
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023 1

Double-Deck Multi-Agent Pickup and Delivery:
Multi-Robot Rearrangement in Large-Scale

Warehouses
Baiyu Li and Hang Ma

Abstract—We introduce a new problem formulation, Double-
Deck Multi-Agent Pickup and Delivery (DD-MAPD), which mod-
els the multi-robot shelf rearrangement problem in automated
warehouses. DD-MAPD extends both Multi-Agent Pickup and
Delivery (MAPD) and Multi-Agent Path Finding (MAPF) by
allowing agents to move beneath shelves or lift and deliver a shelf
to an arbitrary location, thereby changing the warehouse layout.
We show that solving DD-MAPD is NP-hard. To tackle DD-
MAPD, we propose MAPF-DECOMP, an algorithmic framework
that decomposes a DD-MAPD instance into a MAPF instance for
coordinating shelf trajectories and a subsequent MAPD instance
with task dependencies for computing paths for agents. We also
present an optimization technique to improve the performance
of MAPF-DECOMP and demonstrate how to make MAPF-
DECOMP complete for well-formed DD-MAPD instances, a
realistic subclass of DD-MAPD instances. Our experimental
results demonstrate the efficiency and effectiveness of MAPF-
DECOMP, with the ability to compute high-quality solutions
for large-scale instances with over one thousand shelves and
hundreds of agents in just minutes of runtime.

Index Terms—Multi-Robot Systems, Path Planning for Multi-
ple Mobile Robots or Agents, Task Planning

I. INTRODUCTION

THE real-world applications of multi-robot systems often
require coordination between multiple agents to rearrange

objects in shared environments. Warehouse robots in fulfill-
ment centers, such as those described in [1], are one such ex-
ample where agents are utilized to relocate inventory shelves.
In these scenarios, it is crucial for agents to avoid collisions
with each other and with the objects they are relocating. Other
instances of multi-agent object transportation problems include
automated container relocation and 3D automated warehouse
fulfillment, where the objects can be manipulated and moved
by agents. In these cases, it is imperative to prevent collisions
between both agents and objects.

Much research has been done on the topic of multi-robot
rearrangement of inventory shelves in automated warehouses,
with a focus on the simplified Multi-Agent Path Finding
(MAPF) problem [2]. In MAPF, each agent must move from
its predefined start location to its predefined goal location

Manuscript received: November 21, 2022; Revised March 2, 2023; Ac-
cepted April 18, 2023.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by NSERC under grant number RGPIN2020-06540, Huawei Tech.
Canada, and a CFI JELF award. Video: https://youtu.be/6CUdSmQYub8.

The authors are with School of Computing Science, Simon Fraser Univer-
sity, Burnaby, BC V5A 1B5, Canada {baiyu_li, hangma}@sfu.ca

Digital Object Identifier (DOI): see top of this page.

Fig. 1: The typical layout of a fulfillment center [1].

quickly without colliding with others. Multi-Agent Pickup and
Delivery (MAPD) [3] extends MAPF to a more realistic setting
where there are more tasks than agents. In MAPD, each task
has a predefined pickup location and a predefined delivery
location. Each agent needs to get assigned a task and complete
it by moving first to its pickup location and then to its delivery
location. Task assignment and path finding are repeated until
all tasks are completed. While MAPD is more practical for
rearranging shelves than MAPF, it assumes a fixed storage
layout for shelves and that shelves can only be picked up and
delivered to designated locations. MAPD algorithms do not
coordinate shelf movement explicitly, making them impossible
to solve problems such as exchanging the locations of two
shelves using a single agent.

Therefore, we introduce a novel problem formulation,
Double-Deck Multi-Agent Pickup and Delivery (DD-MAPD),
which extends the existing MAPF and MAPD techniques
toward practical large-scale real-world warehouse autonomy.
DD-MAPD addresses the multi-robot shelf rearrangement
problem by allowing agents to either move beneath shelves
or lift, carry, and place shelves at new locations. The name
“Double-Deck” reflects the requirement to avoid collisions on
two levels: on the high level, between shelves when they are
being carried by agents, and on the low level, between agents
themselves. The problem of DD-MAPD is to task N agents
with moving M shelves from their given pickup locations to
their given delivery locations, thereby changing the overall
arrangement of the shelves.

From a practical perspective, the problem formulation of
DD-MAPD enables the use of robots to dynamically adapt
warehouse layouts in response to changing product demands.
As shown in Figure 1, a typical layout of an Amazon ful-
fillment center features green cells representing designated
storage locations for shelves, which are arranged in 4 × 7
blocks, each consisting of 10×2 storage locations. DD-MAPD
allows for the creation of solutions that utilize various numbers
of agents to efficiently (re)arrange shelves, such as those

https://youtu.be/6CUdSmQYub8

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

that are less frequently requested, into dense configurations
or selectively “dig out” desired shelves from densely packed
blocks by moving other shelves out of the way. This approach
can significantly reduce land usage, ultimately reducing the
cost of an automated warehouse.

A. Related Work

MAPF: MAPF is a special case of DD-MAPD where M
shelves are carried by N = M agents. MAPF is NP-hard
to solve optimally [4], [5] on general graphs, planar graphs
[6], and even 2D 4-neighbor grids [7]. Recent MAPF solvers
include reduction-based [8], [9], [10], [11], rule-based [12],
and search-based [13], [14], [15], [16] methods.
MAPD: Existing MAPD algorithms [3], [17] decompose a
MAPD instance into a sequence of task-assignment and MAPF
instances. They assign tasks and plan paths for the agents
whenever there is a change in the system, such as agents
finishing tasks or new tasks being added. MAPD problems
for tasks with temporal constraints [18] or predefined depen-
dencies [19] have also been studied. However, these problems
do not model shelves as movable objects that occupy locations,
which is necessary for shelf rearrangements.
Goal Sequencing and Configurable Environments: Recent
studies [20], [21], [22] have explored MAPF variants where
each agent must visit multiple goals and computes the order in
which it visits the goals. DD-MAPD also requires sequencing
tasks, but the task locations must be computed dynamically.
[23] studies a MAPF variant where the warehouse layout can
be changed by a blackbox, but DD-MAPD requires computing
a plan for agents to change the warehouse layout.
Plan Execution: MAPF and MAPD plans can be executed by
real robots, using a dependency graph that respects the prece-
dence constraints [24]. The plan execution is guaranteed to be
collision-free, even with unmodeled kinematic constraints [25]
or delay uncertainties [26]. Unlike our proposed framework
for solving DD-MAPD, each agent has its own path in the
computed plan and cannot execute other paths.

