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Abstract

Purpose of Review Planning collision-free paths for multiple robots
is important for real-world multi-robot systems and has been studied
as an optimization problem on graphs, called Multi-Agent Path Finding
(MAPF). This review surveys different categories of classic and state-
of-the-art MAPF algorithms and different research attempts to tackle
the challenges of generalizing MAPF techniques to real-world scenarios.
Recent Findings Solving MAPF problems optimally is compu-
tationally challenging. Recent advances have resulted in MAPF
algorithms that can compute collision-free paths for hundreds of
robots and thousands of navigation tasks in seconds of runtime.
Many variants of MAPF have been formalized to adapt MAPF
techniques to different real-world requirements, such as consider-
ations of robot kinematics, online optimization for real-time sys-
tems, and the integration of task assignment and path planning.
Summary Algorithmic techniques for MAPF problems have
addressed important aspects of several multi-robot applica-
tions, including automated warehouse fulfillment and sortation,
automated train scheduling, and navigation of non-holonomic
robots and quadcopters. This showcases their potential for
real-world applications of large-scale multi-robot systems.
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1 Introduction

In many real-world multi-robot systems, robots have to plan collision-free
paths to different locations to execute different tasks. Today, thousands of
warehouse robots already navigate fully autonomously to relocate inventory
pods in automated fulfillment centers [1, 2] or deliver parcels in sortation cen-
ters [3]. In the coming years, autonomous aircraft-towing vehicles will tow
aircraft from the runways to the terminal gates (and vice versa) at airports.
Other examples include autonomous intersection management [4], forklift
robot fleets [5, 6], game characters in video games [7], object-transportation
robots [8], patrolling robots [9], service robots [10, 11], swarms of differential-
drive robots and quadcopters [12–14], robots in formations [15], and other
multi-robot systems [16].

Solving the path planning problem optimally for multiple robots is com-
putationally challenging, especially for a large number of robots. However,
the above real-world applications require computing high-quality collision-free
paths for a large number of robots in a short computation time since shorter
paths result in higher throughput or lower operating costs (since fewer robots
are required to achieve the same throughput) of the systems.

2 Multi-Agent Path Finding (MAPF)

Many recent works in the artificial intelligence, robotics, and operations
research communities have modeled the path planning problem for multiple
robots as a combinatorial optimization problem on graphs, called Multi-Agent
Path Finding (MAPF) [17, 18]. MAPF has also been studied under the name
of Multi-Robot Path Planning on Graphs [19]. A MAPF problem instance con-
sists of a connected undirected graph and a set of robots. The vertices of the
given graph correspond to locations and the edges correspond to connections
between locations that the robots can move along. Each robot occupies one
vertex at each discrete time step and is given a start vertex and a goal ver-
tex. Between two consecutive time steps, each robot takes an action to either
move to an adjacent vertex or wait at its current vertex. Two robots collide if
they move to the same vertex or traverse the same edge in opposite directions
at the same time. The problem of MAPF is to find collision-free paths for the
robots from their start vertices to their goal vertices. The objective is to min-
imize either the makespan, defined as the maximum of the arrival times of all
robots at their goal vertices, or the flowtime, defined as the sum of the arrival
times of all robots at their goal vertices.

Finding a solution to any MAPF problem instance or deciding its unsolv-
ability can be done in polynomial time [20]. However, it is NP-hard (namely,
unlikely that a polynomial-time algorithm exists) to find a solution with the
minimum makespan [21] or the minimum flowtime [22] to a MAPF problem
instance, even if the given graph is a planar graph [23] or a 2D 4-neighbor grid
[24]. In addition, it is NP-hard to compute an approximate solution within any
constant factor less than 4/3 to a MAPF problem instance [25].
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On one hand, recent advances in MAPF solving have resulted in powerful
MAPF algorithms that can compute collision-free paths for a large number
of robots in a short runtime, despite the complexity of solving MAPF opti-
mally. These advances have resulted in a number of achievements, including
a MAPF software [26] that recently won the Flatland Challenge [27], a train-
scheduling competition at NeurIPS 2020 (one of the top machine learning
conferences). The MAPF solver has been demonstrated to be capable of com-
puting high-quality paths (namely with small makespan or flowtime) for up
to 3,000 robots in minutes of runtime on a simulator. On the other hand,
there are key challenges [28] that must be addressed in order to apply MAPF
algorithms to real-world applications of multi-robot systems, which requires
techniques beyond MAPF solving. The following sections of this review survey
latest advances that enhance MAPF solving and extensions to MAPF solving
that tackle the research challenges in generalizing it to real-world scenarios.

