses the pathwith theminimum total formation-

blocking value among the paths of all agents as the leader’s path

π∗
and the corresponding agent as the leader a∗. It breaks ties in

favor of shorter paths.

5.1.2 Partitioning the Path of the Leader into Segments. Once
the leader a∗ has been chosen, its path π∗

is partitioned into open
segments and congested segments alternately. Each open segment

is a maximum segment [π∗(tb ),π
∗(te )] (tb ≤ te ) such that, for

all tb ≤ t ≤ te , location π∗(t) is not formation-blocking. Each

remaining segment is a congested segment.

Assume that there are K open segments. K should be at least 1

because the goal location of the leader is not formation-blocking. Let

p∗
1
, . . . ,p∗

2K denote the first and last locations of all open segments,

i.e., the k-th open segment is [p∗
2k−1,p

∗
2k ]. Let p

∗
0
denote the start

location of the leader. p∗
0
and p∗

1
are identical iff the start locations of

all agents are in the desired formation. There are also K congested

segments, and the k-th congested segment can be represented by

[p∗
2k−2,p

∗
2k−1].

Let ℓ∗
0
denote the M-tuple of the start locations of all agents

and ℓ∗k (1 ≤ k ≤ 2K) denote the M-tuple of the locations of all

agents that form the desired formation around location p∗k of the

leader. Each open segment specifies a sub-MAiF instance where all

agents need to move from locations ℓ∗
2k−1 to locations ℓ

∗
2k . SWARM-

MAPF obtains a sub-solution for each such sub-MAiF instance

for free since all agents move in the desired formation along the

path segment [p∗
2k−1,p

∗
2k ] of the leader. In each congested segment

[p∗
2k−2,p

∗
2k−1], any location except for locations p∗

2k−2 and p
∗
2k−1 is

formation-blocking. Each congested segment specifies a sub-MAiF

instance where all agents need to move from the intermediate start
locations ℓ∗

2k−2 to the intermediate goal locations ℓ∗
2k−1. SWARM-

MAPF obtains a sub-solution for each such sub-MAiF instance in

Phase II. Finally, SWARM-MAPF concatenates the sub-solutions

for all sub-MAiF instances of both types of segments to obtain a

solution for the overall MAiF instance.

Figure 1 (right) demonstrates the generation of the leader’s path

for the running example. SWARM-MAPF determines the lower

bound B on the makespan to be 5. Nomatter what the user-provided

parameter w is, SWARM-MAPF always finds a path of length 5

for agent a2 and chooses it to be the leader because agent a2
has a path of length 5 with total formation-blocking value 0. The

green line in the figure is such a path. There are two segments,

namely a congested segment from the (intermediate) start loca-

tions ℓ∗
0
= ⟨(3, 1), (5, 1), (4, 3)⟩ to the intermediate goal locations

ℓ∗
1
= ⟨(4, 2), (5, 1), (5, 0)⟩ and an open segment from locations ℓ∗

1

to the goal locations ℓ∗
2
= ⟨(0, 3), (1, 2), (1, 1). The solution for the

overall MAiF instance is a concatenation of the sub-solutions to

the sub-MAiF instances resulting from both segments.

5.2 Phase II: CBS-M for Congested Segments
In Phase II, SWARM-MAPF uses a MAPF algorithm to compute

paths for the sub-MAiF instances resulting from each congested

segment that move the agents from the given intermediate start

locations to the given intermediate goal locations. For ease of ex-

position, in the description of Phase II, we let si and дi denote the
given (intermediate) start and goal locations of agent ai , respec-
tively. We develop a new variant of Conflict-Based Search (CBS)

[22], called CBS-M, that minimizes the makespan and incentivizes

the agents to keep close adherence to the desired formation.