B. Contributions

We propose a novel problem formulation, DD-MAPD,
to model the multi-robot shelf rearrangement problem in a
warehouse. Theoretically, our work generalizes existing in-
approximability and NP-hardness results of MAPD to DD-
MAPD and establishes a set of sufficient conditions, namely
well-formedness, for solvability. Our main contribution is a
new algorithmic framework, MAPF-DECOMP, which solves
a DD-MAPD instance with N agents and M shelves by de-
composing it into an M -agent MAPF instance, followed by a
subsequent N -agent MAPD instance with task dependencies—
an extension to MAPD that has received limited attention
thus far. MAPF-DECOMP first solves the MAPF instance to
plan collision-free trajectories for the shelves. It then converts
the computed shelf trajectories into tasks and solves the N -
agent MAPD instance to assign tasks and plan paths for the
agents to complete all the tasks. This decomposition has a
two-fold advantage. Firstly, it enables better scalability by
reducing the state space and number of agents in the planning

problem of N×M agent-shelf pairs. Secondly, it leverages the
advancements of off-the-shelf MAPF solvers to speed up DD-
MAPD solving. We also propose an optimization technique to
improve the effectiveness of MAPF-DECOMP and a variant
of it that solves all well-formed DD-MAPD instances, a
realistic subclass of DD-MAPD instances. Our experimental
results show that MAPF-DECOMP can compute high-quality
solutions for up to 1,843 shelves and 400 agents in minutes.

II. PROBLEM DEFINITION

A DD-MAPD instance consists of N agents a1, . . . , aN ,
M shelves s1, . . . , sM , and a connected undirected graph
G = (V,E), whose vertices V represent locations and edges
E represent the connections between these locations that the
agents can move along. We consider only interesting DD-
MAPD instances where M ≥ N since, otherwise, one can
use N = M agents to each carry a unique shelf.

Let πi(t) denote the location of agent ai at timestep t.
Each agent ai starts at its start location at timestep 0 and
moves to an adjacent location or waits in its current location
at each timestep. Each shelf sj starts in its pickup location
pj at timestep 0 and is given a delivery location dj . If a
shelf sj does not need to be relocated, then pj = dj . An
agent can move beneath a shelf when not carrying any shelf,
and it can lift a shelf when it is in the same location as the
shelf, carry the shelf from then on, and place (put down) the
shelf when it arrives in another location. Agents are active
when they are carrying shelves, and free when they are not.
We assume that the time required to perform a lift or place
action is 0, but our framework can easily be generalized
to accommodate lift and place actions with non-zero time
costs. Let ηj(t) denote the location of shelf sj at timestep
t. Shelves can only move when carried by agents. There
should be no collisions either between agents (on the virtual
low-level deck) or between shelves (on the virtual high-level
deck). A vertex collision between agents ai and ai′ occurs iff
πi(t) = πi′(t); an edge collision occurs iff πi(t) = πi′(t+ 1)
and πi(t + 1) = πi′(t). Similarly, a vertex collision between
shelves sj and sj′ occurs iff ηj(t) = ηj′(t); an edge collision
occurs iff ηj(t) = ηj′(t+ 1) and ηj(t+ 1) = ηj′(t).

The problem of DD-MAPD aims to compute collision-
free paths for the agents to transport all shelves from their
pickup locations to their delivery locations. The completion
time of agent ai is the earliest timestep when the agent has
arrived in the last location of its path and stopped moving.
We use two metrics to measure the effectiveness of a DD-
MAPD algorithm: the makespan, defined as the maximum of
the completion times of all agents, and the flowtime, defined
as the sum of the completion times of all agents.

We use the DD-MAPD instance shown in Figure 2 as our
running example. Figure 2 (Top) demonstrates a solution with
makespan 7 and flowtime 14 (= 7 + 7).

III. COMPLEXITY AND SOLVABILITY

We now generalize existing complexity results for MAPD to
DD-MAPD and identify sufficient conditions that make DD-
MAPD instances solvable.

LI et al.: DOUBLE-DECK MULTI-AGENT PICKUP AND DELIVERY: MULTI-ROBOT REARRANGEMENT IN LARGE-SCALE WAREHOUSES 3

Fig. 2: Example DD-MAPD instance with two agents and four
shelves on a 2D 4-neighbor grid. Shelves s2 and s3 need to
be relocated to the orange and green cells, respectively. Other
shelves do not need to be relocated. Top: Locations of agents
and shelves at each timestep. Bottom: Shelf trajectories and
the resulting dependency graph.

A. Complexity

We first show a constant-factor inapproximability result for
DD-MAPD with respect to makespan minimization by reusing
the reduction [27] from the NP-complete ≤3,=3-SAT problem
[28] to MAPD, similar to that for MAPF [29].
Theorem 1. For any ϵ > 0, it is NP-hard to find a (4/3− ϵ)-
approximate solution to DD-MAPD for makespan minimiza-
tion.
Proof Sketch. We use the same reduction as that used in
the proof of Theorem 4.5 in [27] to construct a DD-MAPD
instance with M = N = 2N + M shelves and agents for a
given ≤3,=3-SAT instance with N variables and M clauses.
The arguments for MAPD still hold for DD-MAPD since each
constructed agent carries only its corresponding constructed
shelf. The constructed DD-MAPD instance has a solution with
makespan three iff the ≤3,=3-SAT instance is satisfiable, and
always has a solution with makespan four, even if the ≤3,=3-
SAT instance is unsatisfiable.