3 MAPF Algorithms

Recent MAPF algorithms can be categorized into reduction-based, rule-based,
and search-based algorithms. In the following, we survey their methodologies
and highlight their properties in terms of completeness (complete for all MAPF
problem instances, complete for MAPF problem instances on graphs with spe-
cial properties, or incomplete) and optimality (optimal, bounded-suboptimal,
or suboptimal with respect to different objectives). A MAPF algorithm is com-
plete for a class of MAPF problem instances if it guarantees to return a solution
for any solvable MAPF problem instance in the class or correctly decide that
the given MAPF problem instance in the class is unsolvable in finite time.

Reduction-Based MAPF Algorithms Reduction-based MAPF algorithms
reduce MAPF to other well-studied combinatorial problems, such as Boolean
Satisfiability [29], Integer Linear Programming [30], and Answer Set Program-
ming [31, 32]. They are complete for all MAPF problem instances. They solve
MAPF with the makespan objective optimally but can be modified to solve
MAPF with other objectives optimally [30, 32, 33], bounded-suboptimally
(with the guarantee that the resulting solution is within a user-provided sub-
optimality factor from the optimal solution) [34], and suboptimally [35–37].
They perform well for MAPF problem instances on small-size graphs with
densely placed robots. For example, a state-of-the-art Integer Linear Program-
ming based MAPF solver can compute a solution with the minimum makespan
for a MAPF problem instance on a 24× 18 2D 4-neighbor grid with 60 robots
in less than 15 seconds of runtime [37].
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Rule-Based MAPF Algorithms Rule-based algorithms solve MAPF using
a set of primitive operations that specify the actions of the robots in differ-
ent situations. They often guarantee completeness for only a restricted class
of MAPF problem instances. Rule-based algorithms are often very efficient by
simply following the predefined primitive operations but provide no guaran-
tee on the solution quality (optimality). Push and Swap [38] and its extension
[39] can compute a solution for 100 agents in less than 10 seconds of runtime
but provide no completeness guarantee theoretically. One of their descendants,
Push and Rotate [40], is complete for MAPF problem instances on graphs with
at least two vertices that are unoccupied by robots. TASS [41] is complete for
MAPF problem instances on “solvable” trees based on prior work on solving
multi-robot motion planning on trees [42]. BIBOX [43] is complete for MAPF
problem instances on bi-connected graphs with at least two vertices unoccu-
pied by robots. Its descendant [44] works for strongly bi-connected directed
graphs with at least two vertices unoccupied by robots. SAG [45] is complete
for MAPF problem instances on grid-like “well-connected” graphs, runs in
polynomial time, and provides a constant-factor approximation guarantee for
minimizing the makespan on such graphs.

Search-Based MAPF Algorithms Search-based MAPF algorithms [46]
solve MAPF with heuristic search techniques. The main computational chal-
lenge of optimally solving MAPF with a search algorithm is that the number
of possible states of a MAPF problem instance grows exponentially in the
number of robots.

� A*-based MAPF algorithms [47–49] plan paths with joint states but try
to reduce the size of the state space they need to explore. They are com-
plete for all MAPF problem instances and can be used for either makespan
minimization or flowtime minimization.