5.2.1 CBS. The original CBS [22] is a two-level MAPF algo-

rithm that minimizes the flowtime, i.e., the sum of the lengths of

the paths for all agents. On the high level, CBS performs a best-

first search on a constraint tree (CT) to resolve collisions among

the agents. Each CT node N contains a set of spatio-temporal con-

straints (N .constraints), paths for all agents (N .paths) that obey
N .constraints but might result in collisions, and a cost (N .cost ) that
equals the flowtime of the paths in N .paths . CBS always expands
the CT node with the smallest cost. The root CT node has no con-

straints and contains shortest paths on graph G (not considering

the other agents) for all agents. When CBS expands a CT node

N , it checks whether the paths in N .paths are collision-free. If so,
then N is a goal CT node, and CBS terminates successfully. Other-

wise, CBS chooses a collision to resolve and generates two child

CT nodes N1 and N2 of N that inherit N .constraints and N .paths .
If the collision to resolve is a vertex collision ⟨ai ,aj ,v, t⟩, then CBS

adds the vertex constraint ⟨ai ,v, t⟩ to N1.constraints to prohibit

agent ai from being at location v at timestep t and similarly adds

the vertex constraint ⟨aj ,v, t⟩ to N2.constraints . If the collision to



resolve is an edge collision ⟨ai ,aj ,u,v, t⟩, then CBS adds the edge

constraint ⟨ai ,u,v, t⟩ to N1.constraints to prohibit agent ai from
moving from location u to location v at timestep t and similarly

adds the edge constraint ⟨aj ,v,u, t⟩ to N2.constraints .
For each child CT node, say N1, CBS performs a low-level A*

search to compute a new shortest path for agent ai that obeys the
constraints in N1.constraints relevant to agent ai . Each low-level

node (in the search tree of A*) contains a location v and a timestep

t , representing the agent being at location v at timestep t . The A*
search terminates when the expanded node satisfies the following

two conditions: (a) its location is location дi , and (b) its timestep

is greater than or equal to the latest timestep of any constraint

relevant to agent ai (to ensure that agent ai can wait at its goal

location forever).

5.2.2 CBS-M. CBS-M is similar to CBS except that its objective

is to minimize the makespan. In fact, Ma and Koenig [16] have

already developed a variant of CBS that minimizes the makespan

by simply using the makespan, instead of the flowtime, as the cost

of each CT node. Since, in general, there are many combinations of

paths for all agents that result in the same makespan, CBS-M ex-

ploits this leeway to speed up both its high- and low-level searches

while trying to maintain the desired formation.

On the high level, CBS-M uses the makespan of the paths in

N .paths as the cost N .cost of a CT node N . Each CT node N also

keeps track of the total formation deviation of these paths. The high-

level search always expands the CT node with the smallest cost. The

primary tie-breaking criterion is to favor the CT node N with the

smallest number of pairs of colliding paths in N .paths , which has

empirically been shown to speed up the high-level search [2]. The

secondary tie-breaking criterion is to favor the CT node with the

smallest total formation deviation, which incentivizes the agents to

adhere closely to the desired formation.

When a child CT node N1 is generated from its parent CT node

N with a new constraint for agent ai , CBS-M performs a low-level

search to compute a path for agent ai that obeys the constraints
in N1.constraints relevant to agent ai and closely adheres to the

desired formation. On the low level, CBS-M uses a focal search,

instead of an A* search, to find paths for agents, which allows

it to find (non-shortest) paths that result in smaller total forma-

tion deviations than the shortest paths. The focal search uses an

OPEN list that prioritizes all low-level nodes in increasing order

of their f -values (which correspond to the lengths of the paths

from the start location si of agent ai to the locations of the low-

level nodes) and a FOCAL list of all low-level nodes currently in

the OPEN list whose f -values are no larger than the focal bound

max{N .cost,minn∈OPEN f (n)}. For the root CT node, that has no

parent CT node, the low-level search simply uses an A* search.

Besides the location and the timestep, each low-level node also

keeps track of the sum of the formation deviations (with respect

to the paths of the other agents in N1.paths) along the path from

location si to the location of the low-level node. The low-level

search always expands the low-level node n from the FOCAL list

whose path has the fewest collisions with the paths of the other

agents in N1.paths, which has empirically been shown to speed up

the high-level search [2]. The tie-breaking criterion is to favor the

low-level node with the smallest sum of the formation deviations.

Compared to the low-level A* search described in Section 5.2.1,

the termination criterion of the low-level focal search has a third

condition, namely the timestep of the expanded low-level node is

at least N .cost. This condition is important because it allows the

low-level search to take into account the collisions and formation

deviations for all timesteps, including the timesteps after the agent

reaches its goal location дi .

Lemma 1. The cost N .cost of each CT node N is at most the
makespan of any solution whose paths obey the constraints in
N .constraints.

