
Multi-Goal Multi-Agent Pickup and Delivery*

Qinghong Xu,1 Jiaoyang Li,2 Sven Koenig2 and Hang Ma1

Abstract—In this work, we consider the Multi-Agent Pickup-
and-Delivery (MAPD) problem, where agents constantly engage
with new tasks and need to plan collision-free paths to execute
them. To execute a task, an agent needs to visit a pair of
goal locations, consisting of a pickup location and a delivery
location. We propose two variants of an algorithm that assigns
a sequence of tasks to each agent using the anytime algorithm
Large Neighborhood Search (LNS) and plans paths using
the Multi-Agent Path Finding (MAPF) algorithm Priority-
Based Search (PBS). LNS-PBS is complete for well-formed
MAPD instances, a realistic subclass of MAPD instances, and
empirically more effective than the existing complete MAPD
algorithm CENTRAL. LNS-wPBS provides no completeness
guarantee but is empirically more efficient and stable than LNS-
PBS. It scales to thousands of agents and thousands of tasks
in a large warehouse and is empirically more effective than the
existing scalable MAPD algorithm HBH+MLA*. LNS-PBS and
LNS-wPBS also apply to a more general variant of MAPD,
namely the Multi-Goal MAPD (MG-MAPD) problem, where
tasks can have different numbers of goal locations.

I. INTRODUCTION

In many real-world multi-robot systems, robots have to
constantly attend to new tasks and plan collision-free paths to
execute them. For example, warehouse robots need to move
inventory shelves to workstations, where human workers pick
products from the shelves to fulfill the orders of customers.
This problem has been studied as Multi-Agent Pickup-and-
Delivery (MAPD) [1]. In MAPD, each task has a release
time and a sequence of two goal locations, namely a pickup
location and a delivery location. For a warehouse robot, the
pickup location is the storage location of an inventory shelf
in the warehouse, and the delivery location is the location of
the workstation that needs a product stored on the inventory
shelf. To execute a task, an agent (i.e., robot) needs to first
visit its pickup location at or after its release time and then
visit its delivery location.

To solve a MAPD instance, the agents need to decide
which tasks they are going to execute and plan collision-
free paths to execute them effectively. Most existing MAPD
algorithms separate the task-assignment and path-finding

*The research at Simon Fraser University was supported by the Natural
Sciences and Engineering Research Council of Canada under grant number
RGPIN2020-06540 as well as a Canada Foundation for Innovation John
R. Evans Leaders Fund award. The research at the University of Southern
California was supported by the National Science Foundation under grant
numbers 1409987, 1724392, 1817189, 1837779, 1935712, 2121028, and
2112533 as well as a gift from Amazon Robotics.

1Qinghong Xu and Hang Ma are with the School of Computing Sci-
ence, Simon Fraser University, Burnaby, BC V5A1S6, Canada {qxa8,
hangma}@sfu.ca

2Jiaoyang Li and Sven Koenig are with the Department of Computer
Science, University of Southern California, Los Angeles, CA 90007, USA
{jiaoyanl, skoenig}@usc.edu

parts, i.e., they first assign tasks to the agents based on an
estimation of the actual path costs and then use a Multi-
Agent Path Finding (MAPF) [2] algorithm for planning actual
collision-free paths for the agents. Such decoupled MAPD
algorithms can be categorized into (1) those that assign only
one task to each agent at a time and plan paths for the agents
segment by segment [1], i.e., each call to the path planner
computes a plan that moves the agents only from their current
locations to their next goal locations; (2) assign only one task
to each agent but plan paths that move the agents from their
current locations through a sequence of goal locations [3];
and (3) assign a sequence of tasks to each agent and plan
paths for the agents segment by segment [4], [5]. Assigning
only one task to each agent can lead to bad task assignments
since it does not take the subsequent tasks into account, and
planning paths segment by segment can lead to long paths.

In addition, there is some work that focuses only on
the path-finding part of the MAPD problem. For instance,
Surynek [6] proposes the optimal Multi-Goal MAPF algo-
rithms HCBS and SMT-HCBS for planning collision-free
paths for a set of goal locations (where the ordering of the
goal locations is not specified). However, these algorithms
solve only one-shot problems where each agent has only one
task, and their scalability is limited. Li et al. [7] propose the
efficient lifelong MAPF algorithm Rolling-Horizon Collision
Resolution (RHCR) for planning collision-free paths for a
sequence of goal locations. It uses a rolling-horizon frame-
work that repeatedly calls a windowed MAPF algorithm
to resolve collisions for only a few timesteps ahead. Such
windowed MAPF algorithms run significantly faster than
regular MAPF algorithms but typically do not provide a
completeness guarantee since they can lead to deadlocks due
to their shortsightedness.

The main contributions of our work are as follows: We
propose a decoupled algorithm that assigns a sequence of
tasks to each agent using the anytime algorithm Large Neigh-
borhood Search (LNS) and plans paths through a sequence
of goal locations using the MAPF algorithm Priority-Based
Search (PBS). More specifically, we propose two variants
of this algorithm: LNS-PBS and LNS-wPBS. The first vari-
ant focuses on completeness and effectiveness. PBS is, in
general, incomplete. Combined with the idea of “reserving
dummy paths" from [4], LNS-PBS is complete on well-
formed MAPD instances, a realistic subclass of MAPD
instances. The second variant focuses on efficiency and
stability. LNS-wPBS uses the windowed MAPF algorithm of
RHCR. Therefore, the runtime of LNS-wPBS is controlled
by the user-specified runtime limit for the anytime task-
assignment algorithm and the user-specified size of the time

