
Multi-Robot Connected Fermat Spiral Coverage

Jingtao Tang, Hang Ma
Simon Fraser University

{jingtao tang, hangma}@sfu.ca

Abstract

We introduce the Multi-Robot Connected Fermat Spiral
(MCFS), a novel algorithmic framework for Multi-Robot
Coverage Path Planning (MCPP) that adapts Connected Fer-
mat Spiral (CFS) from the computer graphics community to
multi-robot coordination for the first time. MCFS uniquely
enables the orchestration of multiple robots to generate cov-
erage paths that contour around arbitrarily shaped obsta-
cles, a feature that is notably lacking in traditional methods.
Our framework not only enhances area coverage and opti-
mizes task performance, particularly in terms of makespan,
for workspaces rich in irregular obstacles but also addresses
the challenges of path continuity and curvature critical for
non-holonomic robots by generating smooth paths without
decomposing the workspace. MCFS solves MCPP by con-
structing a graph of isolines and transforming MCPP into
a combinatorial optimization problem, aiming to minimize
the makespan while covering all vertices. Our contributions
include developing a unified CFS version for scalable and
adaptable MCPP, extending it to MCPP with novel opti-
mization techniques for cost reduction and path continuity
and smoothness, and demonstrating through extensive exper-
iments that MCFS outperforms existing MCPP methods in
makespan, path curvature, coverage ratio, and overlapping ra-
tio. Our research marks a significant step in MCPP, showcas-
ing the fusion of computer graphics and automated planning
principles to advance the capabilities of multi-robot systems
in complex environments. Our code is publicly available at
https://github.com/reso1/MCFS.

1 Introduction
In the evolving landscape of multi-robot systems, the ef-
ficiency and effectiveness of Multi-Robot Coverage Path
Planning (MCPP) (Almadhoun et al. 2019) remain pivotal
in a myriad of applications, ranging from environmental
monitoring (Collins et al. 2021) to search-and-rescue opera-
tions (Song et al. 2022) in complex workspaces. Traditional
methodologies, such as cellular decomposition (Latombe
and Latombe 1991; Acar et al. 2002) and grid-based meth-
ods (Gabriely and Rimon 2001; Hazon and Kaminka 2005),
have laid a solid foundation for understanding and navigat-
ing the challenges inherent in these tasks. However, as the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complexity of environments and the demand for more effi-
cient coverage increase, there is a growing need for inno-
vative strategies that can adeptly handle workspaces rich in
irregular obstacles with both high precision and adaptability.

This paper introduces a novel algorithmic framework,
called Multi-Robot Connected Fermat Spiral (MCFS),
which revolutionizes MCPP by building upon the principles
of Connected Fermat Spiral (CFS) (Zhao et al. 2016) from
the computer graphics community. This represents the first
application of leveraging CFS to solve MCPP challenges in
automated planning and robotics, showcasing a unique in-
terdisciplinary fusion. MCFS stands out for its unique abil-
ity to coordinate the robots in generating contour-like cover-
age paths, elegantly adapting to the intricacies of arbitrary-
shaped obstacles—a characteristic not typically addressed
by traditional methods. Its contouring ability also enhances
task efficiency in both time and operation cost (e.g., energy)
by balancing the path costs across multiple robots, as indi-
cated by the makespan (Zheng et al. 2010).

Besides task efficiency, a key challenge in MCPP is man-
aging the deceleration and sharp turns required by nonholo-
nomic robots. Traditional methods (Lu et al. 2023; Vander-
meulen, Groß, and Kolling 2019), often focused on mini-
mizing path turns, are restricted to rectilinear workspaces
and rely on decomposing the area into rectangles. This ap-
proach is less effective in arbitrary-shaped environments.
On the contrary, the essence of our MCFS framework lies
in its global coverage strategy, conceptualizing the paths as
a series of interconnected spirals that seamlessly integrate
the movements of multiple robots. This strategy results in
smooth covering paths without the need for decomposition,
inherently accounting for path curvature—a vital factor for
efficient robotic navigation.

Drawing inspiration from the original application of CFS
in additive manufacturing (Gibson et al. 2021), our MCFS
framework innovatively adapts CFS to tackle the MCPP
problem, which generates continuous and smooth coverage
paths by converting a set of equidistant contour-parallel iso-
lines into connected Fermat spirals. MCFS first constructs
a graph of isolines, associating each vertex with an isoline
and connecting it to associated vertices of adjacent isolines.
It then reduces the MCPP problem to Min-Max Rooted
Tree Cover (MMRTC), a combinatorial optimization prob-
lem that finds a forest of trees to cover all vertices of the

graph while minimizing the makespan. Our framework is
versatile, allowing coverage paths to start from arbitrary
starting points as required in MCPP, and optimizes the dis-
tribution of the coverage of both multiple whole isolines
and segments of an isoline among multiple robots, show-
casing an innovative approach to effectively managing the
makespan, curvature, and path continuity for each robot.

We conclude our key contributions as follows: (1) We
propose a unified version of CFS that standardizes the stitch-
ing of adjacent isolines, allowing for customized priorities in
selecting stitching points and providing scalability and ease
of adaptation to MCPP by enabling coverage paths to start
from any given initial robot positions. (2) We demonstrate
how our MCFS extends this unified version of CFS to MCPP
and effectively solves the corresponding MMRTC problem.
(3) We introduce two optimization techniques: one that adds
edges between non-adjacent but connectable pairs of iso-
lines to expand the solution space and another that refines
the MMRTC solution for balanced path costs and reduced
overlap in multi-robot coverage. (4) We present extensive
experimental results validating the superiority of our MCFS
over state-of-the-art MCPP methods in metrics of makespan,
path curvature, coverage ratio, and overlapping ratio, show-
casing its effectiveness in diverse coverage scenarios.

2 Related Work
We categorize existing Single-Robot Coverage Path Plan-
ning (CPP) and MCPP methods into grid-based, cellular de-
composition, and global methods. We refer interested read-
ers to (Tomaszewski 2020) for a more detailed taxonomy.
Grid-Based Methods: Grid-based coverage methods ab-
stract workspaces into square grids (Hazon and Kaminka
2005; Kapoutsis, Chatzichristofis, and Kosmatopoulos
2017; Tang, Sun, and Zhang 2021), allowing for the appli-
cation of various graph algorithms. One prominent method,
Spanning Tree Coverage (STC) (Gabriely and Rimon 2001),
constructs a minimum spanning tree and then generates cir-
cumnavigating paths on the tree to cover the workspace.
STC-based MCPP methods (Hazon and Kaminka 2005;
Tang and Ma 2023, 2024a) work by finding a set of trees that
jointly visit all vertices and assigning each robot a path that
circumnavigates a tree. While convenient, the complexity of
optimally solving grid-based MCPP grows exponentially in
the workspace size and the number of robots.
Cellular Decomposition Methods: These methods decom-
pose the workspace into sub-regions by detecting geomet-
ric critical points, such as trapezoid (Latombe and Latombe
1991) and Morse (Acar et al. 2002) decomposition. CPP
methods generate zigzag paths in these subregions for cover-
age (Choset 2000; Wong and MacDonald 2003), and MCPP
methods connect and assign these subregions, filled with
zigzag paths, to robots for cooperative coverage (Rekleitis
et al. 2008; Mannadiar and Rekleitis 2010; Karapetyan et al.
2017). Additionally, some research optimizes the direction
of the zigzag paths for single robots (Oksanen and Visala
2009; Bochkarev and Smith 2016). Although efficient, these
methods are less suitable for obstacle-rich or nonrectilinear
workspaces due to their reliance on geometric partitioning.