Proof. We prove by induction the statement that N .cost of each
CT node N is at most the makespan of any set of paths (possibly
with collisions) of all agents that obey N .constraints. The lemma

then holds because any solution whose paths obey N .constraints
is a set of paths of all agents that obey N .constraints. The root CT
node R contains a shortest path for each agent, and the statement

therefore holds for R. Assume that the statement holds for a parent

CT node N of any child CT node N ′
. Compared to N .paths , CBS-M

changes the path for one agent only, say agent ai , in N ′.paths by
performing a low-level search with the constraints of N ′

. (1) If the

length of the path returned by the low-level search is at most N .cost,
then the resulting N ′.cost is at most N .cost, which is at most the

makespan of any set of paths of all agents that obey N .constraints
according to the induction assumption. In turn, this makespan is

at most the makespan of any set of paths of all agents that obey

N ′.constraints since N ′.constraints is a super set of N .constraints .
(2) Otherwise, the length of the path returned by the low-level

search is greater than N .cost, and this path is a shortest path for

agent ai that obeys N
′.constraints. The resulting N ′.cost is equal

to the length of this shortest path, which is at most the makespan

of any set of paths of all agents that obey N ′.constraints. Therefore,
the statement holds for CT node N ′

in both cases. �

In order to guarantee completeness, CBS-M runs an efficient

MAPF algorithm, such as the one in [34], as a first step to determine

the solvability of the sub-MAiF instance and return an upper bound

on the makespan. If the instance is solvable, CBS-M always returns

a solution. Otherwise, it reports that no solution exists once it

expands a CT node with cost larger than the upper bound. The

proof of completeness of CBS-M is exactly the same as the one in

[22]. The proof of optimality of CBS-M is also the same as the one

in [22], except that it is adapted to makespan minimization and

uses Lemma 1. Therefore, the following theorem holds:

Theorem 2. CBS-M is complete for all MAiF instances and mini-
mizes the makespan.

5.3 Iterative Goal Updating for Completeness
In Phase I, SWARM-MAPF does not determine the solvability of

each sub-MAiF instance, so the completeness of SWARM-MAPF

requires an additional technique, called iterative goal updating: In
Phase II, SWARM-MAPF calls CBS-M to solve the sub-MAiF in-

stances resulting from the congested segments, one by one, from

the first congested segment to the last congested segment. If CBS-M

reports that no sub-solution exists for the k-th sub-MAiF instance

with the intermediate start and goal locations ℓ∗
2k−2 and ℓ∗

2k−1,



then location p∗
2k−1 is regarded as a formation-blocking location.

SWARM-MAPF returns to Phase I, re-partitions the path π∗
after

location p∗
2k−2 and updates ℓ∗k accordingly. SWARM-MAPF itera-

tively calls CBS-M to solve the new sub-MAiF instance with the

intermediate start locations ℓ∗
2k−2 and the updated intermediate

goal locations (ℓ∗
2k−1)

′
, until (1) CBS-M returns a sub-solution or (2)

the locations (ℓ∗
2k−1)

′
are the goal locations and CBS-M reports that

no sub-solution exists. In case (1), SWARM-MAPF saves the com-

puted sub-solution from ℓ∗
2k−2 to (ℓ

∗
2k−1)

′
and proceeds to the next

congested segment of the re-partitioned path. In case (2), SWARM-

MAPF reports that no solution exists for the overall MAiF instance.

Theorem 3. SWARM-MAPF with iterative goal updating is complete
for all MAiF instances.

Proof. After CBS-M is called to solve a sub-MAiF instance, it

either (1) returns a solution, and SWARM-MAPF thus proceeds to

the next congested segment, or (2) does not return a solution, and

SWARM-MAPF thus updates the intermediate goal locations and

attempts to solve the resulting new sub-MAiF instance. In both

cases, SWARM-MAPF does not terminate until it attempts to solve

the sub-MAiF instance resulting from the last congested segment

that moves the agents from some intermediate start locations ℓ∗
2k−2

to the goal locations ℓд . We now argue that SWARM-MAPF either

(1) returns a solution if there exists a solution to the overall MAiF

instance or (2) correctly reports that no solution exists.