The constructed DD-MAPD instance in the above proof
has the property that the completion time of each agent is
at least three. Therefore, if the makespan is three, then every
agent completes in exactly three timesteps, and the flowtime
is 3N (= 3(2N + M)). Moreover, if the makespan exceeds
three, then the flowtime exceeds 3M , yielding the following
corollary:
Corollary 2. It is NP-hard to find an optimal solution to DD-
MAPD for flowtime minimization.

B. Baseline Complete Algorithm for Well-Formed Instances

We characterize a subclass of solvable DD-MAPD in-
stances, called well-formed DD-MAPD instance, that gen-
eralize well-formed MAPD instances [3], even though we
often need to solve non-well-formed DD-MAPD instances in
practice. We first define that a MAPF solution for shelves (by
treating shelves as agents that can move by themselves) is
1-robust [30] iff, at any time step, a shelf is not allowed to
(move to and) occupy a location at the next time step if the

location is currently occupied. We note that the requirement
for the existence of a 1-robust MAPF solution is not overly
restrictive in practice since a sufficient condition for it is that
at least two vertices of the MAPF graph are unoccupied [31].
Definition 1 (Well-formedness and safe 1-robustness). A DD-
MAPD instance is well-formed iff all agents start at different
locations, graph G remains connected if the start locations of
any N−1 agents are removed, and there exists a safe 1-robust
MAPF solution for shelves, defined as one that does not use
the start location of any agent.

We then sketch a baseline algorithm that is complete for all
well-formed DD-MAPD instances as follows: It first generates
trajectories for all shelves by computing a safe 1-robust MAPF
solution for them; It then uses any single agent to execute
all shelf trajectories in locked steps, namely proceeding to
the next step only after executing one step of the MAPF
solution for all shelves, while letting all other agents wait at
their start locations. It is a straightforward observation that
all well-formed DD-MAPD instances are solvable, and this
baseline algorithm solves all of them. Our framework, MAPF-
DECOMP, is similar to this baseline algorithm in that it first
computes the shelf trajectories, but it differs in that it utilizes
multiple agents to execute them.

IV. MAPF-DECOMP

Algorithm 1 shows the pseudocode of MAPF-DECOMP.
The algorithm starts by calling a MAPF solver to compute
collision-free trajectories τ for all shelves from their pickup
locations to delivery locations [Line 1]. These trajectories
represent the intended path for each shelf, but the actual path
of each shelf is executed by the agents. To distinguish the
trajectories from the actual paths of the shelves or agents, we
refer to τ as trajectories.1 Next, MAPF-DECOMP converts
the trajectories into a dependency graph that implicitly par-
titions each trajectory into segments [Line 2]. Each segment
represents a portion of the trajectory that can be executed by an
agent by carrying the shelf and following the segment. Finally,
MAPF-DECOMP solves a specialized MAPD instance with
task dependencies by assigning shelves (segments) to agents
and planning paths for them to complete all executable seg-
ments at each timestep where an agent changes from active to
free or vice versa, while respecting the dependencies between
segments [Lines 3-11]. Unlike existing MAPD algorithms,
MAPF-DECOMP does not plan paths for active agents but lets
them follow the planned trajectories of the shelves they carry.
The paths of active agents are thus the unexecuted portion of
the trajectories.

To solve the specialized MAPD instance resulting from the
dependency graph, MAPF-DECOMP maintains the current
state of each agent ai in the variable Statesi that consists
of two attributes: Statesi.type is either free or active and
initially set to free; Statesi.shelf is the shelf assigned to
agent ai and initially set to null [Line 4]. In addition, each

1This paper adopts a non-standard use of the terms “paths” and “trajec-
tories” by reversing their conventional definitions. The purpose of this is
to maintain consistency with the usage of “paths” in the MAPF literature,
whereas in robotics, a “trajectory” typically refers to the path/executed
followed by an agent as a function of time.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

Algorithm 1: MAPF-DECOMP
1 τ ← trajectories of shelves by MAPF;
2 G = (V, E)← BuildDep();
3 foreach agent ai do
4 Statesi .type ← free , Statesi .shelf ← null ;
5 foreach shelf sj do
6 Stepsj ← 0 ;
7 while there are uncompleted shelves do
8 Update(States,G);
9 if States has changed then

10 FreePaths ← AssignAndPlan(States);
11 System proceeds to the next timestep;
12 Move(States, τ,FreePaths);

shelf sj is assigned a step sj .step = k, which represents
its current location τj(k) according to its trajectory τj . The
step sj .step is initially set to 0, corresponding to the pickup
location τj(0) = pj [Line 6]. We recall that a shelf is
completed if it has arrived at its delivery location and remains
there. At each timestep where there are uncompleted shelves,
MAPF-DECOMP updates the states of all agents based on the
dependency graph and the steps of all shelves [Line 8]. If any
agent changes its state, MAPF-DECOMP (re)assigns shelves
or safe locations to free agents and calls a MAPF solver to
compute collision-free paths for them to reach their assigned
destinations [Line 10]. The algorithm then proceeds to the next
timestep and moves all agents and the shelves they carry to
their next locations [Lines 11-12].