Global Methods: Global CPP methods directly generate
paths to cover the workspace without decomposing it. They
fall into two types: the first type generates separate paths
that contour around obstacles (Yang et al. 2002), and the sec-
ond type generates a closed path, including Spiral Path (Ren,
Sun, and Guo 2009) and CFS that are notable for their con-
tinuous and smooth paths. CFS paths are especially conve-
nient as their entry and exit points are adjacent, facilitating
the integration of multiple paths. A recent paper has built a
CFS path based on an exact geodesic distance field to cover a
terrain surface (Wu et al. 2019). However, to our knowledge,
there are no global methods yet developed for MCPP.

3 Connected Fermat Spiral (CFS)
In this section, we present our unified version of CFS, an

adaptation of the original CFS concept. The original CFS
employs a two-phase process to transform a set of equidis-
tant isolines into a closed path that covers an input polygon
workspace. It utilizes a graph structure, where vertices repre-
sent individual isolines and edges connect vertices whose re-
spective isolines have adjacent segments. Initially, the orig-
inal CFS identifies a set of “pockets”—connected compo-
nents on the spanning tree of the graph. The first phase trans-
forms the isolines within each pocket into a Fermat spi-
ral (Lockwood 1967), and the second phase stitches these
isolated Fermat spirals to construct the final, connected Fer-
mat spiral by traversing the pockets using the graph edges.
For more details of the original CFS, see Appendix A in the
full version of this paper (Tang and Ma 2024b).

Our unified version of CFS modifies the graph construc-
tion of isolines and consolidates the original two-phase pro-
cess into a singular, cohesive operation for the CPP prob-
lem. The primary modification in our approach lies in the
stitching phase. Rather than explicitly identifying pockets
and then stitching the resulting isolated Fermat spirals, our
method integrates a unified process that simultaneously ad-
dresses both the conversion of isolines within a pocket
into Fermat spirals and the interconnection of these spirals.
This integrated process is applied to every stitchable pair
of isolines, effectively merging the conversion and stitching
phases. By traversing a rooted spanning tree of the graph,
the same connected Fermat spiral as the original CFS is
obtained. The advantage of our unified CFS approach is
twofold. Firstly, it enhances scalability, facilitating the incor-
poration of diverse utilities within the framework. Secondly,
it simplifies the extension of CFS to MCPP.

3.1 Constructing Isolines and the Isograph
We describe our approach for generating layered isolines
from a given polygon workspace to be covered and build-
ing the isograph. The polygon is enclosed by its boundary,
consisting a set of interior boundary polylines that represent
obstacles and an exterior boundary polyline.
Generating Layered Isolines: The procedure starts by uni-
formly sampling a 2D mesh grid of points within the poly-
gon. A distance field is built for these points, representing
their shortest distance to the polygon boundary (encompass-
ing both the interior obstacle boundary polylines and the ex-
terior boundary polyline). We denote the distance between

Algorithm 1: Unified Version of CFS
Input: isograph G, entry point p0

1 r ← the isovertex of G containing p0

2 π ← Ir(p0), U ← ∅
3 for (u, v) ∈ DFS traversal edges of G from r do
4 remove any (p,q) from Ou,v where p ∈ U or q ∈ U
5 (p,q)← f (Ou,v) ▷ by any stitching tuple selector f
6 stitch Iv(p) into π by stitching p to q and B(p) to B(q)
7 U ← U ∪ {p,q}
8 return π

isolines at adjacent layers as l, and the largest distance to the
polygon boundary among all points as lmax. We then use
the Marching Squares algorithm (Maple 2003) to generate
layered isolines for each layer i = 1, 2, ..., ⌊lmax/l⌋. This
ensures that the distance between each point in the layer-i
isoline and the polygon boundary is l × i. The last step re-
samples equidistant points along each isoline, maintaining a
consistent distance of l between adjacent points.
Building the Isograph: We define isograph of the layered
isolines as an undirected graph G = (V,E), where V is
the set of isovertices, each associated with a unique isoline.
For ease of reference, we let Iv and Lv denote the isoline
associated with any v ∈ V and its respective layer. Similar to
the original CFS, we define a connecting segment set Ou→v

for any pair of isovertices u, v ∈ V in adjacent layers (i.e.,
|Lu − Lv| = 1) as:
Ou→v = {p ∈ Iu | ∀z ∈ V, d(p, Iv) < d(p, Iz) ∧ Lz = Lv} (1)

where d(p, I) denotes the distance between point p and iso-
line I . Unlike the original CFS which directly constructs an
undirected edge (u, v) if Ou→v is nonempty, we also con-
sider Ov→u for edge construction. This consideration pro-
vides flexibility in traversing the isograph in any order and
from any root isovertex in the CFS context. It also avoids
adding edges (u, v) where the respective isolines Iu and Iv
are separated by multiple isolines, as such pairs may be un-
suitable for stitching in the CPP context (see the case study
in Sec. 3.4). Therefore, we define a set Ou,v of stitching tu-
ples for any u, v ∈ V in adjacent layers as:
Ou,v = {(p,q) ∈ Ou→v ×Ov→u |p = Cu(q) ∧ q = Cv(p)} (2)

where Cu(p) denotes the nearest point along isoline Iu to
point p. Subsequently, an undirected edge (u, v) is formed
for any u, v ∈ V in adjacent layers with a nonempty Ou,v .
Each (p,q) ∈ Ou,v serves as a candidate stitching tuple to
connect isolines Iu and Iv by stitching p to q and Bu(p)
to Bv(q), where Bu(p) denotes the point preceding p along
isoline Iu in counterclockwise order. Fig. 1 shows how four
isolines are connected via the squares as the stitching points.

Although the original CFS assigns a weight of |Ou→v|
to each edge to retain a low-curvature path when determin-
ing the isograph traversal order for connecting isolated Fer-
mat spirals, we currently leave the edge weight definition
application-specific and will explicitly address this objective
for every stitching operation in the stitching tuple selector.

3.2 Unifying the CFS Algorithm
We detail our unified version of CFS in Alg. 1, which takes
as input an isograph G and an entry point p0. The algorithm

𝑧𝑧

𝑢𝑢

𝑣𝑣

𝑟𝑟

𝑝𝑝0entry
exit 𝑝𝑝0entry

exit

Figure 1: The unified version of CFS on a workspace (grey
region). Colored squares represent the stitching tuples. From
left to right: The input isograph, the path resulting from the
CFS selector, and the path resulting from the MCS selector.

starts by identifying the isovertex r containing p0 [Line 1] as
the root for a depth-first search (DFS) traversal of G. It then
initializes the CFS path π to be constructed and the set U to
record the points already used to stitch the isolines [Line 2].
The main loop then iterates over the DFS edges [Line 3]
and stitches the corresponding pair of isolines for each edge
[Lines 5-6]. Specifically, a stitching tuple (p,q) is selected
via any selector [Line 5]. For any isovertex v ∈ V , we use
Iv(p) to denote the counterclockwise path along isoline Iv
starting at p and ending at Bv(p). This path segment is then
stitched into π using the selected stitching tuple [Line 6].
The set U is updated to include these newly selected stitch-
ing tuples [Line 7]. Following the iterations over all DFS
edges, the final path π is constructed to stitch together all
isolines and completely cover the given polygon.