TABLE I: Research related to MAPD. “Lifelong” means
that agents can constantly engage with new tasks. “Online”
means that the entire task set is unknown in the beginning,
and new tasks can enter the system at any time. “Assign
tasks (seq. task)” means that an algorithm can assign a task
sequence (rather than a single task) to each agent. “Find paths
(seq. goals)” means that an algorithm can plan a path for a
sequence of goal locations (rather than segment by segment)
for each agent. “Complete (well-formed)” means that an
algorithm is complete for well-formed MAPD instances.

lifelong online assign tasks find paths complete
(seq. tasks) (seq. goals) (well-formed)

CENTRAL [1] 3 3 7 7 3
TA-Hybrid [4] 3 7 3 7 3
HBH+MLA* [3] 3 3 7 3 3
RMCA [5] 3 3 3 7 7
(SMT-)HCBS [6] 7 N/A 7 3 3
RHCR [7] 3 3 7 3 7
LNS-PBS 3 3 3 3 3
LNS-wPBS 3 3 3 3 7

window for the windowed MAPF algorithm. Empirically,
LNS-PBS and LNS-wPBS often yield smaller service times
than state-of-the-art MAPD algorithms, and LNS-wPBS
scales to thousands of agents and thousands of tasks in a
large warehouse.

As a further contribution, we study two extensions of the
MAPD problem. First, LNS-PBS and LNS-wPBS can extend
to a more general variant of the MAPD problem, namely the
Multi-Goal MAPD (MG-MAPD) problem, where tasks have
different numbers of goal locations. This problem models
the scenario where a warehouse robot may need to deliver an
inventory shelf to multiple workstations because they all have
requested products stored on the same inventory shelf. We
prove that LNS-PBS is complete for well-formed MG-MAPD
instances. Second, LNS-PBS and LNS-wPBS can handle
different MAPD settings. This includes the online setting [1],
where the entire task set is unknown in the beginning and
new tasks can enter the system at any time, the offline setting
[4], where the entire task set is known in the beginning, and
the semi-online setting (which has not been studied before),
where the entire task set is (only) partially known in the
beginning. We compare existing MAPD-related algorithms
against our algorithms LNS-PBS and LNS-wPBS in Table I.

II. RELATED WORK
A MAPD algorithm consists of two components: task

assignment and path finding. In this section, we discuss
existing research that relates to them.

A. Task Assignment
The task-assignment problem is related to the multi-robot

task allocation literature. Gerkey et al. [8] and Korsah et
al. [9] provide taxonomies for this topic. The Hungarian
algorithm [10] is a combinatorial optimization algorithm that
finds the maximum-weight matching in a bipartite graph in
polynomial time. Other related problems include the Trav-
eling Salesman Problem (TSP), Vehicle Routing Problem
(VRP), and Dial-a-Ride Problem. Shaw [11] introduces the

local search algorithm Large Neighborhood Search (LNS)
to construct a customer schedule for the VRP. The idea is
to start with an initial schedule and iteratively improve it.
In every iteration, some customers are removed from the
schedule based on a removal heuristic. These customers are
then inserted back into the schedule (at potentially different
positions) by a greedy heuristic.

B. Path Finding
The path-finding problem is related to the Multi-Agent

Path Finding (MAPF) literature. Many MAPF algorithms
exist, such as the complete and optimal MAPF algorithm
Conflict-Based Search (CBS) [12], its improved variant Im-
proved CBS (ICBS) [13], and the incomplete and suboptimal
MAPF algorithm prioritized planning [14]. Given a total
priority ordering of the agents, prioritized planning computes
the time-minimal paths of the agents in order of their
priorities such that the path of an agent does not collide with
the paths of all higher-priority agents. Prioritized planning
is very efficient, but a pre-defined total priority ordering can
make prioritized planning ineffective and even incomplete
for hard MAPF instances. Priority-Based Search (PBS) [15]
attempts to address this issue by using depth-first search to
find a good total priority ordering. Nevertheless, prioritized
planning is faster than PBS for easy MAPF instances in
general.

Multi-Label A* (MLA*) [3] was invented for planning
paths for pairs of goal locations, namely the pickup location
and the delivery location of a task. Li et al. [7] generalize
MLA* for planning paths for longer sequences of goal
locations.

C. Combined Task Assignment and Path Finding
Ma et al. [1] present the complete MAPD algorithm

CENTRAL for well-formed MAPD instances, a realistic
subclass of MAPD instances. CENTRAL uses the Hungarian
algorithm [10] to assign each agent one task and then uses
CBS for planning collision-free paths for the agents segment
by segment that visit the goal locations of their assigned
tasks. CENTRAL is designed for online MAPD, where
tasks can enter the system at any time. TA-Hybrid [4] is
designed for the offline setting, where all tasks are known
in the beginning. TA-Hybrid formulates the task-assignment
problem as a TSP and uses the anytime TSP algorithm LKH3
[16] to find a task sequence for each agent. It then uses ICBS
for planning collision-free paths for the agents segment by
segment that visit the goal locations of their assigned tasks.
Grenouilleau et al. [3] propose an H-value-Based Heuristic
(HBH) to assign an agent its next task greedily and then
prioritized planning and MLA* for planning collision-free
paths for the agents that visit the pairs of goal locations of
their assigned tasks.

The MAPD algorithms above are decoupled, i.e., they
first assign tasks to the agents based on an estimation of
the actual path costs and then use a MAPF algorithm for
planning actual collision-free paths for the agents. Chen et
al. [5] propose the coupled MAPD algorithm RMCA, that

assigns tasks and plans paths simultaneously. Therefore, its
task assignment is informed by the actual path costs. For the
task-assignment part, RMCA uses LNS to compute a task
sequence for each agent. It first uses a standard regret-based
marginal-cost heuristic to construct an initial solution. It then
iteratively removes and reassigns a subset of tasks based on a
greedy heuristic. For the path-finding part, it uses prioritized
planning with sequential A* calls for planning collision-free
paths for the agents.