A. Building Dependency Graph

Given the trajectories τ as the result of calling a MAPF
solver, MAPF-DECOMP calls Function BuildDep() to con-
struct a dependency graph. The trajectories τ define a total
order on their entries τj(k), which the dependency graph
relaxes to a partial order. The resulting dependency graph
G = (V, E) is a directed graph whose vertices V are the
trajectories entries τj(k). For all j, j′, k, k′ with j ̸= j′, k > k′,
and location τj(k) = τj′(k

′), an edge ⟨τj(k), τj′(k′ + 1)⟩
exists, which represents that shelf sj should be in step k,
namely the location specified by τj(k) (that follows τj(k),
which specifies the same location as τj′(k

′)), no earlier than
shelf sj′ is in step k′ + 1, namely the location specified
τj′(k

′ + 1). That is, whether an agent is allowed to execute
the segment starting from step k or not depends on whether
shelf sj′ has been in step k′ + 1. By construction, cycles can
only exist for entries τj(k) with the same step k. The above
construction of the dependency graph is similar to the one
used in the previous work [25], [26] and guarantees that the
execution of the collision-free trajectories of the shelves is
also collision-free. It differs from the one used in the previous
work in not constructing edges between entries of the same
trajectory. Figure 2 (bottom) shows the dependency graph for
our running example.

B. Updating Agent States

At each timestep, MAPF-DECOMP calls Function Update()
to update the states of agents. Update() serves three purposes:
(1) It checks whether a free agent located at its assigned shelf’s
location can execute the shelf’s trajectory. (2) It verifies if

Algorithm 2: Update(States,G)
1 Asc ← ∅;
2 foreach agent ai do
3 sj ← Statesi .shelf ;
4 numDeps ← |outgoing edges of τj(sj .step + 1) in G| ;
5 isSoftDep ← numDeps = 1 ? SoftDep(Statesi .shelf ,G) : false;
6 if Statesi .type = free and agent ai at the same location as

Statesi .shelf then
7 if isSoftDep then
8 Asc ← Asc ∪ ai ;
9 else if numDeps ≥ 1 then

10 Statesi .shelf ← null ;
11 else
12 Statesi .type ← active;

13 else if Statesi .type = active then
14 if Statesi .shelf is completed then
15 Statesi .shelf ← null ;
16 Statesi .type ← free;
17 else if isSoftDep then
18 Asc ← Asc ∪ ai ;
19 else if numDeps ≥ 1 then
20 Statesi .shelf ← null ;
21 Statesi .type ← free;

22 AnoMove ← FindNoMove(Asc);
23 foreach agent ai ∈ Asc do
24 if ai ∈ AnoMove then
25 Statesi .shelf ← null ;
26 Statesi .type ← free;
27 else
28 Statesi .type ← active;

an active agent can continue executing the trajectory of its
assigned shelf or if the shelf’s trajectory is completed. (3)
If the shelf trajectories are not 1-robust, the function checks
whether the next trajectory entries of the assigned shelves of
multiple agents form a cycle or path and whether the shelves
can be executed simultaneously.

We define a (simple) path on G as a sequence of vertices
that has an outgoing edge from each vertex in the sequence
to its successor in the sequence, with no repeated vertices and
edges. We define a (simple) cycle on G as a (simple) path
except that the first and last vertices are the same.

Algorithm 2 shows the pseudocode of Update(). Asc is
the set of possible agents whose assigned shelves have de-
pendencies that might be released simultaneously in the next
step. Asc is set to empty initially [Line 1]. For each agent
ai, numDeps stores the number of dependencies of the next
step of its assigned shelf sj [Line 4]. If numDeps = 1, let
the only dependency be ⟨τj(sj .step + 1), τj′(k

′ + 1)⟩ (with
τj (sj .step + 1) = τj ′(k

′) and step + 1 > k′). In this case,
Function SoftDep() returns true iff Stepsj ′ = k ′ (namely,
shelf sj′ is in step k′ that specifies the same location as the
next step of shelf sj) and stores the result in the Boolean
variable isSoftDep. In this case, we say that shelf sj is softly
constrained, or has a soft dependency, because both shelves
sj and sj′ can move one step forward simultaneously, which
includes cases where τj(sj .step + 1) and τj′(k

′ + 1) are in
a cycle or path. For each free agent ai that is in the same
location as its assigned shelf [Line 6], if the shelf has a
soft dependency, then agent ai is added to Asc [Lines 7-8].
Otherwise, if the shelf has dependencies (that are thus hard),
then it is unassigned from agent ai [Lines 9-10]. Otherwise,
the shelf has no dependency, and agent ai changes from

LI et al.: DOUBLE-DECK MULTI-AGENT PICKUP AND DELIVERY: MULTI-ROBOT REARRANGEMENT IN LARGE-SCALE WAREHOUSES 5

free to active and starts executing the trajectory of the shelf
[Lines 11-12]. All other free agents do not change their states
(remain free). For each active agent ai, if its assigned shelf is
completed, then the shelf is unassigned from it, and it changes
from active to free [Lines 13-16]. Otherwise, if the shelf has a
soft dependency, then agent ai is added to Asc [Lines 17-18].
Otherwise, if the shelf has dependencies (that are thus hard),
then it is unassigned from agent ai, and the agent changes
from active to free [Lines 19-21]. All other active agents do
not change their states and continue executing the trajectories
of the shelves they carry.

Function Update() then calls the procedure FindNoMove()
to identify the set AnoMove of any agents in Asc that cannot
move to the locations specified by the next step of the
trajectories of their assigned shelves. We recall that each such
shelf sj is softly constrained, namely, its next trajectory entry
depends on the next trajectory entry of another shelf sj′ (not
necessarily assigned to an agent in Asc) and it can thus move
one step only no earlier than shelf sj′ has moved one step.
FindNoMove() considers the subgraph Gsc of G induced by
the next trajectory entries of shelves assigned to all agents in
Asc . Each such trajectory entry is in either a cycle or a path on
Gsc since it has one outgoing edge in Gsc except for the case
that it is the last vertex on some path and its (only) outgoing
edge in G points to a trajectory entry of some shelf sj′ that
is not assigned to any agent in Asc (the edge thus does not
belong to Gsc). In this case, if shelf sj′ is assigned to either
a free agent (not in Asc) or no agent at all, then the outgoing
edge (dependency) is not released since shelf sj′ is not carried
by any agent, The shelves with their next trajectory entries on
this path cannot move, and the agents that they are assigned
to are thus added to AnoMove .