Consider (1), where there exists a solution to the overall MAiF

instance that moves all agents from their start locations ℓs to their

goal locations ℓд . We first argue that there must exist a sub-solution

to the sub-MAiF instance resulting from the last congested segment

with the intermediate start locations ℓ∗
2k−2 and the goal locations

ℓд . Concatenating the computed sub-solutions up to the interme-

diate start locations ℓ∗
2k−2 produces collision-free paths that move

all agents from the locations ℓs to the locations ℓ∗
2k−2. Reversing

all actions produces collision-free paths that move them from the

locations ℓ∗
2k−2 to the locations ℓs . By assumption, we also know

that there exist collision-free paths that move all agents from the

locations ℓs to the locations ℓд . Therefore, there exists a solution

that moves all agents from the locations ℓ∗
2k−2 to the locations ℓд

(namely, via the locations ℓs ). Since CBS-M is complete, it must re-

turn a sub-solution to the last sub-MAiF instance. This sub-solution

appended to the concatenation of all computed sub-solutions up to

ℓ∗
2k−2 produces a solution to the overall MAiF instance.

Now consider (2), where no solution exists to the overall MAiF

instance. There exists no sub-solution to the sub-MAiF instance re-

sulting from the last congested segment with the intermediate start

locations ℓ∗
2k−2 and the goal locations ℓд either, since, otherwise,

this solution appended to the concatenation of the computed sub-

solutions up to ℓ∗
2k−2 would produce a contradictory solution to the

overall MAiF instance. Since CBS-M is complete, it must report that

no solution exists to the this sub-MAiF instance, and, consequently,

SWARM-MAPF must correctly report that no solution exists to the

MAiF instance. �

5.4 Limitation of SWARM-MAPF
We now show that, in extreme cases, SWARM-MAPF computes so-

lutions with large makespans. Figure 3 shows a conceptual example

Figure 3: A MAiF instance on a 4-neighbor grid.

whereM agents need to travel through a narrow vertical passage-

way of length 3 with one horizontal passageway of lengthM − 1.

The minimummakespan isM +3, resulting from the agents moving

through the vertical passageway one after another. SWARM-MAPF

chooses agent a1 as the leader because its locationm1 in the middle

of the vertical passageway (indicated by the blue circle labeled “1”

in a lighter shade) is not formation-blocking and all agents are

planned to restore the desired formation along the horizontal pas-

sageway in the middle of the figure. Therefore, the leader’s path

is partitioned into 5 segments, namely an open segment [s1, s1], a
congested segment [s1,m1], an open segment [m1,m1], a congested

segment [m1,д1] and an open segment [д1,д1]. The makespans of

the sub-solutions for all open segments are 0, while the makespans

of the sub-solutions for both congested segments are determined

by the lengths of the shortest paths of agent aM from its (interme-

diate) start locations to its (intermediate) goal locations. That is, the

makespans of the sub-solutions for the congested segments are 2M
and M + 1, respectively. Therefore, the makespan of the solution

for the overall MAiF instance is 3M + 1.
We now generalize the example to M agents moving through

a narrow vertical passageway of length 2C + 1 with C horizontal

passageways of length M − 1 each. The minimum makespan is

M + 2C + 1, resulting from the agents moving through the vertical

passageway one after another. SWARM-MAPF still chooses agent

a1 as the leader and partitions its path into C + 2 open segments

[mk ,mk ] (0 ≤ k ≤ C +1) andC +1 congested segments [mk ,mk+1]

(0 ≤ k ≤ C), wherem0 is the start location s1 of agent a1,mC+1 is

the goal location д1 of agent a1, andmk (1 ≤ k ≤ C) is the location
of agent a1 in the k-th horizontal passageway. The makespans of

the sub-solutions for all open segments are 0, while the makespans

of the sub-solutions for all congested segments are determined by

the lengths of the shortest paths of agent aM from its (intermediate)

start location to its (intermediate) goal location, i.e., 2M for each of

the firstC + 1 congested segments andM + 1 for the last congested
segment. Therefore, the makespan of the solution for the overall

MAiF instance is 2M(C + 1)+M + 1, which is much larger than the

minimum makespanM + 2C + 1 for large C andM .

6 EXPERIMENTS
In this section, we describe our experimental results on a 2.2 GHz

Intel Core i5-5200 laptop with 4 GB RAM.We tested two algorithms.