III. PROBLEM DEFINITION

In this section, we formalize a generalization of the MAPD
problem, namely the Multi-Goal MAPD (MG-MAPD) prob-
lem. MAPD is a special case of MG-MAPD with only two
goal locations for each task. A MG-MAPD instance consists
of a set of " agents {01, 02, ..., 0" } and an undirected
graph � = (+,�), whose vertices + represent the set of
locations and whose edges � represent the connections
between locations that the agents can move along. Let ?8 (C)
denote the location of agent 08 at timestep C. Agent 08 starts
at its start location ?8 (0); at each timestep, it either moves to
an adjacent location or waits at its current location. A vertex
collision occurs between agents 08 and 0 9 at timestep C iff
?8 (C) = ? 9 (C); an edge collision occurs iff ?8 (C) = ? 9 (C + 1)
and ?8 (C +1) = ? 9 (C).
At each timestep, the system can release new tasks. Each

task g8 is characterized by a sequence of goal locations and
a finite release time A8 ∈ N; we let B8 denote its first goal
location and 68 denote its last goal location. To execute g8 ,
an agent needs to visit all goal locations of g8 in sequence.
When an agent arrives at B8 , it starts to execute g8 at or after
timestep A8 and cannot execute other tasks; the completion
time of g8 is the time when the agent arrives at 68 . Agents
that are assigned tasks are called task agents; otherwise, they
are called free agents.

Not all MG-MAPD instances are solvable; in this work,
we consider well-formed MG-MAPD instances, a realistic
subclass of MG-MAPD instances [1], [4]. We define two
types of endpoints: (1) all goal locations of tasks are called
task endpoints, and (2) all start locations of agents are called
non-task endpoints. A MG-MAPD instance is well-formed
iff the start location of each agent is different from all task
endpoints and, for any two endpoints, there exists a path
between them that traverses no other endpoints.

The problem of MG-MAPD is to assign tasks to agents
and plan collision-free paths for the agents to execute all
tasks assigned to them. The effectiveness of a MG-MAPD
algorithm is measured by the average service time. The
service time of a task is the difference between its completion
time and its release time, i.e., the time that the task spends
in the system. The efficiency is measured by the average
runtime per timestep. We say that a MG-MAPD algorithm
is stable iff its runtime at different timesteps is controllable
or predictable.

Algorithm 1 LNS-wPBS
1: while true do
2: if there are new or deferred tasks

or any task agent becomes a free agent then
3: (Re)assign tasks in T to agents using LNS;
4: Assign a dummy endpoint to each agent;
5: Plan paths for all agents using wPBS;
6: else if agents have moved F timesteps then
7: Assign a dummy endpoint to each agent;
8: Plan paths for all agents using wPBS;
9: end if
10: Agents follow their paths for one timestep;
11: end while

IV. LNS-PBS AND LNS-wPBS

In LNS-PBS and LNS-wPBS, each agent maintains (1) a
dummy endpoint, i.e., an endpoint that it can move to and
stay indefinitely at without collisions (initially, this dummy
endpoint is its start location), (2) a task sequence, that
consists of the uncompleted tasks that it has to execute,
(3) a corresponding goal sequence, that consists of all goal
locations of the tasks in its task sequence plus its dummy
endpoint at the end, and (4) a path, that moves the agent
from its current location through all locations in its goal
sequence without collisions. Algorithm 1 without the blue
parts (i.e., Lines [6-8]) shows how LNS-PBS works. Many
of its steps (not shown in the pseudo-code but introduced
later), including the use of dummy endpoints, the strategy of
which unexecuted tasks can be assigned to agents, and the
modification of PBS, are designed to ensure its completeness.
When new tasks are released by the system, tasks are deferred
from the previous iteration, or a task agent becomes a free
agent [Line 2], we start a new iteration and update the
four items maintained by the agents: First, we use LNS
to (re)assign agents those unexecuted tasks, denoted by T ,
all of whose goal locations are different from the dummy
endpoints of the agents [Line 3]. (The other unexecuted tasks
are deferred to the next iteration and assigned then.) This
destroys the current task sequences of all agents (except for
the tasks they are currently executing) and replans new task
sequences for them. Then, we assign each agent a (potentially
new) dummy endpoint [Line 4] and use PBS to (re)plan their
paths [Line 5]. We will explain Lines [3], [4], and [5] in
Sections IV-A, IV-B, and IV-C, respectively. We will prove
the completeness of LNS-PBS for well-formed MG-MAPD
instances in Section IV-D and finally introduce LNS-wPBS
(i.e., Lines [6-8]) in Section IV-E.