3.3 Stitching Tuple Selector
We now propose three stitching tuple selectors, each de-
signed to select an appropriate stitching tuple o from a given
set Ou,v for connecting isolines Iu and Iv . Fig. 1 demon-
strates an example of these selectors.
Random Selector: The random selector frnd randomly se-
lects a stitching tuple from the set Ou,v .
Connected Fermat Spiral (CFS) Selector: The CFS selec-
tor fcfs aligns our unified version of CFS with the original
CFS. It attempts to select a stitching tuple from Ou,v for
(u, v) ∈ E that is adjacent to the previously selected stitch-
ing tuple of (r, u) ∈ E or (r, v) ∈ E. Either (r, u) or (r, v),
with its stitching tuple already selected by fcfs, will be vis-
ited before (u, v) in the DFS traversal (Line 3). Assuming
that (r, u) is visited first with the selected stitching tuple
(p′,q′) ∈ Or,u, fcfs then checks for o = (p,q) in Ou,v

where B(p) = q′. If such a tuple exists, it is selected for
(u, v); otherwise, the first tuple in Ou,v is selected.
Minimum Curvature Stitching (MCS) Selector: The
MCS selector fmcs iterates through Ou,v to identify the
stitching tuple o = (p,q) that minimizes the curvature dif-
ference ∆κ(o) before and after stitching, defined as:

∆κ(o) =
∑

p∈o
[κπ(p)− κIu(p)] (3)

where κπ(p) and κIu(p) denote the curvatures at any point
p on the new stitched path π using o and on the original iso-
line Iu, respectively. Formally, the MCS selector is defined
as fmcs(Ou,v) = argmax o∈Ou,v

∆κ(o).

(a) (b)

𝐩! 𝐩!

Figure 2: The CFS paths for (a) the original unidirectional
Ou→v in Zhao et al. (2016), with the artifacts outlined in red
dashed circles, and (b) our bidirectional Ou,v .

3.4 Case Study: Unified vs Original CFS
We discuss the necessity of modification in the construc-
tion of the isograph edge set of our unified version of CFS
in the CPP context. Unlike the original CFS that uses a
unidirectional Ou→v in Eqn. (1) for edge set construction
and always starts traversal from the lowest-layer isovertices,
our unified CFS defines a more versatile bidirectional Ou,v

(Eqn. (2)). This modification addresses the requirement in
CPP (and MCPP) for starting a coverage path from an arbi-
trary given point p0, as accommodated by Alg. 1. Our uni-
fied CFS starts the graph traversal from isovertex r, whose
respective isoline contains p0, without the restriction of r
being the lowest-layer isovertex. Consequently, valid stitch-
ing tuples may not exist for edge construction if only single-
directional tuples from layer i to layer i + 1 are considered
as in the original CFS. Moreover, an isovertex u with a lo-
cal innermost isoline may find a nonempty Ou→v for any
isovertex v with Lv = Lu+1, recognizing (u, v) as an edge,
which potentially introduces path overlapping. Fig. 2-(a) ex-
emplifies such cases where some local innermost isolines
are stitched to the isolines at adjacent layers yet separated
by other isolines, a scenario effectively managed in our uni-
fied CFS (Fig. 2-(b)) but problematic in using the original
CFS definitions.

4 Multi-Robot CFS Coverage
In this section, we present our MCFS framework for solv-
ing MCPP. MCFS computes multiple trees from an input
isograph, each corresponding to a different robot, and then
applies CFS on each tree to compute individual coverage
paths. In Sec. 4.1, we detail the CFS-based formulation of
MCPP and introduce its reduction to Min-Max Rooted Tree
Cover (MMRTC) (Even et al. 2004; Tang and Ma 2023).
We then present two optimization techniques, isograph aug-
mentation in Sec. 4.2 and MMRTC solution refinement in
Sec. 4.3, aiming to further enhance the MCPP solution.

4.1 Problem Formulation
We present our problem formulation of MCPP that facili-
tates the extension of CFS. The problem of MCPP is to find
a set Π = {πi}i∈I of coverage paths for a set I of robots that
minimizes the makespan (i.e., the maximum path cost). Fol-
lowing the existing literature (Zheng et al. 2010; Tang, Sun,
and Zhang 2021), we assume that each robot starts and ends
at a given position, corresponding to a pair of adjacent entry
and exit points in the CFS context. Formally, the objective

of MCPP is minimizing the makespan τ , represented as:
min
Π

τ = min
Π={πi}i∈I

max{c(π1), c(π2), ..., c(π|I|)}. (4)

When using CFS to generate each coverage path in Π, the
path length is linear in |π| and therefore the cost of any path
π can be evaluated as c(π) = |π|, since each isoline in CFS
contains equidistant points (as detailed in Sec.3.1). For an
isograph G = (V,E), each v ∈ V is assigned a weight wv =
|Iv|, representing the number or points in isoline Iv . Conse-
quently, the cost of any tree T ⊆ G is c(T) =

∑
v∈V (T) wv .

The MMRTC problem parallels MCPP in its aim of find-
ing a makespan-minimizing set of rooted trees, where each
graph vertex is covered by at least one tree. Given a graph
G = (V,E) and a set R = {ri}i∈I ⊆ V of root isovertices
for robots, the objective of MMRTC is defined as:

min
T ={Ti}i∈I

max{c(T1), c(T2), ..., c(T|I|)} (5)

where each Ti ∈ T is a tree rooted at ri and c(Ti) is its tree
cost. Let V (T) and E(T) denote the vertex set and edge
set of any tree T , respectively. The solution set T must sat-
isfy v ∈

⋃
i∈I V (Ti) to ensure the coverage of all v ∈ V .

Since the CFS stitches each isoline Iv of v ∈ V (Ti) to con-
struct the coverage path πi ∈ Π, we have c(πi) = |πi| =∑

v∈V (Ti)
|Iv| = c(Ti). Therefore, for any isograph G and

the set R of root isovertices for robots, the objective values
in Eqn. (4) and Eqn. (5) are identical under CFS, effectively
reducing MCPP to MMRTC.

We employ the Mixed Integer Programming (MIP) model
proposed in (Tang and Ma 2023) to solve MMRTC opti-
mally. The optimal set of trees obtained is then used to pro-
duce coverage paths by applying our unified CFS (Alg. 1) on
each tree. Figs. 4-(a) and (b) illustrate a 2-tree MMRTC in-
stance and its corresponding solution. For more details about
the MIP model, see Appendix B in the full version of this
paper (Tang and Ma 2024b).