The first one (labeled CBS) calls CBS-M to solve the entire MAiF

instance, which produces the optimal makespan and uses the total

formation deviation to break ties between search nodes. The second



Table 1: Results for SWARM-MAPF for different user-
provided parametersw and CBS-M for MAiF instances with
10 agents. “Leader path length” represents the length of the
leader’s path computed in Phase I. “Leader path subopt.”
represents the suboptimality ratio of the leader’s path com-
pared to the makespan lower bound B, i.e., the largest dis-
tance between all pairs of start and goal locations. “Leader
form. block.” represents the total formation-blocking value
of the leader’s path. “CBS calls” represents the number of
calls to CBS-M. “Makespan subopt.” represents the subop-
timality ratio of the makespan compared to the minimum
makespan produced by CBS-M. “Total form. dev.” represents
the total formation deviation.

w (SW

only)

leader

path length

leader path

subopt.

leader

form. block.

CBS

calls

make-

span

makespan

subopt.

total

form. dev.

run-

time (s)

CBS - - - 1.00 54.00 1.000 102.48 0.03

1.00 44.00 1.00 8.42 6.65 56.46 1.046 57.46 0.16

1.05 44.58 1.01 8.10 6.39 56.55 1.047 55.38 0.20

1.10 44.94 1.02 7.99 6.32 56.78 1.051 55.32 0.24

1.15 45.02 1.02 7.97 6.24 56.57 1.048 54.26 0.29

1.20 45.10 1.03 7.96 6.29 56.60 1.048 54.24 0.34

1.25 45.10 1.03 7.96 6.24 56.71 1.050 54.00 0.41

1.30 45.10 1.03 7.96 6.30 56.91 1.054 54.87 0.46

1.35 45.10 1.03 7.96 6.25 56.81 1.052 54.82 0.52

1.40 45.10 1.03 7.96 6.30 56.70 1.050 54.52 0.58

1.45 45.10 1.03 7.96 6.30 56.69 1.05 54.57 0.63

1.50 45.10 1.03 7.96 6.29 56.91 1.05 55.24 0.73

one is SWARM-MAPF (labeled SW), which better balances between

the two objectives. Each CBS-M call is given a runtime limit of

5 minutes. We also compare them with two baseline algorithms,

namely the leader-follower controller (described in Section 3) and

joint-state A* (described in Section 4).

6.1 Experiment 1: User-Provided Parameter
We use 10 30 × 30 4-neighbor grids. For each grid, the top-left 8 × 8

cells are possible start locations, and the bottom-right 8× 8 cells are

possible goal locations. These 128 cells are unblocked. The other

cells are blocked with 10% probability uniformly at random. We

generate 10 different formations for 10 agents by placing them

uniformly at random in an 8 × 8 boundary box of cells. We use

them as the desired formations to generate MAiF instances. For

each of the 10 grids, we put each of the 10 8 × 8 boxes both in the

top-left corner as the start locations of the agents and the bottom-

right corner as their goal locations, which results in 100 MAiF

instances where the start locations are in the desired formations. A

visualization of such an instance is shown in Figure 5 (left).

We vary the user-provided parameter w from 1.00 to 1.50 and

report the average results in Table 1. Both algorithms solve all

instances within the runtime limit. For SWARM-MAPF, as the user-

provided parameterw increases, the length and the suboptimality

ratio of the leader’s path tend to increase, and its total formation-

blocking value tends to decrease. The tendency stops forw larger

than 1.20, where SWARM-MAPF always finds a leader’s path with

the smallest total formation-blocking value for each instance. For

large w , the number of calls to CBS-M and the total formation

deviation tend to be small, and the makespan tends to be large. But

the tendency is not consistent forw larger than 1.20. Asw increases,

the runtime of SWARM-MAPF increases. Overall, running CBS-M

Table 2: Results for SWARM-MAPF with user-provided pa-
rameterw = 1 and CBS-M for MAiF instances with different
numbers of agentsM (top) and different desired formations
(bottom). “Success” represents the success rates. All num-
bers, except for the ones in the “success” columns, are av-
eraged over the solved instances and reported in the same
way as in Table 1.

M

leader

path

length

leader

form.

block.