A. Large Neighborhood Search (LNS)

LNS starts with an initial task assignment generated by
Hungarian-based insertion also (introduced below) and it-
eratively improves it using Shaw removal and regret-based
re-insertion (introduced below) until a user-specified runtime
limit is reached. In each iteration, LNS accepts the new task
assignment if it yields a smaller estimated service time than

the old task assignment. In this section, we use the term
“estimated” time to indicate the time calculated under the
assumption that all agents follow their shortest paths on graph
� that ignore the collisions between each other. To avoid
having to plan a path for a long task sequence on Line 5, we
truncate the task sequence of each agent to a size of at most
the user-specified maximum size �. The remaining tasks are
deleted from the task sequences and will be assigned in
future iterations, for example, when a task agent completes
its current � tasks and becomes a free agent.
Hungarian-Based Insertion. We use the Hungarian al-

gorithm [10] to construct the initial task assignment, i.e.,
the task sequences of all agents. Each call to the Hungarian
algorithm adds one task to the end of the task sequence of
each agent. We repeatedly call it until all tasks in T have
been assigned to agents. In each call, the Hungarian algo-
rithm takes a cost matrix as input (whose rows correspond to
agents and whose columns correspond to tasks) and outputs
an agent-task assignment with the minimum sum of costs.
Previous work [1] defines an element of the cost matrix as the
estimated time for an agent to move from its current location
to the first goal location of a task. This choice prioritizes
those tasks whose first goal locations are near the current
locations of the agents, without considering the release and
completion times of the tasks. Instead, we define an element
of the cost matrix as the estimated completion time of a
task g8 executed by agent 08 under the assumption that g8 is
inserted at the end of the task sequence of 08 .

Shaw Removal. After the construction of the initial task
sequences of all agents, we use a Shaw removal operator
[17] to remove a group of interrelated tasks from the task
sequences. We let 3 (D, E) represent the shortest-path distance
from location D ∈ + to location E ∈ + . We define the
relatedness of two tasks g8 and g9 as

A (g8 , g9) = l1 (3 (68 , 6 9) + 3 (B8 , B 9))
+l2 (|C (B8) − C (B 9) | + |C (68) − C (6 9) |),

where C (B8) represents the estimated time when an agent
starts to execute g8 (i.e., when the agent reaches the first
goal location B8 of g8) and C (68) represents the estimated
completion time of g8 . The first term expresses the spatial
relatedness of the tasks, and the second term expresses their
temporal relatedness. The spatial relatedness and temporal
relatedness are weighted by l1 and l2, respectively. The
Shaw removal operator works as follows: We first choose
a task g∗ randomly. We then remove g∗ and a group of
− 1 tasks in decreasing order of their relatedness to g∗,
where the neighborhood size # is a user-specified parameter.
We also tested other removal operators (e.g., the removal of
random tasks and the removal of “bad” tasks [17]) in our
experiments, but the above removal operator outperformed
the others.

Regret-Based Re-Insertion. We then use a re-insertion
operator to re-insert the removed tasks into the task se-
quences. Specifically, we use the regret-based operator from
[5][17]. Let 58 (:, 9) denote the estimated total service time

of the task sequences obtained when inserting task g8 at the
9 th position of the task sequence of agent 0: (here, the task
sequences do not contain the other removed tasks). Let 5 (1)

8

denote the estimated total service time of the task sequences
obtained when inserting task g8 at its best position, namely
the one with the smallest estimated total service time, i.e.,
5
(1)
8

= min{ 58 (:, 9) | : ∈ {1, ..., "}, 9 ∈ {0, ..., ;: }}, where ;:
is the number of tasks in the task sequence of 0: . Let 5 (2)8

denote the estimated total service time of the task sequences
obtained when inserting task g8 at its second-best position,
namely the one with the second-smallest estimated total
service time. The regret of a task g8 is defined as 5 (2)

8
− 5 (1)

8
,

i.e., the difference in the estimated total service time of
inserting g8 at its best two positions. The regret-based re-
insertion operator works as follows: We choose the task with
the maximum regret, insert it at its best position, and update
the regret of the remaining tasks based on the resulting task
sequences. We repeat the process until all removed tasks have
been re-inserted into the task sequences.

B. Dummy-Endpoint Assignment
We assign dummy endpoints one by one with task agents

first and free agents afterward. The dummy endpoint of each
agent needs to be different from the already assigned dummy
endpoints, all goal locations of the uncompleted tasks, and
the old dummy endpoints of the other " − 1 agents in the
previous iteration. When choosing a dummy endpoint for an
agent, we consider the task endpoints in increasing order of
their shortest-path distances to the last goal location of the
last task of the agent. If there are no available task endpoints
to assign, we use its start location as its dummy endpoint
instead.

C. Priority-Based Search (PBS)
PBS [15] is an incomplete and suboptimal two-level

MAPF algorithm. On the high level, PBS builds a priority
tree (PT) and performs a depth-first search on it to construct
a priority ordering of the agents. PBS starts with the root
node, that contains an empty priority ordering and a time-
minimal path for each agent that ignores collisions. When
resolving a collision between two agents, PBS generates two
child nodes and adds an additional priority relation to each
of them: It adds to one child node that the first agent involved
in the collision has a higher priority than the second one and
vice versa for the other child node. On the low level, PBS
uses A* for planning time-minimal paths for agents that are
consistent with the priority ordering generated by the high
level (i.e., lower-priority agents are not allowed to collide
with higher-priority agents). PBS prunes the child node iff no
such paths exists. Li et al. [7] generalize the low level of PBS
to planning time-minimal paths for agents with sequences of
goal locations.

We modify the low level of PBS to make PBS complete
for well-formed MG-MAPD instances. Before PBS starts, we
save the (old) paths computed in the previous iteration. In the
first iteration, the old paths are the paths that keep the agents
at their start locations indefinitely. These old paths might

not visit the goal locations in the current goal sequences
but are guaranteed to be collision-free. When PBS generates
the root node of the PT, it plans a time-minimal path for
each agent that avoids the old paths of all other "-1 agents.
When PBS resolves a collision between two agents, for each
agent whose path needs to be re-planned in each child node,
PBS plans a time-minimal path for it that avoids collisions
with the new paths of all higher-priority agents and the old
paths of all other agents (that do not have a higher priority
than it). When a MG-MAPD instance is well-formed, this
modification always finds a path for each agent (which we
prove below), and thus no PT node is pruned. Since PBS
performs depth-first search, the number of expanded PT
nodes is no larger than the maximum depth of the PT, which
is O("2) [15].