� Decoupled MAPF algorithms [50–52] plan paths for robots one at a time
according to a predefined or a dynamic total ordering on the robots. Path
planning for each robot uses an A* search in vertex and time dimensions that
treats already planned paths of other robots as moving obstacles. Decou-
pled MAPF algorithms are often efficient but provide no optimality or even
completeness guarantee. PIBT [53] develops a scheme to decide a partial
ordering on the robots dynamically but only guarantees that all robots reach
their goal vertices at least once (but possibly not at the same time) in finite
time on biconnected graphs. MAPF-LNS [54] is another recent decoupled
MAPF algorithm that uses Large Neighborhood Search [55], a local search
algorithm, to improve a suboptimal MAPF solution by repeatedly replan-
ning paths for a subset of robots. It is one of the core elements of the MAPF
software [26] that won the Flatland Challenge. Its descendant MAPF-LNS2
[56] uses Large Neighborhood Search to improve a MAPF plan (paths of
all robots) with collisions by repeatedly replanning paths for a subset of
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robots to reduce the number of collisions, until a collision-free MAPF plan
(a MAPF solution) is obtained.

� Hierarchical MAPF algorithms plan paths for robots individually on the
low level and dynamically couple the resulting single-robot paths with a
tree search on the high level. They are complete for all MAPF problem
instances. Increasing Cost Tree Search [57] minimizes the flowtime. It per-
forms a best-first tree search of all combinations of the arrival times of robots
on the high level and checks whether collision-free paths exist for a combi-
nation of arrival times on the low level. Conflict-Based Search (CBS) [58] is
arguably the most popular optimal MAPF algorithm. It minimizes either the
makespan or the flowtime. CBS first finds individually time-optimal paths
for all robots (ignoring collisions). On the high level, it then performs a best-
first search on a binary constraint tree. Each branching resolves one collision
in the computed paths by imposing constraints on individual robots that
forbid them from occupying a vertex or traversing an edge at a given time
step. On the low level, CBS uses an A* search in vertex and time dimen-
sions to replan for a robot that obeys the constraints. Many improvements
to CBS have been proposed in recent years: Meta-Agent CBS [58] dynam-
ically groups multiple robots into a meta-agent on the high level and uses
an A* search to plan paths for these robots with their joint states on the
low level. ICBS [59] always first resolves collisions that result in child search
nodes whose costs are larger than that of the current node, thus afford-
ing the high-level search of CBS pruning opportunities. CBSH [60] and its
improvement [61] use an admissible heuristic to improve the high-level best-
first search of CBS. Disjoint-Splitting CBS [62] expands each node in a way
such that any solution is admitted by the subtree under only one but not
both of its child nodes, thus reducing duplicate search effort of the high-level
search of CBS. IDCBS [63] replaces the high-level best-first search of CBS
with iterative-deepening depth-first searches. Symmetry-Breaking CBS [64–
66] and Mutex-Propagation CBS [67] add multiple constraints to a child
node at a time to break symmetry in the high-level search of CBS. The best
Symmetry-Breaking CBS variant has empirically been shown to compute
optimal solutions for MAPF problem instances on a 256×257 2D 4-neighbor
grid with 100 robots in seconds of runtime [66]. ECBS [68] and its improve-
ments [69, 70] perform a bounded-suboptimal search on the constraint tree,
making CBS bounded-suboptimal. Recent research [71] has also developed
an anytime version of the bounded-suboptimal search on the constraint tree
for CBS. Another line of recent research also uses machine learning to learn a
good branching policy for the high-level search of CBS for both the optimal
[72] and bounded-suboptimal [73] settings.