CBS

calls

success makespan

make-

span

subopt.

total

form. dev.

runtime (s)

SW only SW CBS SW CBS SW SW CBS SW CBS

5 44 2.19 2.08 1.00 1.00 48.23 44 1.10 8.62 63.96 0.03 0.02

10 44 8.42 6.65 1.00 1.00 56.46 44 1.28 57.46 161.84 0.16 0.04

15 44 14.18 8.02 1.00 1.00 58.53 44 1.33 144.04 522.64 0.29 0.16

20 44 19.79 8.61 1.00 1.00 59.13 44 1.34 266.81 680.96 0.42 0.44

25 44 24.96 7.94 0.99 1.00 57.71 44 1.31 448.08 1,189.70 0.69 1.96

30 44 27.60 6.75 0.91 0.95 55.08 44 1.25 696.48 1,797.81 0.75 0.50

35 44 30.43 5.69 0.83 0.93 53.01 44 1.20 1,044.20 2,212.32 2.30 2.84

40 44 32.77 4.95 0.65 0.86 51.54 44 1.17 1,571.62 3,330.79 10.43 10.62

form.

box

start

in

form.?

leader

path

length

leader

form.

block.

CBS

calls

makespan

makespan

subopt.

total

form. dev.

runtime (s)

SW only SW CBS SW SW CBS SW CBS

3×3 yes 54.00 0.90 0.88 55.35 54.00 1.03 4.36 102.48 0.02 0.02

3×3 no 52.26 0.92 1.92 58.08 55.70 1.04 24.68 131.84 0.04 0.05

5×5 yes 50.00 1.39 1.31 52.28 50.00 1.05 6.01 81.26 0.02 0.02

5×5 no 48.16 1.29 2.13 57.12 53.00 1.08 45.32 119.72 0.05 0.05

7×7 yes 46.00 1.64 1.56 49.20 46.00 1.07 6.74 57.86 0.02 0.02

7×7 no 44.91 1.74 2.55 57.36 50.20 1.14 73.42 144.89 0.06 0.06

directly on the MAiF instances produces minimum makespans and

results in the smallest runtimes. SWARM-MAPF, on the other hand,

does a better job at keeping the agents in close adherence to the

desired formation than CBS-M while only slight increasing the

makespan.

6.2 Experiment 2: Number of Agents
We repeat Experiment 1 but vary the number of agents from 5 to 40

for user-provided parameterw = 1.00. For each number of agents,

we generate 100 instances in the same way as above.

Since not all instances are solved within the runtime limit, Table

2 (top) reports the success rates (i.e., the percentages of solved in-

stances within the runtime limit) and the same statistics as Table

1 but over the solved instances only. As the number of agents M
increases, the total formation-blocking value, the total formation

deviation, and the runtime tend to increase. The number of calls to

CBS-M and the makespan reach their peak values for 20 agents. The

success rate of SWARM-MAPF is larger than 90% for ≤ 30 agents,

while the success rate of CBS-M is larger than 90% for ≤ 35 agents.

Overall, CBS-M scales to slightly larger numbers of agents than

SWARM-MAPF. Both algorithms can compute solutions for ≤ 20

agents in real-time (< 1s) on average.

6.3 Experiment 3: Desired Formations
We repeat Experiment 2 but vary the desired formations of 5 agents,

which are randomly generated from boundary boxes of 3 different

sizes: 3 × 3, 5 × 5, and 7 × 7. For each box size, we generate two

groups of instances: 100 instances with the start locations being in

the desired formation, and 100 instances with the start locations

being generated randomly (i.e., not in the desired formation).



34.0 34.5 35.0 35.5 36.0
Makespan

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

To
ta

l F
or

m
at

io
n 

De
vi

at
io

n 0.08

0.80

4.13

10.08 56.46
55.6986.10

107.46166.28

0.02

0.03
0.05
0.12 0.17

0.21

Joint-State A*
SWARM-MAPF

Figure 4: Trade-off between the makespan and the total for-
mation deviation for MAiF instances with 3 agents on 20×20

4-neighbor grids. The number next to each point on the
graphs represents the corresponding runtime (in seconds).
The graph of joint-state A∗ represents the Pareto frontier.