C. Shelf Assignment and Path Planning

MAPF-DECOMP calls Function AssignAndPlan() if Up-
date() changes an agent’s type from free to active or from
active to free and unassigns its assigned shelf. AssignAnd-
Plan() then assigns executable shelves, namely ones that are
not constrained at their current steps, to free agents and plan
their paths, unless the shelves are already carried by active
agents. The function operates in multiple rounds, with the
aim of making more shelves executable in each subsequent
round, as constraints are lifted by the paths planned in the
previous round. To do so, AssignAndPlan() procedure follows
these steps in each round: (1) It constructs a candidate set
of unassigned and executable shelves. (2) If no such shelves
exist, the function simulates Function Move() that lets all
agents (including the free agents that got assigned shelves
in the previous rounds and all active agents) follow their
paths. During simulation, each shelf moves together with
its assigned active agent until it reaches a hard dependency
in its next trajectory entry. AssignAndPlan() then identifies
any newly executable unassigned shelves and adds them to
the candidate set. (3) If no such shelves become executable
from the simulation, the function identifies all unassigned
shelves whose next trajectory entries form a cycle in G and
adds them to the candidate set since they can be executed

Algorithm 3: Move(States, τ,FreePaths)

1 foreach agent ai do
2 if Statesi .type = active then
3 sj ← Statesi .shelf ;
4 Update the location of ai and sj according to τj ;
5 sj .step ← sj .step + 1 ;
6 Remove incoming edges of τj (sj .step) from G;
7 else
8 Update the location of ai according to FreePathsi ;

simultaneously. Once the candidate set consists of one or more
shelves, AssignAndPlan() calls the Hungarian algorithm [32]
to find a minimal-cost assignment of shelves to free agents and
plans their paths. The cost of assigning a shelf to an agent
is calculated as the maximum of the shortest-path distance
between the agent and the shelf and the timestep when the
shelf first becomes executable. AssignAndPlan() then calls a
MAPF solver to compute paths for these agents from their
current locations to the current locations of their assigned
shelves, avoiding collision with paths of active agents and any
paths of free agents already planned in the previous rounds.
When all executable shelves have been assigned, for each free
agent that remains unassigned, the function assigns it a unique
location closest to it and not on any active agent’s path. The
function then calls a MAPF solver to compute paths for these
unassigned agents, avoiding collisions with the paths of all
other agents.

D. Moving Agents and Shelves

When the system proceeds to the next timestep, MAPF-
DECOMP calls Function Move() to move agents and shelves
one step forward. Algorithm 3 shows the pseudocode of
Move(). Each active agent ai and the shelf it carries move
one step according to the trajectory τj of the shelf [Lines
4-5], which, as a result, releases the dependencies of the
corresponding entry of τj (by removing all incoming edges
of the entry from G) [Line 6]. Each free agent moves one step
according to FreePathsi [Line 8].

E. Running Example

Figure 2 (Top) shows the execution of the shelf trajectories
for our running example. For ease of presentation, we point
out only the most insightful details. At timestep 0, a1 and a2
are assigned s3 and s1 since s2 is not executable in Round 1.
At timestep 1, a1 changes from free to active. At timestep
2, a1 completes s3 and becomes free. In Round 1, only
s1 is executable and is assigned to a2. In Round 2, s2 is
assigned to a1. At timesteps 4 and 5, Update() sets a2 to free
even though it is in the same location as its assigned shelf
s1 since ⟨τ1(2), τ2(2)⟩ is a hard constraint. At timestep 6,
Update() adds only a2 to Asc and changes it to active since
⟨τ1(2), τ2(2)⟩ is a soft constraint.

F. Optimization: Involving Future (IVF)

We now present an optimization technique called Involving
Future (IVF) that aims to enhance the effectiveness of the shelf
assignment procedure in MAPF-DECOMP. IVF improves

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

AssignAndPlan() by considering not only the currently free
agents but also those that will become free in K timesteps
for shelf assignment. This allows for a larger pool of agents
to be considered for shelf assignment, potentially resulting in
a better overall assignment. To achieve this, IVF simulates
both Update() and Move() for K iterations and includes
active agents that change to free during the simulation in
the shelf assignment and path planning process. The number
of timesteps elapsed when each such agent becomes free is
recorded and added to the shortest-path distance between the
agent and any shelf when calculating the cost of assigning the
shelf to the agent.

V. PRIORITIZED PLANNING (PP) FOR COMPLETENESS

MAPF-DECOMP is not guaranteed to solve all well-formed
DD-MAPD instances due to two reasons: (1) If the shelf trajec-
tories are not 1-robust, multiple shelves with soft dependencies
may form a cycle (as detailed in Section IV-C), which cannot
be resolved if the total number of agents is smaller than the
number of shelves in the cycle. (2) Function AssignAndPlan()
plans paths for free agents to locations different from the start
locations of agents, which does not guarantee collision-free
paths from those locations exist.