� Hybrid MAPF algorithms combine several of the above search-based MAPF
techniques or combine search-based MAPF techniques with reduction-based
or rule-based MAPF techniques. SMT-CBS [74] replicates the high-level
search of CBS with Satisfiability Modulo Theories, which is then solved
by a Boolean Satisfiability solver, and minimizes either the makespan or
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the flowtime. Lazy CBS [75] replaces the high-level search of CBS with a
Constraint Programming solver and minimizes the flowtime. BCP [76, 77]
combines Branch-and-Cut-and-Price techniques for Mixed Integer Program-
ming with symmetry-breaking techniques for MAPF and minimizes the
flowtime. Priority-Based Search [78] is a recent hierarchically decoupled that
performs a depth-first search on a binary priority tree to explore all possible
orderings on the robots. It is complete for only “well-formed” MAPF prob-
lem instances and has empirically been shown to compute close-to-optimal
solutions for MAPF problem instances on a 481 × 530 2D 4-neighbor grid
with 600 robots in half a minute of runtime. Some algorithms combine both
primitive operations (rule-based MAPF techniques) and search. MAPP [79]
explore different ways of combining paths of individual robots and is com-
plete for MAPF problem instances on “slidable” graphs [79]. There is also
a MAPF algorithm that uses a combination of A* searches on a graph
abstraction, primitive operations, and reductions to Constraint Satisfaction
Problems [80].

Recent research [81, 82] has used machine learning to select a MAPF algo-
rithm among multiple candidate MAPF algorithms for a given MAPF problem
instance.

4 MAPF Extensions and Related Problems

Recent studies have also generalized the standard definition of MAPF to
different real-world scenarios.

MAPF with Deadlines MAPF with Deadlines [83, 84] aims to maximize
the number of robots that reach their goal vertices within a given deadline. Its
applications include robots that need to evacuate before a disaster and robots
that need to finish tasks before a deadline.

MAPF with Delay Probabilities and Robust MAPF MAPF with Delay
Probabilities (MAPF-DP) [85] generalizes MAPF to the case where the uncer-
tainty of robot motion has to be considered during planning to ensure a
collision-free execution of the plan. In MAPF-DP, the uncertainty of each
robot is characterized by a given delay probability with which the robot stays
in its current vertex whenever it intends to traverse an outgoing edge of its
current vertex. The problem of MAPF-DP is to find a plan that consists of
a path for each robot and a plan-execution policy that controls with GO or
STOP commands how each robot proceeds along its path such that no colli-
sions occur during plan execution. MAPF-DP has also been studied under the
name MAPF with Uncertainty [86], where the paths are planned in the belief
space of the robots and the execution of the resulting plan is not guaranteed to
be collision-free. K-Robust MAPF [87] extends CBS to enforce K time steps
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for which a vertex must be unoccupied after it has been occupied by a robot
during planning, which reduces the possibility of collisions during plan execu-
tion without using plan-execution policies. Recent research [88] has generalized
Symmetry-Breaking CBS [66] to the K-Robust MAPF setting. Probabilistic
Robust MAPF [89] bounds the probability that any collision occurs during
plan execution.

MAPF with Continuous Time or Kinematic Constraints MAPF with
Continuous Time [90] extends CBS to planning paths on weighted graphs
where the edge weights characterize the nonuniform traversal times of the
edges. Other research [91, 92] has also studied MAPF on weighted graphs.
MAPF for Large Agents [93] allows a robot to occupy more than one vertex
at one time step according to its given shape and volume. Two robots collide
if both of them occupy some vertex at the same time step. The resulting CBS-
based algorithm has been applied to planning collision-free trajectories for
quadcopters that take into account their ellipsoid shapes and downwash effects.
MAPF-POST [94, 95] is a polynomial-time algorithm that post-processes
a MAPF solution to create a plan-execution schedule that works on non-
holonomic robots, takes their kinematic constraints, such as the maximum and
minimum translational and rotational velocity limits, into account, and pro-
vides a guaranteed safety distance between them, which avoids time-intensive
replanning in many cases.

Reinforcement Learning for Distributed MAPF PRIMAL [96] and its
descendant [97] model MAPF as a multi-agent reinforcement learning task,
where all robots follow the same learned single-agent policy to decide their
actions at each time step based on their local observations. Recent research
[98–100] uses a graph neural network to allow robots to communicate and
also precomputed shortest path distances [99] or an online shortest path
computation [97, 101] to assist training. We note that classic optimization-
based collision-avoidance approaches [102–104] use a similar distributed MAPF
setting but can be applied to robots moving in continuous space.