4.2 Optimization: Isograph Augmentation
Recall that the isograph building process considers each

edge only for two isolines in adjacent layers. This process,
while efficient, often results in a sparse graph structure in the
isograph and thus an undesirable MMRTC solution where
certain isovertices are repetitively covered by multiple trees.
One common example of such repetition appears for a cut
isovertex, defined as a vertex whose removal increases the
number of connected components in the graph. Such repeti-
tions become more common as the number of trees (robots)
increases or when tree roots are clustered, thereby leading
to increased makespan and reducing the overall quality of
MCPP solutions. To mitigate this issue, we propose to aug-
ment the sparse isograph with additional edges connecting
isovertices in nonadjacent layers. This augmentation aims to
reduce the sparsity of the isograph and allow MMRTC trees
to explore new routes for joint coverage, thereby reducing
repetitions and balancing tree costs.

The augmentation of an isograph G = (V,E) operates by
adding a set E# of augmented edges, defined as:

E# = {(u, v) | ∀u, v ∈ V, 2 ≤ dG(u, v) ≤ δ} (6)
where dG(·, ·) denotes the graph distance between any two
isovertices in G, and δ is a hyperparameter that sets the aug-

𝑣!

𝑣"

𝑣#

𝑝!

𝑝"

𝑝#

Figure 3: Left: The augmented isograph with original edges
(solid lines) and an augmented edge (dashed line). Right:
Three sequences of stitching tuples (black boxes) for Ov1,v3 .

mentation level. For the edges in E#, stitching tuples are
constructed differently from those edges in the original iso-
graph edge set E. Without loss of generality, we consider an
edge (v1, vk+1) ∈ E# and its shortest path (v1, v2, ..., vk+1)
in the original G (i.e., each segment (vi, vi+1) is part of E
and k is the graph distance between v1 and vk+1). The set
Ov1,vk+1

comprises all pairs of p1 on the isoline of v1 and
pk+1 on the isoline of vk+1 that can be feasibly connected,
forming valid stitching tuples (p1,pk+1). Such points are
connectable iff they form a sequence of consecutive stitch-
ing tuples (p1,p2) ∈ Ov1,v2

, . . . , (pk,pk+1) ∈ Ovk,vk+1
,

which ensures that the straight-line segment between the
pair does not intersect more than k − 1 isoline(s) or any ob-
stacles within the workspace. Fig. 3 demonstrates an exam-
ple of the adding procedure of an augmented edge (v1, v3)
with three valid stitching tuples in Ov1,v3 and how p1 and p3
can be connected via p2. Given that the distance between ad-
jacent isolines is set as l previously, we assign a weight we =
l × k to each e = (u, v) ∈ E# with a layer difference of k
(i.e., |Lu−Lv| = k), which approximates the additional path
cost incurred by any tree containing e. The cost of any tree
T is thus updated to c(T) =

∑
v∈V (T) wv +

∑
e∈E(T) we in

the MMRTC solving. Once the augmented edge set E# and
the corresponding stitching tuple sets O are constructed, the
original isograph G is updated by setting E = E ∪E#, and
the same MMRTC model is solved on the augmented G.

4.3 Optimization: MMRTC Solution Refinement
Despite that isograph augmentation reduces isovertex rep-
etitions in the optimal MMRTC solution, two bottlenecks
persist in achieving a better MCPP solution. The first bot-
tleneck results from certain isovertex repetitions that remain
unresolved by augmentation alone, notably when multiple
robots share the same root isovertex or multiple trees use
the same vertex. The second bottleneck arises from the lim-
itation of an optimal MMRTC solution in balancing tree
costs when the traversing costs of the isolines vary sig-
nificantly. To tackle the above two bottlenecks, we pro-
pose the MMRTC solution refinement process (Alg. 2) that
leverages two functions PAIRWISEISOVERTICESSPLITTING
(PIS) and ADDIMPROVINGREPETITION (AIR): PIS dis-
perses the coverage of the isoline of an isovertex with rep-
etitions among multiple robots, while AIR introduces im-
proving repetition by selectively adding an isovertex from a
higher-cost tree to a lower-cost tree. Both PIS and AIR are
crucial in refining the MMRTC solution: PIS directly ad-
dresses the issue of isovertex repetitions, while AIR strate-

Algorithm 2: MMRTC Solution Refinement
Input: isograph G = (V,E), optimal MMRTC solution T

1 optimized solution T ∗ ← T , set of used isovertices U ← ∅
2 M ← set of all repeatedly visited isovertices in T
3 call ADDIMPROVINGREPETITION(T ,M,U) if M = ∅
4 max-heapify M ordered by the number of occurrences
5 while M ̸= ∅ do
6 u←M.pop()
7 Tu ← set of all trees containing u in current solution T
8 for (u, v) ∈ {(u, v) ∈ E | v /∈ U} do
9 h, Tu ← PAIRWISEISOVERTICESSPLITTING(Tu, u, v)

10 set h∗ to h and T ∗
u to Tu if h < h∗

11 use T ∗
u to update T , U ← U ∪ {u, v}, M ←M/{v}

12 set T ∗ to T if its evaluated makespan is smaller
13 call ADDIMPROVINGREPETITION(T ,M,U) if M = ∅
14 return T ∗

15 Function ADDIMPROVINGREPETITION(T ,M,U):
16 P ← set of leaf isovertices (i.e., with a degree of 1) u /∈ U in

the highest-cost tree in T that are not from PIS splitting
17 T, u← lowest-cost T ∈ T and any u ∈ P such that u is not

in T but a neighbor of some v /∈ U in T
18 add u and edge (u, v) to T , M ←M ∪ {u}
19 Function PAIRWISEISOVERTICESSPLITTING(Tu, u, v):
20 h∗ ← +∞, T ∗

u ← Tu
21 for o = (o1, . . . , o|Tu|) ∈ O

|Tu|
u,v do

22 T ′
u ← a copy of Tu

23 split u, v into |Tu| new isovertices z’s by stitching Iu, Iv
via o, each assigned to a T ∈ T ′

u ▷ see Figs. 4-(b)(c)(d)
24 for T ∈ Tu do
25 if v ∈ T then
26 replace each edge (u, ·) or (v, ·) (except edge (u, v))

with (z, ·) in T and remove u, v from T

27 else
28 replace each (u, ·) with (z, ·) in T and remove u from T

29 mark each edge (z, ·) as nonadjacent if Oz,· = ∅
30 h← sum of the standard deviation of the tree costs in T ′

u
and the distance corresponding to any nonadjacent edge

31 set h∗ to h and T ∗
u to T ′

u if h < h∗

32 return h∗, T ∗
u

gically adjusts coverage load distribution to balance costs
among the trees, enhancing the overall MCPP solution.
Pseudocode: The MMRTC solution refinement process out-
lined in Alg. 2 [Lines 1-13] iterates through all isovertices
with repetitions in decreasing order of their number of oc-
currences across different trees. For each such isovertex u,
the process aims to find the best way to optimize the set Tu
of trees containing u within the MMRTC solution T . To do
so, the process calls PIS to evaluate splitting u with each
neighbor v not used for PIS before and updates T to incor-
porate the optimized tree set T ∗

u that yields the smallest h-
value [Lines 5-11], with a subsequent update to the current
best solution T ∗ if T is better [Line 12]. The process also
calls AIR to potentially add an improving repetition to an
empty M [Lines 3 and 13]. As every iteration records isover-
tices used for PIS in U [Line 11] and AIR only adds unused
isovertices to M [Lines 16-17], Alg. 2 terminates after at
most |V |/2 iterations since two new isovertices are added to
U on Line 11 in each iteration.
AIR ([Lines 15-18]) identifies one leaf isovertex, unused