D. Completeness of LNS-PBS
Theorem 1: Given a well-formed MG-MAPD instance

with a finite number of tasks, LNS-PBS is guaranteed to
find collision-free paths in finite time that allow each agent
to execute all tasks assigned to it.

Proof: We first prove that, given a goal sequence
for each agent, LNS-PBS (or, more specifically, Line 5 of
Algorithm 1) is guaranteed to find collision-free paths in
finite time that allow each agent to visit all goal locations
in its goal sequence: For the root node, this property holds
since such a path exists for each agent. For example, the
agent can first follow its old path and stay at its old dummy
endpoint until all other "−1 agents have completed their old
paths and stay at their old dummy endpoints indefinitely. The
agent can then visit all goal locations in its goal sequence in
order and finally stay at its new dummy endpoint indefinitely
without having to pass through the old dummy endpoints
of all other " − 1 agents. This is so since the MG-MAPD
instance is well-formed and these dummy endpoints are
different from all goal locations in its goal sequence and
its new dummy endpoint. Similarly, for each non-root node,
this property holds since such a path exists for each agent
whose path needs to be replanned. For example, the agent can
first follow its old path and stay at its old dummy endpoint
until (1) all higher-priority agents have completed their new
paths and stay at their new dummy endpoints indefinitely
and (2) all other agents have completed their old paths and
stay at their old dummy endpoints indefinitely. The agent can
then visit all goal locations in its goal sequence in order and
finally stay at its new dummy endpoint indefinitely without
having to pass through the new dummy endpoints of the
higher-priority agents and the old dummy endpoints of all
other agents. This is so since the MG-MAPD instance is
well-formed and these dummy endpoints are different from
all goal locations in its goal sequence and its new dummy
endpoint. Therefore, no PT node is pruned, and LNS-PBS is
guaranteed to find collision-free paths in finite time that allow
each agent to visit all goal locations in its goal sequence.

We then prove that each task is eventually assigned to and
completed by some agent. The last task enters the system at
some (finite) timestep C. We assume for a proof by contra-

diction that, from then on, all still unexecuted tasks remain
unexecuted. Let timestep C ′ ≥ C be the earliest (finite) timestep
when all agents are free. At timestep C ′, no unexecuted task is
in T since, otherwise, at least one task would be assigned to
an agent by LNS-PBS and completed by the agent, as argued
above. Therefore, at timestep C ′ + 1, at least one task was
deferred and is added to T . Then, at least one task is assigned
to an agent by LNS-PBS and completed by the agent, as
argued above, which contradicts the assumption. Therefore,
at least one additional unexecuted task is completed by an
agent. Applying the argument repeatedly shows that each task
is eventually assigned to and completed by some agent.

E. LNS-wPBS
LNS-wPBS is a variant of LNS-PBS that, unlike LNS-

PBS, uses windowed PBS (wPBS) for planning collision-
free paths for only the first F timesteps and then plan
path again once the agents have moved for F timesteps.
This makes LNS-wPBS more efficient than LNS-PBS but
incomplete because there is no guarantee that the agents can
reach their goal locations in a finite number of timesteps.
Nevertheless, LNS-wPBS always successfully finds solutions
in our experiments.

Since LNS-wPBS gives up the completeness guarantee, we
further simplify it in three respects: First, LNS-wPBS does
not defer any tasks, i.e., T consists of all unexecuted tasks.
Second, wPBS uses the original low level of PBS instead
of our modified version, i.e., it does not consider the old
paths of the agents. Third, the assigned dummy endpoints
need only to be pairwise different from each other without
worrying about the goal locations of uncompleted tasks and
the old dummy endpoints.

V. LOOK-AHEAD HORIZONS
In this section, we study the semi-online setting, where

the system has partial knowledge of future tasks and can
thus plan for them. In this case, we consider all known
tasks when generating task sequences. We divide tasks into
batches, where all tasks in one batch are released at the same
timestep. We define the look-ahead horizon as the number
of batches that we know in advance. For example, if the
system releases one task every five timesteps (= 0.2 tasks per
timestep), a look-ahead horizon of 1 means that, at timestep
0, we know the tasks that will be released at timestep 0 and
5. In the offline setting, the look-ahead horizon is infinite.

If the system knows an incoming task ahead of its release
time, then we can send an agent to its first goal location and
let the agent wait for the task to be released. For example, in
Fig. 1, the system releases task g1 at timestep 0 and task g2 at
timestep 2. If we have no knowledge of g2 at timestep 0, then
we assign the agent g1 at timestep 0 and then g2 at timestep
2. Thus, the completion times of g1 and g2 are timesteps
5 and 11, respectively, resulting in an average service time
of (5− 0 + 11− 2)/2 = 7. However, if we use a look-ahead
horizon of 1, we can let the agent first move to B2, wait for
one timestep, start to execute g2 at timestep 2, and start to
execute g1 at timestep 5. Thus, the completion times of g2

Fig. 1: A MG-MAPD instance with one agent at timesteps
0 (left figure) and 2 (right figure). Solid circles represent
the goal locations of the tasks released before the current
timestep and dashed circles represent the ones of the tasks
released at the current timestep. “a” represents the start
location of the agent.

and g1 are timesteps 4 and 8, respectively, resulting in an
average service time of (8−0+4−2)/2 = 5.