Thus, we propose a variant of MAPF-DECOMP, MAPF-
DECOMP(PP), that is complete for all well-formed DD-
MAPD instances. This variant differs from the original in
the following ways: (1) It uses a MAPF solver to compute
safe 1-robust shelf trajectories. (2) In each assignment round,
AssignAndPlan() assigns only one shelf from the candidate set
to an agent by selecting the pair with the smallest assignment
cost, and then uses a multi-label A* search [33] to compute a
time-minimal path for the agent, avoiding any collisions with
the paths of other agents. The path first moves the agent from
its current location to the current location of the shelf, then
follows the trajectory of the shelf without waiting until the
shelf is constrained, and finally moves the agent to its start
location. Any free agent that remains unassigned when all
executable shelves have been assigned keeps its current path
that ends in its start location. Therefore, each agent maintains
the invariant that its path always ends in its start location,
inspired by the “reserving dummy paths” deadlock-avoidance
technique for MAPD [17].
Theorem 3. MAPF-DECOMP(PP) solves all well-formed
DD-MAPD instances.
Proof. Since the dependency graph for 1-robust trajectories
is acyclic, Function AssignAndPlan() adds at least one unas-
signed shelf that is or (in simulation) will become executable
to the candidate set and assigns it to a free agent. The
multi-label A* search guarantees to find a collision-free path
for the agent to execute the shelf trajectory segment since
such a path always exists. For example, the agent can first
follow its old path and wait at its start location until all
other agents have completed their paths and stay at their
start locations indefinitely. Without passing through the start
locations of other agents, the agent can then move to the
current location of its assigned shelf, follow the trajectory of
the shelf without waiting or causing shelf collisions until the

Fig. 3: Agent time (left) and makespan (right) ratios of IVF
against NIVF for different K. Legends show grid sizes.

shelf is constrained, and finally return to its start location.
Thus, all shelf trajectories will eventually be executed since
at least one additional trajectory segment is assigned and
executed each time AssignAndPlan() is called.

VI. EXPERIMENTS

We conduct our experiments on a 3.1GHz Intel Core i5 lap-
top with 16GB RAM. We implement three variants of MAPF-
DECOMP: MAPF-DECOMP without the IVF optimization,
MAPF-DECOMP with IVF, and MAPF-DECOMP(PP) (la-
beled NIVF, IVF, and PP, respectively). They all use EECBS
[15] to compute both trajectories for shelves and paths for
agents and are implemented in C++. We adapt EECBS to
compute safe 1-robust shelf trajectories for PP. We label IVF
executions that use 1-robust shelf trajectories returned by
EECBS as IVF-R. The suboptimality factor ω of EECBS
ranges from 1.2 to 1.8 for different settings to balance the
effectiveness and efficiency. We also implement two baseline
algorithms: one that uses a single agent to execute the 1-robust
shelf trajectories returned by EECBS in locked timesteps
(labeled BASE), and another that used a single agent to execute
1-robust shelf trajectories returned by Push and Swap [31]
(labeled PAS). Unlike the trajectories returned by EECBS,
the sequential 1-robust shelf trajectories returned by Push and
Swap often have segments longer than one step, and PAS
interprets the trajectories as a total order on the segments.

A. MAPF-DECOMP with IVF

We construct DD-MAPD instances on n × n square 2D
4-neighbor grids of different sizes (labeled size n) by
randomly sampling blocks of 2 × 2 cells as pickup locations
of shelves until the pickup locations reach a certain density
(percentage of all cells, labeled den). We sample 0.1 · n2

shelves from all the shelves as the only ones that need
relocation and sample their delivery locations from non-pickup
cells. We randomly sample the start locations of the agents.
We evaluate 50 random instances per setting and report the
mean over all solved instances.
Optimization and numbers of future timesteps. Figure 3
shows the results for IVF when different values of K (numbers
of future timesteps) are used, where K = inf means that
all active agents are included in the shelf assignment. The
makespan tends to be smaller for larger K. K = inf does
not necessarily result in the smallest makespan, where the last
call of EECBS returns paths for a few agents that are much
longer than for other paths since EECBS optimizes only the

LI et al.: DOUBLE-DECK MULTI-AGENT PICKUP AND DELIVERY: MULTI-ROBOT REARRANGEMENT IN LARGE-SCALE WAREHOUSES 7

Fig. 4: Results for IVF (den=20%). Left: Flowtime ratios against trajectory flowtimes for 4 agents and different sizes. Middle:
Effectiveness for different numbers of agents and size 24. Right: Time breakdown for different sizes and 8 agents.

size den M N makespan flowtime
total
time
(s)

agent
time
(ms)

ω succ

8

40%

25 4 31.10 109.32 1.81 2.82 1.2 100%

10 40 4 55.02 204.10 3.41 5.83 1.48 31.83 209.26 3.39 8.97
12 57 4 89.18 339.53 0.30 11.81 1.68 50.27 347.39 0.31 17.52
16 102 8 105.68 772.60 0.92 55.83 1.8

16
20%

51 4 140.98 534.94 0.10 22.51 1.2 100%

8 74.34 530.60 0.11 34.82
24 115 4 452.69 1,775.31 0.38 134.82 1.28 236.65 1,786.88 0.46 209.49
32 204 4 1,072.18 4,247.16 0.67 487.65 1.48 546.39 4,249.12 0.92 737.61
40 320 8 1,072.35 8,444.20 2.62 2,119.00 1.6

large-size instances, agent time reported in seconds (s)

48

20%

460 8 1,850.22 14,629.29 6.24 5.04 1.6 98%
32 487.78 14,578.45 13.09 11.83 98%

64 819
8 4,451.22 35,425.22 32.02 25.68

1.8
98%

32 1,148.41 35,476.73 106.00 99.26 98%
100 397.68 33,648.55 88.95 82.57 94%
400 153.31 26,969.08 182.46 176.72 96%

96 1,843 32 3,909.00 123,383.24 302.92 270.27 1.8 92%
100 1,264.05 118,965.28 1,060.16 1,019.93 80%
reasons for failed large-size instances

size den M N instances (a) timeout (b) small N (c) incomplete

48

20%

460 8 1/50 0 1 0
32 1/50 0 1 0

64 819
8 1/50 0 1 0
32 1/50 0 1 0

100 3/50 0 3 0
400 2/50 0 0 2

96 1,843 32 4/50 1 3 0
100 10/50 8 2 0

sum 23/400 9 8 2

TABLE I: Results for IVF in different settings.