𝑜𝑜1

𝑜𝑜2

𝐺𝐺=(𝑉𝑉,𝐸𝐸) 𝑇𝑇1 𝑇𝑇2 𝑇𝑇1′ 𝑇𝑇2′

𝑟𝑟1 𝑟𝑟2

𝑧𝑧1 𝑧𝑧2

(a) (b) (c) (d)

𝑟𝑟1 𝑟𝑟2

𝑢𝑢

𝑣𝑣

𝑟𝑟1 𝑟𝑟2

𝑢𝑢

𝑣𝑣

Figure 4: Pairwise isovertices splitting from u, v into a, b at
stitching tuples o1, o2. (a) Isograph G. (b)(c) Two trees of G
(in dashed and solid lines, respectively) before and after the
splitting. (d) The layered isolines, each corresponding to the
isovertex in the same color, and their post-split segments.

for PIS before and not resulting from PIS splitting, from
the highest-cost tree [Line 16] and adds it as an improved
repetition to the lowest-cost neighboring tree [Line 17-18],
allowing for redistributing the tree costs.
PIS ([Lines 19-32]) takes as input not only u with repeti-
tions but also its neighbor v [Line 19], essential for forming
a closed loop from two isoline segments (as shown in red
and blue in Fig. 4-(d)), and splits them into |Tu| new isover-
tices. Each new isovertex z corresponds to a closed loop and
is then integrated into its designated tree T ∈ Tu [Lines 24-
29]. To heuristically select the best way of cost-balancing
splitting, PIS evaluates each possible mapping o from the
stitching tuples in Ou,v to the trees in Tu (through the |Tu|-
th Cartesian power of Ou,v) by computing the h-value for
its resultant tree set T ′

u [Lines 21-30]. This includes: (1) Ob-
taining the stitching tuple set Oz,· for each new edge (z, ·)
by encompassing all valid stitching tuples on its assigned
closed loop. (2) Incorporating the distance between isolines
Iz and Ix into the h-value [Line 30] if an edge (z, x) marked
as nonadjacent (i.e., Oz,x = ∅) is used in the optimized so-
lution, necessitating an additional shortest path to route be-
tween Iz and Ix. Fig. 4 demonstrates how an isovertex u,
contained in two trees, split into two new isovertices via PIS.

4.4 Case Study: MMRTC Solution Optimizations

We give a concrete example to better illustrate how the
two aforementioned optimizations of isograph augmentation
(Aug) and solution refinement (Ref) improve an MMRTC
solution obtained from the original MIP model. As shown in
Fig. 5, we use the instance char-P of Fig. 6, where the four
trees are rooted in the same isovertex. The original MMRTC
solution in the first row demonstrates four isovertices (filled
in colors) with repetitions, yielding highly unbalanced costs
among trees. With Aug (δ is set to 4) in the second row, the
sparsity of the isograph G decreases and thereby provides
more routing options starting at the root, making the solu-
tion less isovertex repetitions and more cost balanced. With
both Aug and Ref in the third row, the solution is further im-
proved by deduplicating all isovertices with repetitions and
dynamically adjusting the costs between the trees.

𝑟!

𝑟!

𝑟!

𝑟"

𝑟"

𝑟#

𝑟#

𝑟$

𝑟$

𝑟" 𝑟# 𝑟$

𝐺 𝑇! 𝑇" 𝑇# 𝑇$O
riginal M

IP M
odel

M
odel w

/ A
ug

M
odel w

/ A
ug &

 R
ef

Figure 5: Three MMRTC solutions T ={Ti}4i=1 on isograph
G depicted in three rows. The weight of an isovertex cor-
responds to its marker size. An isovertex filled with color
is covered by multiple trees. In the third row, PIS split the
isovertices in the same marker (except circles) in G into new
isovertices in the same marker and assigned to trees in T .

Selectors char-I char-C char-A char-P char-S 2-torus office
random 2.824 0.924 1.228 2.095 1.084 1.070 12.93

CFS 1.306 0.747 0.848 1.724 0.887 0.819 11.77
MCS 1.269 0.782 0.874 1.277 0.960 0.969 8.289

Table 1: Curvature comparison between stitching tuple se-
lectors in the unified version of CFS for single-robot CPP.

5 Empirical Evaluation
This section presents our experimental results on a 3.49 GHz
Apple® M2 CPU laptop with 16GB RAM.
Setup: The MMRTC MIP model for MCFS is solved using
the Gurobi solver (Gurobi Optimization, LLC 2023) with a
runtime limit of 30 minutes and an MST-based initial so-
lution for warm start-up (Tang and Ma 2023). Whenever
MCFS is equipped with isograph augmentation, the hyper-
parameter δ is set to min{|I|, 4}, where |I| is the number of
robots for the MCPP instance, balancing between the MM-
RTC model complexity and the solution quality.
Instances: As existing MCPP benchmarks like (Tang and
Ma 2023) are tailored for grid-based methods on 2D grid
maps, we use a more diverse set of workspaces to design
MCPP instances displayed in Fig. 6, ranging from fully non-
rectilinear (2-torus) to mostly rectilinear (office) ones. The
distance l between adjacent isolines in all instances is 0.1,
which is also the cover diameter of the robots. The number
of robots (|I|) in the instances ranges from 2 to 9. In char-I
and char-P, two robots and four robots share the same root
isovertex, respectively. In 2-torus, three pairs of robots share
three root isovertices, respectively. In all other instances,
robots start from different root isovertices.
Metrics: In addition to the makespan τ , we report the fol-

office (𝐼
=9)

char-I (𝐼
=2)

char-C
 (𝐼

=2)

char-A
 (𝐼

=3)

char-P (𝐼
=4)

char-S (𝐼
=5)

2-torus (𝐼
=6)

Figure 6: Coverage paths from MCFS. Different paths are in different colors. Yellow circles are root positions.

2 3 4 5 6 7 8 9 10
Number of Robots (|I|)

50

100

150

200

250

300

M
ak

es
pa

n
(

)

NONE
+AUG
+REF
+BOTH

2 3 4 5 6 7 8 9 10
Number of Robots (|I|)

200

300

400

500

600

M
ak

es
pa

n
(

)

NONE
+AUG
+REF
+BOTH

Figure 7: MCFS makespan comparisons on instances 2-
torus (left) and office (right) with different number of robots.

lowing metrics to evaluate an MCPP method and its solu-
tion: (1) Curvature: Average curvature of all paths (smaller
values indicate smoother paths). (2) Coverage: Ratio be-
tween the covered area and the total workspace. (3) Overlap-
ping: Ratio between the repeatedly covered area and the total
workspace area. (4) Runtime: Total runtime of the method,
including the MIP model solving time (when applicable).
Stitching Tuple Selectors: Tab. 1 compares curvature
among the random, CFS, and MCS stitching tuple selec-
tors. Both CFS and MCS selectors outperform the random
selector, with average reductions of 24.6% and 27.9%, re-
spectively. For less complex workspaces such as 2-torus
that can be filled with smooth isolines, the CFS selector with
staircase-like stitching paths outperforms the MCS selector
since the MCS selector struggles to distinguish small cur-
vature differences. However, for complex workspaces like
office, the MCS selector significantly excels by strategically
selecting sharp corner points as stitching tuples, thereby sub-
stantially reducing the curvature. Based on these findings,
the MCS selector will be used in the MCFS framework for
the remainder of our experiments.