Table 2 (bottom) reports the results. Both algorithms solve all

instances within the runtime limit. Larger box sizes allow for for-

mations that are more spread out, which are harder to keep around

obstacles. Therefore, large box sizes result in more calls to CBS-M

and larger total formation deviations for SWARM-MAPF. Compared

to the first group of instances, the second group results in larger

total formation deviations, larger makespans, and larger runtimes,

because it takes both algorithms extra effort to move the agents

into the desired formation if they do not start in it.

6.4 Experiment 4: Baseline Algorithms
Experiment 4 compares SWARM-MAPF with the two baseline algo-

rithms. Due to the limited scalability of joint-state A*, we reduce

the size of the grids to 20 × 20 and the number of agents to 3. We

randomly generate 10 grids and 10 formations in the same way as

in Experiment 1, which results in 100 MAiF instances.

We first compare SWARM-MAPF with joint-state A* and vary

the user-provided parameter ϵ of joint-state A* from 1.00 to 1.80

and the user-provided parameter w of SWARM-MAPF from 1.00

to 1.60. We use infinite runtime limits for both algorithms, and

thus they both solve all MAiF instances. As the user-provided pa-

rameters ϵ and w increase, the makespan and runtime increase

while the total formation deviation decreases. Figure 4 shows this

trade-off. The graph of joint-state A* represents the Pareto frontier.

Although not optimal, the solution quality of SWARM-MAPF is

often similar to that of joint-state A*. For example, when the total

formation deviation is around 1.58, the makespans of the solutions

produced by SWARM-MAPF and joint-state A* are 35.90 and 34.66,

respectively, which is a difference of only about 3.6%. However,

SWARM-MAPF runs substantially faster than joint-state A*. For

example, joint-state A* needs 10.08 seconds while SWARM-MAPF

needs only 0.21 seconds to obtain a solution with a total formation

deviation of around 1.58, which is a significant difference of about

a factor of 50.

We also run the leader-follower controller on the same 100 MAiF

instances. It does not solve 16 instances due to deadlocks. Although

its average runtime is only about 0.6 milliseconds, the average

Figure 5: Screenshots of the videos.

makespan and average total formation deviation over the solutions

of all solved instances are 38.65 and 97.36, respectively, which are

substantially worse than those of SWARM-MAPF.

6.5 Experiment 5: Visualizations
Videos of the execution of the solutions of SWARM-MAPF with

user-provided parameterw = 1 are available here (clickable). We

visualize them on one of the 30 × 30 grids used in Experiment

1 (Figure 5 (left)) and also in a simulated framework developed

in [18] based on the video game environment brc202d [27] from
Dragon Age: Origins (Figure 5 (right)). For the 30 × 30 grid, the

length of the leader’s path is 46, the total formation-blocking value

of the leader’s path is 11, the makespan is 76, the total formation

deviation is 137, and the runtime is 0.34 seconds. For the video game

environment, a player moves 10 agents by occasionally specifying

goal locations for them, for example, after observing new parts

of the environment. Once the new goal locations are determined,

SWARM-MAPF is called to solve theMAiF instance from the current

locations of the agents to their newly specified goal locations. The

following statistics sum over all calls to SWARM-MAPF and are

reported for the narrow and wide desired formations, respectively.

The makespans are 168 and 212, the total formation deviations are

312 and 2309, and the runtimes are 0.28 and 1.13 seconds.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we formalized and studied the Moving in Formation

(MAiF) problem, that combines the tasks of finding short collision-

free paths for multiple agents and keeping them in close adher-

ence to a desired formation. We developed a two-phase search

algorithm, called SWARM-MAPF, that combines swarm-based and

MAPF-based algorithms. We developed a variant of a MAPF solver,

called CBS-M, that minimizes the makespan, conducts a focal search

for the secondary objective of minimizing the deviation from the

desired formation, and can also be used as a stand-alone MAiF algo-

rithm. We proved that SWARM-MAPF is complete and showed that

it does a better job in trading off the minimization of the makespan

against the minimization of the deviation from the desired forma-

tion than using CBS-M for the entire MAiF instance.

We suggest the following directions for future work: (1) general-

ize the formation distancemetric to other problems, e.g., multi-robot

motion planning; and (2) study MAiF in a fully-distributed setting,

i.e., where agents need to communicate and coordinate their actions

toward a global objective.

http://idm-lab.org/formation
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