MAPF with Target Assignment Anonymous MAPF, also known as
Permutation-Invariant MAPF or Unlabeled MAPF, does not assume prede-
fined goal vertices for the robots and aims to find a one-to-one mapping from
the given goal vertices to the robots and collision-free paths for the robots to
their assigned goal vertices. Minimizing the makespan for Anonymous MAPF
is polynomial-time solvable using a max-flow algorithm [105]. CBS-TA [106]
searches all possible assignments of goal vertices to robots and minimizes the
flowtime for Anonymous MAPF. Combined Target Assignment and Path Find-
ing (TAPF) [107] partitions the robots into teams where the problem of each
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team is an Anonymous MAPF problem. CBM [107] combines the high-level
search of CBS and a low-level min-cost max-flow algorithm to minimize the
makespan for TAPF. Recent research [108, 109] has studied generalized TAPF
problems where each robot needs to get assigned multiple goal vertices. MG-
MAPF [110] assumes that each robot is preassigned multiple unordered goal
vertices and aims to compute collision-free paths for the robots to visit all goal
vertices. MG-TAPF [111] aims to find a one-to-one mapping from the given
tasks that each consists of a sequence of ordered goal vertices and collision-free
paths for the robots that visit the goal vertices of their assigned tasks in the
specified order.

Online MAPF and Multi-Agent Pickup and Delivery Online MAPF
[112, 113] assumes that each robot is assigned a new goal vertex by a black
box once it reaches its current goal vertex. Recent research has conducted
a theoretical study [113] on the competitiveness of online MAPF algorithms
(namely the performance gap between online and optimal offline MAPF algo-
rithms). RHCR [114] generalizes (offline) MAPF algorithms to online MAPF
by repeatedly replanning paths for the robots. One version of RHCR that uses
Priority-Based Search [78] has been shown to compute paths for 1,000 robots
on a 37×77 4-neighbor grid in less than half a minute of runtime. Multi-Agent
Pickup and Delivery (MAPD) [115] is a combined multi-robot task-allocation
and path-planning problem. MAPD has first been studied in an online setting
where robots have to constantly get assigned a stream of incoming tasks that
are added to the system at unknown release times and plan collision-free paths
to the pickup and delivery vertices of the tasks. Online MAPD algorithms
[115] repeatedly apply task-assignment and MAPF algorithms to (re-)assign
tasks to and (re-)plan paths for robots whenever a new task arrives or a robot
becomes available for executing tasks. Recent research [116] has developed an
online MAPD algorithm that considers kinematic constraints of robots directly
during planning and shown experimentally that the algorithm can compute
solutions for MAPD problem instances with 250 robots and 2,000 tasks within
a total runtime of ten seconds. Offline MAPD [117] considers tasks that are
known a priori. Recent research [3] has also considered an online TAPF/MAPD
variant that aims to minimize the idle time of sorting stations—that is, when
there are no warehouse robots servicing the sorting stations—in an automated
sortation center. The resulting algorithm has been shown to compute solutions
for 350 robots within two seconds of runtime on an industrial robot simulator.

5 Conclusions

Planning collision-free paths for multiple robots is a fundamental building
block for many real-world applications of multi-robot systems. It has been stud-
ied as a graph-optimization problem under the name of MAPF by researchers
from the artificial intelligence, robotics, and operations research communities.
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As the efficiency of MAPF algorithms improves, they will become increasingly
viable for real-time path-planning operations of multi-robot systems. Current
research has also addressed several challenges to adapt MAPF techniques to
the requirements of real-world multi-robot systems. Future research directions
include developing deeper theoretical understandings for MAPF variants such
as Distributed MAPF and MAPD and combining MAPF techniques with con-
siderations of complex real-world settings such as general temporal constraints
and dependencies of tasks and high-order dynamic constraints of robots. Read-
ers are referred to the MAPF information page[118] for a listing of MAPF
researchers and links to their publications and software, tutorials, a mailing
list, and other resources.
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