Ablation Study: To validate the effectiveness of isograph
augmentation (Aug) and MMRTC solution refinement (Ref)
for MCFS, Tab. 2 reports results for four MCFS variants:
using only the original MMRTC solution, with Aug, with
Ref, and combining both (labeled NONE, AUG, REF, and
BOTH, respectively). Compared to NONE, REF and AUG
reduce the makespan by an average of 29.7% and 36.0%,
respectively. For char-I, char-P, 2-torus, and office, this re-
duction is attributed to decreased overlapping ratio, partic-
ularly where the robot root positions are identical or adja-
cent. BOTH further enhances this effect in more complex
instances for more complex instances like 2-torus and of-
fice, doubling the reduction in the overlapping ratio, result-
ing in a greater makespan reduction. For char-C, char-A,
char-S where overlapping ratios of NONE are already low,
the makespan reduction of REF results from the iterative
cost-balancing procedure, whereas the makespan reduction
of AUG results from a larger MMRTC solution space via
the augmented edges. Although both REF and AUG require
a longer runtime, this increase in runtime is less pronounced
for complex instances where the MMRTC MIP model solv-
ing dominates. Overall, BOTH yields the largest average
makespan reduction of 43.6% compared to NONE, combin-
ing the strengths of both REF and AUG in makespan mini-
mization at the cost of slightly longer runtime. Fig. 7 further
shows the evolving performance of four MCFS variants in
two instances with increasing numbers of robots. It indicates
that both optimizations are crucial with more robots as each
robot needs to cover fewer isolines, providing a more robust
MMRTC solution improvements and thereby the makespan
reductions. Aug consistently aids in reducing makespan by
expanding the MMRTC solution space, though it increases
the complexity and runtime of the resulting MIP model, and
Ref effectively redistribute the costs of the imbalanced MM-

Method char-I char-C char-A char-P char-S 2-torus office
robots 2 2 3 4 5 6 9

M
akespan

(τ)

TMC 99.94 136.3 87.75 75.19 62.51 133.7 154.0
TMSTC∗ 91.33 117.9 84.35 50.63 56.41 113.9 238.1

M
C

FS

NONE 132.3 179.8 75.4 106.8 50.46 174.2 291.0
+REF 69.74 125.7 63.44 52.86 50.46 108.9 213.4
+AUG 85.37 106.3 63.14 48.23 46.26 87.86 155.5

+BOTH 70.75 105.0 63.14 35.13 36.04 80.73 141.2

C
urvature

TMC 2.541 3.433 7.482 6.115 5.011 3.341 8.459
TMSTC∗ 2.476 1.801 2.655 2.869 2.259 1.335 2.117

M
C

FS

NONE 1.129 0.776 0.950 0.970 1.050 1.299 1.192
+REF 2.512 0.842 0.981 1.184 1.050 1.357 1.737
+AUG 0.972 0.758 1.047 0.828 0.787 1.070 1.087

+BOTH 1.026 0.795 1.047 1.428 1.068 1.064 1.352

C
overage

TMC 86.8% 87.6% 88.4% 88.0% 85.8% 91.5% 89.2%
TMSTC∗ 90.6% 92.4% 91.0% 90.2% 91.2% 93.7% 91.3%

M
C

FS

NONE 91.1% 92.4% 89.5% 89.4% 91.9% 94.6% 91.2%
+REF 91.1% 92.4% 89.4% 89.4% 91.9% 94.5% 91.1%
+AUG 91.1% 92.5% 89.4% 89.4% 91.9% 94.5% 91.1%

+BOTH 91.0% 92.4% 89.4% 89.4% 91.8% 94.5% 91.1%

O
verlapping

TMC 8.76% 7.76% 5.59% 7.89% 18.8% 15.8% 15.3%
TMSTC∗ 8.12% 6.25% 9.37% 13.1% 16.5% 15.5% 17.1%

M
C

FS

NONE 82.6% 5.46% 5.91% 62.5% 6.79% 86.6% 50.2%
+REF 6.50% 5.44% 5.92% 7.95% 6.79% 25.0% 24.0%
+AUG 22.4% 6.41% 6.75% 22.2% 7.48% 20.0% 24.5%

+BOTH 7.27% 6.25% 6.63% 10.8% 7.41% 9.62% 13.1%

R
untim

e

TMC 0.25s 1.26s 0.97s 0.33s 76.0s 30.4m 31.2m
TMSTC∗ 1.21s 1.78s 1.77s 1.02s 2.70s 8.22s 27.9s

M
C

FS

NONE 0.24s 0.38s 0.44s 0.29s 0.31s 1.57s 30.1m
+REF 8.59s 11.7s 8.60s 5.08s 0.60s 39.8s 33.1m
+AUG 0.34s 0.60s 0.85s 0.46s 0.60s 13.9m 30.2m

+BOTH 7.13s 12.5s 20.0s 7.89s 15.6s 15.2m 37.5m

Table 2: Solution quality for different MCPP algorithms.

RTC trees through isovertex splitting. Specifically, for the
2-torus instance, Aug plays a pivotal role, whereas Ref con-
tributes only marginal improvements; for the office instance,
either Aug or Ref individually contributes significantly to
the solution improvement, while the combined use of both
demonstrates a more robust enhancement in the solution.
Comparison: We compare MCFS (+BOTH) with two state-
of-the-art grid-based MCPP methods, TMC (Vandermeulen,
Groß, and Kolling 2019) and TMSTC∗ (Lu et al. 2023),
that minimize path turns. To adapt TMC and TMSTC∗

to the non-rectilinear workspaces in our instances, we use
overlay grids to approximate the workspaces, followed by
shortest pathfinding for robot return to root positions post-
coverage. Note that the reported coverage and overlapping
ratios for TMC and TMSTC∗ are approximations due to
the workspace approximation and small intersection of their
coverage paths with obstacles, whereas the values for MCFS
are exact. In Tab. 2, while the average coverage ratios of
TMC, TMSTC∗, and MCFS are comparably close (with a
3.51% variance), MCFS demonstrates an average makespan
reduction of 32.0% and 27.9%, curvature reduction of 75.7%
and 47.8%, and overlapping ratio reduction of 13.6% and
20.9% compared to TMC and TMSTC∗, respectively. Both
MCFS and TMC require longer runtime due to solving MIP
models for MMRTC and MTSP, respectively, especially in
instances with larger isographs or more robots (e.g., office).

Figure 8: TMC MCPP solutions for 2-torus and office.

Figure 9: TMSTC∗ MCPP solutions for 2-torus and office.

Fig. 8 and Fig. 9 visualize the coverage paths via TMC and
TMSTC∗, respectively. These paths exhibit a back-and-forth
boustrophedon pattern, leading to high curvature and imper-
fect coverage around complex obstacles. In contrast, MCFS
notably excels in generating smooth paths that efficiently
contour around arbitrarily shaped obstacles, a clear visual
advantage over the other methods as shown in Fig. 6.