VI. EXPERIMENTS

We first compare LNS-PBS and LNS-wPBS empirically
with the existing MAPD algorithms CENTRAL, RMCA,
and HBH+MLA* on MAPD instances in both online and
offline settings. We do not compare them with the other three
existing MAPD algorithms in TABLE I because TA-Hybrid
does not work for the online setting, and (SMT-)CBS and
RHCR need external algorithms to assign tasks to agents. We
then compare different task-assignment algorithms based on
Hungarian and LNS on MG-MAPD instances and finally test
LNS-wPBS in a semi-online setting. We use the warehouse
environment small from [4]: As shown in Fig. 2, it is a
4-neighbor grid map of size 35× 21 that consists of four
columns of endpoints (blue and orange cells) on both left-
and right-hand slides of the map and 2×5 blocks of shelves
(horizontal 10-cell-wide strips of black cells) in the middle,
each surrounded by task endpoints (blue cells) on the rows
above and below it. To show the scalability of LNS-PBS
and LNS-wPBS, we further enlarge small to medium and
large i.e., they are maps of sizes 101× 81 and 187× 153
that contain 8×40 and 15×76 strips of shelves, respectively.
We use 500 tasks for small, 1,000 tasks for medium, and
different numbers of tasks for large (specified later). The
system releases 5 tasks per timestep. The goal locations
of each task are chosen from all task endpoints randomly.
The number of goal locations of each task in MG-MAPD
instances is chosen from 1 to 5 randomly. Our experiments
are performed on a macOS 2.3 GHz Intel Core i5 with 8
GB RAM. All algorithms are implemented in C++. The
implementations of LNS-PBS and LNS-wPBS are based on
the RHCR codebase [7]. The implementations of the other
algorithms are from the original authors. For LNS-PBS and
LNS-wPBS, we set the neighborhood size to # = 2 (we tried
= 2, 4, 8, 32, and 64 for 500 tasks and found that 2 was
best) and the runtime limit for LNS to 1s. We use parameters
l1 = 9 and l2 = 3 from [17] for the Shaw removal operator.
We set the truncated size of the task sequences to � = 2 (we
tried � = 1, 2, 3 for 500 tasks and found that 2 was best).
We set the time window of LNS-wPBS to F = 10 timesteps.
We use “st” to short for the average service time per task
and “rt” for the average runtime (ms) per timestep.

Fig. 2: Simulated warehouse environment small from [4].
Black cells are blocked. Blue and orange cells represent task
endpoints and non-task endpoints, respectively.

Small Warehouse. TABLE II compares LNS-PBS and
LNS-wPBS with CENTRAL and RMCA on MAPD in-
stances in small. For the complete MAPD algorithms CEN-
TRAL and LNS-PBS, LNS-PBS yields smaller service times
than CENTRAL in most cases, with the largest gap being
26% (on the MAPD instance with 5 = 2 and " = 50). It also
runs faster than CENTRAL except on very small MAPD
instances, i.e., MAPD instances with low task frequencies
and small numbers of agents. We do not report the results
for the complete MAPD algorithm HBH+MLA* because its
service times are worse than those of CENTRAL. On the
other hand, the results for the incomplete algorithms RMCA
and LNS-wPBS in the online setting are mixed: neither
algorithm dominates the others with respect to efficiency or
effectiveness. Nevertheless, LNS-wPBS is more efficient and
effective than RMCA in the offline setting.

Medium and Large Warehouses. TABLE III compares
LNS-PBS and LNS-wPBS with the scalable MAPD algo-
rithms HBH-MLA* and RMCA on MAPD instances in
medium. Both RMCA and LNS-PBS suffer from scalabil-
ity issues: they reach the total runtime limit of 1.5h for
large numbers of agents. We do not report the results for
CENTRAL because its scalability is even worse than that
of RMCA and LNS-PBS. Although we report mixed results
of LNS-wPBS and RMCA in the online setting in small,
here, LNS-wPBS dominates RMCA with respect to both
efficiency and effectiveness. HBH+MLA* turns out to be
the most efficient MAPD algorithm in this setting, but LNS-
wPBS yields smaller service times (by more than 9%) than
HBH+MLA* on every MAPD instance, with the maximum
gap being 17%. To further compare the two scalable MAPD
algorithms HBH+MLA* and LNS-wPBS, we use a thousand
agents with thousands of tasks in large and report the reults
in TABLE IV. LNS-wPBS again is slower but yields smaller
service times than HBH+MLA* on all MAPD instances.

Runtime Variance. In warehouses, we care not only
about the average runtime per timestep but also the runtime
variance. We thus plot the runtimes of the algorithms at
different timesteps in Fig. 3. LNS-wPBS is more stable than
LNS-PBS and CENTRAL with respect to the runtimes at
different timesteps. We also partition the runtime into two
parts, namely the task-assignment and path-finding runtimes,
in Fig. 4. LNS-PBS and LNS-wPBS always take about
1s to assign tasks, whereas the task-assignment runtime of
CENTRAL is less stable. The path-finding runtime of LNS-
wPBS is more evenly distributed than those of LNS-PBS and

TABLE II: Results on MAPD instances in small. “N/A”
means that the total runtime exceeds 30 minutes. Gap is
the average gap measured between the complete MAPD
algorithms LNS-PBS and CENTRAL and between the in-
complete MAPD algorithms LNS-wPBS and RMCA.