flowtime. As K grows, the runtime excluding shelf trajectory
computation (labeled agent time) (1) first drops since the
makespan also drops and fewer calls to EECBS are made
and (2) can then go up since each call to EECBS involves
more agents. We use K = 8 for IVF in all the following
experiments to balance the runtime and the effectiveness. IVF
(with K > 0) is always more effective than NIVF due to better
shelf assignments as a result of involving more agents.
Grid sizes, agent numbers, and shelf densities. Table I
(Top) shows that IVF solves all instances in seconds for
small numbers of agents and that doubling the number of
agents sometimes increases the flowtime, which sums up
the completion times of all agents, but always reduces the
makespan significantly. The agent times are large for large
makespans due to the large numbers of calls of EECBS by
AssignAndPlan(). Table I (Middle) shows that IVF achieves
high success rates (labeled succ) for hundreds of agents
and more than one thousand shelves. The total runtimes
remain in a few minutes even though the task-assignment
and path-planning functions must be executed many times
for makespans of thousands of timesteps. Table I (Bottom)
categorizes the reasons for failed instances: (a) A timeout (1

min) for EECBS to compute shelf trajectories (typically for
very large M); (b) Not enough agents to simultaneously move
all shelves in a soft dependency cycle (typically for large M
and small N), which can be addressed by computing a 1-
robust MAPF solution for shelves or using more agents by
setting N to be the number of shelves in the largest cycle;
(c) The incompleteness of path planning for free agents in
AssignAndPlan() (typically for very large N), which can be
addressed by using deadlock-avoidance techniques if the given
DD-MAPD instance is well-formed.
Effectiveness. Figure 4 (Left) shows that the flowtime of the
shelf trajectories (the sum of all trajectory lengths), which is
a (trivial) lower bound on the flowtime and for which MAPF-
DECOMP does not optimize, consistently contributes to a
large portion (≥60%) of the flowtime across different instance
sizes, which indicates that the decomposition and the execution
of the trajectories of our framework are both effective. Figure
4 (Middle) shows that to execute the same trajectory, as the
number of agents increases, the flow time drops for large
numbers of agents and the makespan drops in all cases. This
is so because shelves are often assigned to close-by agents
when there are many agents.
Runtime breakdown. Figure 4 (Right) confirms that the
runtime used to compute the trajectories of shelves (labeled
shelf time) contributes to a large portion of the total
runtime. It also suggests that an improvement in the efficiency
of the MAPF solver would directly result in an improvement
in the efficiency of our framework since most of the runtime
is used by the MAPF solver.

B. Comparison of Algorithms on Well-Formed Instances

We follow a similar procedure to construct random DD-
MAPD instances, except that we do not place shelves along
the perimeter of the grids but sample start locations of agents
from cells on the perimeter, excluding the corners, to guar-
antee well-formedness. Table II shows that IVF-R with one
agent is more effective than the two baselines and that using
more agents results in further improvement. For example, the
makespan for 100 agents is only 1.1% of that for a single
agent for instances of size 96. IVF-R and IVF tend to be
more effective but are less efficient than PP since PP assigns
tasks and plans paths for agents one at a time. PP solves all
well-formed instances as expected. IVF-R has higher success
rates than IVF since it does not fail for Reason (b) observed
in the previous experiments but still fails for three instances
in total due to the incompleteness of AssignAndPlan(). All

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

size M N algo. makespan flowtime
total
time
(s)

agent
time
(s)

ω succ

48 460

1
BASE 190,243.52 - 1.20 -

1.6

100%
PAS 14,707.44 - 2.31 - 100%

IVF-R 13,439.26 - 2.55 1.35 100%

8
PP 1,757.33 13,910.77 2.11 0.93 100%

IVF-R 1,750.96 13,862.56 6.35 5.20 100%
IVF 1,745.44 13,812.10 6.86 5.80 96%

32
PP 463.71 13,836.77 2.94 1.58 100%

IVF-R 460.75 13,705.56 10.68 9.48 100%
IVF 461.35 13,740.19 10.05 9.13 96%

64 819

1
BASE 605,647.28 - 4.34 -

1.8

100%
PAS 34,642.68 - 9.17 - 100%

IVF-R 32,560.80 - 9.06 4.72 100%

8
PP 4,258.04 33,877.76 7.66 3.18 100%

IVF-R 4,254.92 33,839.10 25.64 21.01 100%
IVF 4,256.45 33,865.43 24.43 20.98 98%

32
PP 1,105.00 34,090.16 10.69 5.38 100%

IVF-R 1,099.69 33,943.73 41.29 36.64 100%
IVF 1,096.71 33,835.06 40.50 37.01 98%

100
PP 384.81 32,695.28 17.78 11.00 100%

IVF-R 381.58 32,419.40 63.19 58.75 98%
IVF 384.00 32,530.45 66.11 62.59 98%

96 1,843

1
BASE 3,027,935.92 - 37.13 -

1.8

100%
PAS 112,282.98 - 71.02 - 100%

IVF-R 111,258.48 - 72.10 34.97 100%

32
PP 3,817.24 120,368.60 79.49 33.06 100%

IVF-R 3,817.67 120,410.38 301.82 264.46 98%
IVF 3,807.28 120,134.72 294.06 271.03 92%

100
PP 1,235.37 115,719.63 123.86 64.49 100%

IVF-R 1,228.53 115,274.80 623.54 585.69 98%
IVF 1,229.35 115,037.24 708.07 684.56 92%

TABLE II: Results on large-size well-formed instances.

algorithms do not time out with a one-minute runtime limit
for each call to the MAPF solver. Overall, PP appears to be the
the optimal choice of algorithm in practice if well-formedness
is guaranteed since it strikes a good balance between efficiency
and effectiveness.