6 Conclusions
We proposed the MCFS framework, an innovative approach
that blends principles from computer graphics and auto-
mated planning to tackle the challenges of covering arbi-
trarily shaped workspaces in complex MCPP tasks. Future
work includes improving isoline quality to further boost the
coverage ratio, incorporating kinodynamic constraints into
the generation and stitching procedures of the isolines, and
developing heuristics to accelerate the PIS function and the
MMRTC solving for large numbers of robots or isolines.

Acknowledgements
This work was supported by the NSERC under grant number
RGPIN2020-06540 and a CFI JELF award.

References
Acar, E. U.; Choset, H.; Rizzi, A. A.; Atkar, P. N.; and Hull,
D. 2002. Morse decompositions for coverage tasks. The
International Journal of Robotics Research, 21(4): 331–344.
Almadhoun, R.; Taha, T.; Seneviratne, L.; and Zweiri, Y.
2019. A survey on multi-robot coverage path planning for
model reconstruction and mapping. SN Applied Sciences, 1:
1–24.
Bochkarev, S.; and Smith, S. L. 2016. On minimizing turns
in robot coverage path planning. In CASE, 1237–1242.
Choset, H. 2000. Coverage of known spaces: The bous-
trophedon cellular decomposition. Autonomous Robots, 9:
247–253.
Collins, L.; Ghassemi, P.; Esfahani, E. T.; Doermann, D.;
Dantu, K.; and Chowdhury, S. 2021. Scalable coverage path
planning of multi-robot teams for monitoring non-convex ar-
eas. In ICRA, 7393–7399.
Even, G.; Garg, N.; Könemann, J.; Ravi, R.; and Sinha, A.
2004. Min–max tree covers of graphs. Operations Research
Letters, 32(4): 309–315.
Gabriely, Y.; and Rimon, E. 2001. Spanning-tree based cov-
erage of continuous areas by a mobile robot. Annals of
Mathematics and Artificial Intelligence, 31: 77–98.
Gibson, I.; Rosen, D. W.; Stucker, B.; Khorasani, M.; Rosen,
D.; Stucker, B.; and Khorasani, M. 2021. Additive manufac-
turing technologies, volume 17. Springer.
Gurobi Optimization, LLC. 2023. Gurobi Optimizer Refer-
ence Manual.
Hazon, N.; and Kaminka, G. A. 2005. Redundancy, effi-
ciency and robustness in multi-robot coverage. In ICRA,
735–741.
Kapoutsis, A. C.; Chatzichristofis, S. A.; and Kosmatopou-
los, E. B. 2017. DARP: divide areas algorithm for optimal
multi-robot coverage path planning. Journal of Intelligent &
Robotic Systems, 86: 663–680.
Karapetyan, N.; Benson, K.; McKinney, C.; Taslakian, P.;
and Rekleitis, I. 2017. Efficient multi-robot coverage of a
known environment. In IROS, 1846–1852.
Latombe, J.-C.; and Latombe, J.-C. 1991. Exact cell decom-
position. Robot Motion Planning, 200–247.
Lockwood, E. H. 1967. A book of curves. Cambridge Uni-
versity Press.
Lu, J.; Zeng, B.; Tang, J.; Lam, T. L.; and Wen, J. 2023.
TMSTC*: A Path Planning Algorithm for Minimizing Turns
in Multi-robot Coverage. IEEE Robotics and Automation
Letters, 8(8): 5275–5282.
Mannadiar, R.; and Rekleitis, I. 2010. Optimal coverage of
a known arbitrary environment. In ICRA, 5525–5530.
Maple, C. 2003. Geometric design and space planning us-
ing the marching squares and marching cube algorithms. In
2003 international conference on geometric modeling and
graphics, 2003. Proceedings, 90–95. IEEE.

Oksanen, T.; and Visala, A. 2009. Coverage path planning
algorithms for agricultural field machines. Journal of Field
Robotics, 26(8): 651–668.
Rekleitis, I.; New, A. P.; Rankin, E. S.; and Choset, H. 2008.
Efficient boustrophedon multi-robot coverage: an algorith-
mic approach. Annals of Mathematics and Artificial Intelli-
gence, 52: 109–142.
Ren, F.; Sun, Y.; and Guo, D. 2009. Combined
reparameterization-based spiral toolpath generation for five-
axis sculptured surface machining. International Journal of
Advanced Manufacturing Technology, 40: 760–768.
Song, H.; Yu, J.; Qiu, J.; Sun, Z.; Lang, K.; Luo, Q.; Shen,
Y.; and Wang, Y. 2022. Multi-UAV Disaster Environ-
ment Coverage Planning with Limited-Endurance. In ICRA,
10760–10766.
Tang, J.; and Ma, H. 2023. Mixed Integer Programming
for Time-Optimal Multi-Robot Coverage Path Planning with
Heuristics. IEEE Robotics and Automation Letters, 8(10):
6491–6498.
Tang, J.; and Ma, H. 2024a. Large-Scale Multi-Robot Cov-
erage Path Planning via Local Search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
17567–17574.
Tang, J.; and Ma, H. 2024b. Multi-Robot Connected Fermat
Spiral Coverage. arXiv:2403.13311.
Tang, J.; Sun, C.; and Zhang, X. 2021. MSTC∗: Multi-robot
Coverage Path Planning under Physical Constrain. In ICRA,
2518–2524.
Tomaszewski, C. K. 2020. Constraint-Based Coverage Path
Planning: A Novel Approach to Achieving Energy-Efficient
Coverage. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA.
Vandermeulen, I.; Groß, R.; and Kolling, A. 2019. Turn-
minimizing multirobot coverage. In ICRA, 1014–1020.
Wong, S. C.; and MacDonald, B. A. 2003. A topological
coverage algorithm for mobile robots. In IROS, 1685–1690.
Wu, C.; Dai, C.; Gong, X.; Liu, Y.-J.; Wang, J.; Gu, X. D.;
and Wang, C. C. 2019. Energy-efficient coverage path plan-
ning for general terrain surfaces. IEEE Robotics and Au-
tomation Letters, 4(3): 2584–2591.
Yang, Y.; Loh, H. T.; Fuh, J.; and Wang, Y. 2002. Equidistant
path generation for improving scanning efficiency in layered
manufacturing. Rapid Prototyping Journal, 8(1): 30–37.
Zhao, H.; Gu, F.; Huang, Q.-X.; Garcia, J.; Chen, Y.; Tu, C.;
Benes, B.; Zhang, H.; Cohen-Or, D.; and Chen, B. 2016.
Connected fermat spirals for layered fabrication. ACM
Transactions on Graphics, 35(4): 1–10.
Zheng, X.; Koenig, S.; Kempe, D.; and Jain, S. 2010. Mul-
tirobot forest coverage for weighted and unweighted terrain.
IEEE Transactions on Robotics, 26(6): 1018–1031.

Appendix A Connected Fermat Spiral (CFS)
We aim to interpret the most relevant fundamentals in the
original CFS work (Zhao et al. 2016) using the same no-
tation and terminologies that are consistent with this paper.
Given a workspace represented as a set of boundary poly-
lines, CFS essentially comprises three steps to convert a set
I of space-filling contouring isolines of the workspace into
a connected Fermat spiral, as detailed below.