CENTRAL LNS-PBS RMCA LNS-wPBS
5 " st rt st rt st rt st rt

0.2

10 29.77 28.16 27.92 313.45 26.74 200.08 27.87 316.08
20 26.70 136.21 25.33 294.94 24.28 200.74 25.67 316.50
30 25.56 305.78 25.10 292.04 23.27 201.88 24.69 298.29
40 25.46 415.25 24.30 286.58 22.62 202.98 24.58 291.88
50 25.05 757.40 24.09 277.72 22.37 205.00 24.39 292.96

Gap -4.2% +206.2% +6.7% +50.0%

0.5

10 109.71 51.23 116.59 400.44 101.62 438.57 117.44 382.50
20 27.99 172.36 26.91 646.19 25.44 496.28 27.52 617.43
30 26.23 512.04 25.26 667.61 23.66 501.24 25.72 635.44
40 25.39 1,017.49 24.65 667.25 22.73 503.49 24.84 657.18
50 24.94 1,736.70 23.94 666.01 22.44 508.45 24.76 645.86

Gap -1.6% +178.1% +10.4% +19.1%

1

10 285.75 65.70 273.48 448.81 269.76 464.67 266.77 419.59
20 75.13 266.76 67.21 880.60 59.12 851.97 67.20 762.55
30 31.41 492.12 28.82 1,030.93 25.59 974.76 28.05 947.47
40 28.33 1,381.56 25.28 1,042.05 23.67 987.04 25.62 960.76
50 27.38 3,238.17 24.42 1,055.77 23.01 995.00 25.30 958.01

Gap -8.8% +166.1% +8.0% -5.8%

2

10 388.21 81.35 361.59 258.75 371.27 231.32 356.90 229.33
20 162.00 424.18 140.27 477.73 146.81 444.33 140.22 420.59
30 85.89 702.22 75.45 749.36 77.75 635.75 74.30 597.24
40 57.53 1,440.20 44.55 1,307.76 43.49 798.31 41.90 752.98
50 41.43 2,206.70 30.46 1,249.02 28.88 927.25 28.30 893.02

Gap -16.2% +36.9% -3.6% -4.3%

5

10 455.16 85.32 412.75 157.27 435.70 99.57 408.77 109.84
20 229.55 422.41 197.28 244.39 209.55 184.11 197.51 187.50
30 147.76 1,012.82 126.41 373.18 132.06 268.07 123.95 272.18
40 108.28 1,745.05 90.01 627.75 96.81 362.65 91.01 364.22
50 86.90 2,686.08 70.31 914.49 74.32 425.26 72.25 422.82

Gap -14.7% -30.1% -5.3% +2.7%

10

10 478.17 92.96 438.71 117.76 458.23 56.68 431.76 65.62
20 242.18 375.23 217.33 168.63 228.9 101.20 215.74 110.00
30 165.13 869.85 146.56 254.68 154.28 152.34 144.11 163.94
40 128.39 1,723.10 110.41 381.89 115.04 208.32 109.10 203.33
50 106.70 7,442.20 88.75 602.85 94.29 246.96 89.33 243.87

Gap -12.0% -5.7% -5.7% +5.6%

offl
in
e

10 501.11 76.03 432.28 58.83 443.86 102.07 428.39 13.63
20 263.55 374.87 226.26 62.16 230.18 134.69 223.86 25.93
30 187.31 19,471.88 159.89 91.85 161.20 228.56 156.04 35.38
40 N/A N/A 125.67 125.03 126.68 324.39 122.46 60.66
50 N/A N/A 107.58 164.69 104.01 259.34 103.12 62.40

Gap -11.5% -57.9% -2.7% -81.8%

CENTRAL.
Task-Assignment Algorithms on MG-MAPD Instances.

TABLE V compares LNS-wPBS using different task-
assignment algorithms, namely LNS, that is our original task-
assignment algorithm, greedy-LNS, that modifies our LNS
by using the greedy heuristic from [17], [5] to construct
the initial task assignment, and Hungarian, that uses our
Hungarian-based insertion to find a task assignment (but
does not improve it via LNS). In most cases, LNS yields the
smallest service time, which indicates that our Hungarian-
based insertion is more effective than the greedy heuristic
from [17], [5] for constructing the initial task assignment, and
our LNS improves the initial task assignment, even though
the runtime limit of LNS is only 1s.

Look-Ahead Horizons on MG-MAPD Instances. TA-
BLE VI shows that knowing future tasks helps planning to
obtain smaller service times, but the benefit diminishes for
longer look-ahead horizons. For the MG-MAPD instances

TABLE III: Results on MAPD instances in medium with
5 = 50. “N/A” means that the total runtime exceeds 1.5h.

HBH+MLA* RMCA LNS-wPBS LNS-PBS
" st rt st rt st rt st rt
100 362.70 1.99 329.58 565.76 300.90 87.35 301.78 345.36
200 207.76 6.75 192.67 2,072.98 176.81 220.28 176.13 3,065.95
300 157.11 14.89 147.42 4,734.94 139.33 465.78 137.97 8,844.98
400 136.40 32.59 126.44 9,906.40 123.32 806.54 N/A N/A
500 125.42 65.79 N/A N/A 113.78 1,385.90 N/A N/A

TABLE IV: Results on MAPD instances in large with " =

1,000 and 5 = 100.
HBH+MLA* LNS-wPBS

tasks st rt st rt st gap
1,000 162.98 373.10 155.00 9,288.45 -4.8%
2,000 209.89 468.74 193.22 7,792.24 -7.9%
3,000 258.74 346.44 233.99 8,173.96 -10.5%
4,000 307.59 400.26 274.54 7,730.04 -10.7%
5,000 356.60 487.90 314.42 5,038.37 -11.8%

TABLE V: Service time on MG-MAPD instances in small.
The gap is measured between Hungarian and LNS.

5 " Hungarian Greedy-LNS LNS Gap

2

10 623.87 590.54 597.05 -4.2%
20 283.83 277.65 269.87 -4.9%
30 173.15 177.21 170.07 -1.7%
40 122.21 129.57 122.24 +0.0%
50 98.10 99.58 95.94 -2.6%

5

10 683.50 637.66 645.21 -5.6%
20 332.23 327.57 318.55 -4.1%
30 224.21 221.70 218.27 -2.6%
40 168.11 173.47 164.80 -1.9%
50 141.61 141.95 139.86 -1.2%

10

10 683.60 654.26 650.63 -4.8%
20 343.88 341.56 336.97 -2.0%
30 239.39 239.20 229.76 -4.0%
40 184.94 187.55 178.19 -3.6%
50 157.01 156.07 149.91 -4.5%

TABLE VI: Service time on MG-MAPD instances in small
with 5 = 2. “LAG” means that LNS-wPBS looks G batches
of tasks ahead. The numbers in parentheses are the gaps
measured with respect to LA0.

" LA0 LA1 LA5 LA10
10 58.93 54.07 (-8.2%) 48.89 (-17.0%) 65.25 (+10.6%)
20 46.52 41.85 (-10.0%) 37.94 (-18.4%) 38.12 (-18.0%)
30 45.36 41.59 (-8.3%) 38.30 (-15.5%) 38.41 (-15.3%)
40 45.17 41.99 (-7.0%) 38.80 (-14.1%) 38.84 (-14.0%)
50 45.00 41.57 (-7.6%) 39.11 (-13.0%) 39.31 (-12.6%)

that we test, extending the look-ahead horizon from 0 to
5 always reduces the service times, but extending it from
5 to 10 increases the service times for small numbers of
agents. We suspect that this is so because we sometimes
need to sacrifice the service times of the first few tasks in
order to optimize entire task sequences. Furthermore, the
task sequences for MG-MAPD instances with large look-
ahead horizons and small numbers of agents can be very
long and change frequently, meaning that the agents never
execute them completely as planned.

VII. CONCLUSIONS
In this work, we proposed two variants of a decoupled

MAPD algorithm that assigns task sequences to agents and
plans collision-free paths for them through the corresponding

Fig. 3: Runtime on MAPD instances in small with " = 40.
When an algorithm is not triggered at a timestep, we plot
the dot at 0s.

sequences of goal locations. The first variant, LNS-PBS, is
complete for well-formed MAPD instances, and the second
variant, LNS-wPBS, is more efficient and stable. Empirically,
both of them produce solutions with smaller service times
than the state-of-the-art MAPD algorithms, and LNS-wPBS
can scale to a thousand agents with thousands of tasks in
a large warehouse. As a further contribution, our algorithm
extends to Multi-Goal MAPD, where tasks have different
numbers of goal locations, and is capable of handling semi-
online settings where we know the tasks in the near future.

In future work, we intend to improve our algorithms by
letting them assign tasks based on actual path costs. We
also intend to use a more realistic robotic simulator to
demonstrate the potential of our algorithms to run on actual
robots.

References

[1] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in International
Conference on Autonomous Agents and Multiagent Systems, 2017, pp.
837–845.

[2] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak,
“Multi-agent pathfinding: Definitions, variants, and benchmarks,” in
International Symposium on Combinatorial Search, 2019, pp. 151–
159.

[3] F. Grenouilleau, W.-J. v. Hoeve, and J. N. Hooker, “A multi-label A*
algorithm for multi-agent pathfinding,” in International Conference on
Automated Planning and Scheduling, 2021, pp. 181–185.

[4] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning
for multi-agent pickup and delivery,” in International Conference on
Autonomous Agents and Multiagent Systems, 2019, pp. 2253–2255.

[5] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5816–5823, 2021.

[6] P. Surynek, “Multi-goal multi-agent path finding via decoupled and
integrated goal vertex ordering,” in AAAI Conference on Artificial
Intelligence, 2021, pp. 12 409–12 417.

Fig. 4: Task-assignment and path-finding runtimes on MAPD
instances in small with " = 40. When an algorithm is not
triggered at a timestep, we plot the dot at 0s. The orange
dots in the task-assignment-runtime figures are covered by
the green dots since the task-assignment runtimes of LNS-
PBS and LNS-wPBS are controlled by the runtime limit of
LNS and thus are almost the same.

[7] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and
S. Koenig, “Lifelong multi-agent path finding in large-scale ware-
houses,” in AAAI Conference on Artificial Intelligence, 2021, pp.
11 272–11 281.

[8] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” International Journal of
Robotics Research, pp. 939–954, 2004.

[9] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” International Journal of Robotics
Research, pp. 1495–1512, 2013.

[10] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, pp. 83–97, 1955.

[11] P. Shaw, “A new local search algorithm providing high quality solu-
tions to vehicle routing problems,” APES Group, Dept of Computer
Science, University of Strathclyde, 1997.

[12] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” in AAAI Conference on
Artificial Intelligence, 2012, pp. 563–569.

[13] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel,
and E. Shimony, “ICBS: Improved conflict-based search algorithm
for multi-agent pathfinding,” in International Joint Conference on
Artificial Intelligence, 2015, pp. 740–746.

[14] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” in
IEEE International Conference on Robotics and Automation, 1986, pp.
1419–1424.

[15] H. Ma, D. D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching
with consistent prioritization for multi-agent path finding,” in AAAI
Conference on Artificial Intelligence, 2019, pp. 7643–7650.

[16] K. Helsgaun, “An extension of the Lin-Kernighan-Helsgaun TSP solver
for constrained traveling salesman and vehicle routing problems,”
Roskilde: Roskilde University, 2017.

[17] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, pp. 455–472, 2006.