A.1 Identifying the Pocket Regions
The first step identifies multiple regions of pockets, each de-
fined as a set of consecutive isolines in adjacent layers with
a single local minimum and a single local maximum of their
distances to the boundaries (e.g., Fig. 10-(a)). As in the main
text, we adhere to the same isograph notation G = (V,E) to
represent the set I of isolines. Each isovertex v ∈ V is as-
sociated with a unique isoline. The edge set E contains any
(u, v) with a nonempty connecting segment set Ou→v (see
Eqn. (1)), which has an edge weight of |Ou→v|. By com-
puting the minimum spanning tree (MST) M of G (e.g.,
Fig. 10-(e)), the identification of pockets can then be eas-
ily accomplished by identifying a set Vp ⊆ V of isovertices
with degrees not greater than 2 in M . The set Vp is then par-
titioned into mutually exclusive subsets, each being a con-
nected component of G and thus forming a pocket (e.g., R0

to R4 in Fig. 10-(d)).

A.2 Generating Fermat Spiral in Pocket
We describe the second step for converting the isolines of
each pocket P = {vi}ki=1 ⊆ Vp into a Fermat spiral. Each
pair of vi and vi+1 are associated with two isolines in adja-
cent layers, and v1 and vk are the local minima and maxima
of P , respectively. We denote the nearest point in Iv to p
as Cv(p) and the preceding point of p along Iv as Bv(p).
Given the entry point p1 and the exit point q1 = B(p1) of
the Fermat spiral on the isoline Iv1 , for each vi with i > 1,
we obtain two unique points pi = Cvi

(
Bvi−1

(pi−1)
)

and
qi = Cvi

(
Bvi−1

(qi−1)
)

on Ivi . Subsequently, each iso-
line Ivi is partitioned into two segments, denoted as IAvi
and IBvi , representing the portions from pi to qi and from
qi to pi in clockwise order, respectively. If i is even, we
swap its corresponding IAvi with IBvi . Finally, we can obtain
the Fermat spiral by stitching two spirals: one routes into
vk by stitching IAvi−1

to IAvi for each i = 2, . . . , k, and the
other routes out of vk by stitching each IBvi to IBvi−1

for each
i = k, . . . , 2. Fig. 10-(c) shows an example of the Fermat
spiral in a pocket.

A.3 Connecting Separated Fermat Spirals
The third step connects the separated Fermat spirals in the
pockets by traversing the MST M in a bottom-up fashion.
Specifically, it starts from the isovertex v, where Iv must
be a boundary isoline containing the entry and exit points
of the final connected Fermat spiral. Recall that we have
grouped a set Vp ⊆ V for generating the pockets. Each
pocket P = {vi}ki=1 with its Fermat spiral and the two
adjacent entry point p and exit point q are connected to

𝑣𝑣0

𝐼𝐼𝑣𝑣0𝐼𝐼𝑣𝑣0

(a) (b) (c)

(d) (e) (f)

Figure 10: Demonstrations adapted from the original CFS
work (Zhao et al. 2016). (a) A pocket region. (b) A non-
pocket region with two local maxima. (c) The Fermat spiral
of the pocket in (a), comprised of the inward spiral (red)
and the outward spiral (blue). (d) An example workspace
with one exterior boundary and two interior boundaries. (e)
The MST of the isograph of workspace (d). (f) The resulting
connected Fermat spiral of workspace (d).

the isoline Iv of a vertex v ∈ V/Vp that is a neighbor of
v1 or vk. This connection is established by stitching p to
Cv(p) and q to Cv(q). It is noteworthy that, according to the
definition of pockets and how they are identified by the set
Vp on the MST M , the residual set V/Vp will always form
a connected component of M . Additionally, every pocket
P = {vi}ki=1 will either be rooted at v1 and connected to
some v ∈ V/Vp via vk, or it will be rooted at vk and con-
nected to some v ∈ V/Vp via v1, which guarantees that the
above procedure always produces a connected Fermat spi-
ral. Figure 10-(f) illustrates the connected Fermat spiral of
an example workspace.

Appendix B The MIP Model for MMRTC
We detail the MIP model for the MMRTC problem in (Tang
and Ma 2023), with the only difference in the definition of
tree costs. Recall that in an MMRTC instance, we have a
graph G = (V,E), a set I = {1, 2, ..., k} of indices, and a
set R = {ri}i∈I of root vertices. The objective of MMRTC
is to find a set of k trees {Ti}i∈I minimizing the objective
in Eqn. (5), such that each Ti must be rooted at ri ∈ R and
each vertex v ∈ V is included in at least one tree. Compared
with the original MIP model in Tang and Ma (2023) that
defines the cost of each tree as the summation of the edge
weights in Eqn. (8), here it is replaced by the summation of
the each vertex weight wv to cope with our formulation for
multi-robot CFS coverage.

We introduce two sets of binary variables x = {xi
e}i∈I

e∈E

and y = {yiv}i∈I
v∈V , where xi

e and yiv take value 1 if edge e
or vertex v is included in the i-th tree Ti, respectively, and
0 otherwise. Assuming each edge has one unit of flow, we
further introduce a set of non-negative continuous flow vari-

ables f = {f i
e,u, f

i
e,v}i∈I

e∈E to represent the amount of flow
assigned to vertices u and v for each edge e = (u, v) ∈ E.
Let τ denote the makespan and e ∼ v denote that v is one of
the endpoints of e. The MIP model is formulated as:

(MIP) minimize
x,y,f,τ

τ (7)

s.t.
∑
v∈V

wvy
i
v ≤ τ, ∀i ∈ I (8)

∑
i∈I

yi
v ≥ 1, ∀v ∈ V (9)

yi
ri = 1, ∀i ∈ I (10)∑

v∈V

yi
v = 1 +

∑
e∈E

xi
e, ∀i ∈ I (11)

f i
e,u + f i

e,v = xi
e, ∀e = (u, v) ∈ E,∀i ∈ I (12)∑

e∈E
e∼v

f i
e,v ≤ 1− 1

|V | , ∀v ∈ V, ∀i ∈ I (13)

xi
e ≤ yi

v, ∀v ∈ V, ∀e ∈ E, e ∼ v,∀i ∈ I (14)

xi
e, y

i
v ∈ {0, 1}, ∀v ∈ V, ∀e ∈ E,∀i ∈ I (15)

f i
e,u, f

i
e,v, τ ∈ R+, ∀e = (u, v) ∈ E,∀i ∈ I (16)

Tang and Ma (2023) has established that any solution of
our MIP model is feasible for its corresponding MMRTC in-
stance, which ensures the correctness of our MIP model. The
constraints of the above model can be grouped as follows:
1. Makespan: Eqn. (8) ensures that τ equals the maximum

weight among all the trees, which is minimized in the
objective function defined in Eqn. (7);

2. Cover: Eqn. (9) enforces that each v ∈ V is included in
at least one tree;

3. Rooted: Eqn. (10) enforces each Ti is rooted at ri ∈ R;
4. Tree: Eqn. (11) ensures that each Ti is either a single

tree or a forest with cycles in some of its trees, while
Eqn. (12) and (13) eliminate any cycles in Ti. Together,
these constraints ensure that any tree is a single tree.