C. Warehouse Rearrangement Demo

We construct 50 well-formed instances on 2D 4-neighbor
grids of size 27×27, with 32 agents starting along the perime-
ter, based on the layout of a fulfillment center comprising 8×4
blocks of 5 × 2 shelves. The delivery locations of these 320
shelves are arranged in a diagonally symmetrical configuration
and randomly shuffled. IVF-R successfully solves all instances
with an average total time of 30.68s and an average agent
time of 4.85s using EECBS with ω = 1.8. A demo video
showcasing the execution on one of the instances is available
at: https://youtu.be/WFPl3wKDXXY.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithmic framework for solving
DD-MAPD to make MAPF and MAPD applicable to multi-
robot shelf rearrangement problems in large-scale warehouses.
In this paper, we focus on the efficiency of our framework
without sacrificing much of its effectiveness.

We propose two future extensions to our framework: (1)
We intend to improve its effectiveness by making its MAPF
solving for shelf trajectories aware of the subsequent decom-
position and planning. (2) We propose to plan paths for active
agents instead of letting them follow shelf trajectories.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Magazine, vol. 29,
no. 1, pp. 9–20, 2008.

[2] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak,
“Multi-agent pathfinding: Definitions, variants, and benchmarks,” in
SoCS, 2019, pp. 151–159.

[3] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in AAMAS, 2017, pp.
837–845.

[4] J. Yu and S. LaValle, “Structure and intractability of optimal multi-robot
path planning on graphs,” in AAAI, 2013, pp. 1444–1449.

[5] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in AAAI, 2010, pp. 1261–1263.

[6] J. Yu, “Intractability of optimal multi-robot path planning on planar
graphs,” IEEE RA-L, vol. 1, no. 1, pp. 33–40, 2016.

[7] J. Banfi, N. Basilico, and F. Amigoni, “Intractability of time-optimal
multirobot path planning on 2d grid graphs with holes,” IEEE RA-L,
vol. 2, no. 4, pp. 1941–1947, 2017.

[8] E. Lam, P. Le Bodic, D. Harabor, and P. Stuckey, “Branch-and-cut-and-
price for multi-agent pathfinding,” in IJCAI, 2019, pp. 1289–1296.

[9] P. Surynek, “Unifying search-based and compilation-based approaches
to multi-agent path finding through satisfiability modulo theories,” in
IJCAI, 2019, pp. 1177–1183.

[10] G. Gange, D. Harabor, and P. Stuckey, “Lazy cbs: Implicit conflict-based
search using lazy clause generation,” in ICAPS, 2019, pp. 155–162.

[11] R. N. Gómez, C. Hernández, and J. A. Baier, “Solving sum-of-costs
multi-agent pathfinding with answer-set programming,” in AAAI, 2020,
pp. 9867–9874.

[12] K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority inheri-
tance with backtracking for iterative multi-agent path finding,” in IJCAI,
2019, pp. 535–542.

[13] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-based search
for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp.
40–66, 2015.

[14] G. Wagner and H. Choset, “Subdimensional expansion for multi-robot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[15] J. Li, W. Ruml, and S. Koenig, “EECBS: Bounded-suboptimal search
for multi-agent path finding,” in AAAI, 2021, pp. 12 353–12 362.

[16] J. Li, D. Harabor, P. Stuckey, H. Ma, G. Gange, and S. Koenig,
“Pairwise symmetry reasoning for multi-agent path finding search,”
Artifical Intelligence, vol. 301, p. 103574, 2021.

[17] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in AAMAS, 2019, pp. 2253–2255.

[18] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “General-
ized target assignment and path finding using answer set programming,”
in IJCAI, 2017, pp. 1216–1223.

[19] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochenderfer,
“Optimal sequential task assignment and path finding for multi-agent
robotic assembly planning,” in ICRA, 2020, pp. 441–447.

[20] P. Surynek, “Multi-goal multi-agent path finding via decoupled and
integrated goal vertex ordering,” in AAAI, 2021, pp. 12 409–12 417.

[21] H. Zhang, J. Chen, J. Li, B. Williams, and S. Koenig, “Multi-agent path
finding for precedence-constrained goal sequences,” in AAMAS, 2022,
pp. 1464–1472.

[22] Z. Ren, S. Rathinam, and H. Choset, “Conflict-based steiner search for
multi-agent combinatorial path finding,” in RSS, 2022.

[23] M. Bellusci, N. Basilico, and F. Amigoni, “Multi-agent path finding in
configurable environments,” in AAMAS, 2020, pp. 159–167.

[24] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian,
“Persistent and robust execution of mapf schedules in warehouses,” IEEE
RA-L, vol. 4, no. 2, pp. 1125–1131, 2019.

[25] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian,
and S. Koenig, “Multi-agent path finding with kinematic constraints,” in
ICAPS, 2016, pp. 477–485.

[26] H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-agent path finding with
delay probabilities,” in AAAI, 2017, pp. 3605–3612.

[27] H. Ma, “Target assignment and path planning for navigation tasks with
teams of agents,” Ph.D. dissertation, USC, 2020.

[28] C. Tovey, “A simplified NP-complete satisfiability problem,” Discrete
Applied Mathematics, vol. 8, pp. 85–90, 1984.

[29] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” in AAAI, 2016, pp. 3166–3173.

[30] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou,
“Robust multi-agent path finding and executing,” Journal of Artificial
Intelligence Research, vol. 67, pp. 549–579, 2020.

[31] R. Luna and K. E. Bekris, “Push and Swap: Fast cooperative path-finding
with completeness guarantees,” in IJCAI, 2011, pp. 294–300.

[32] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, pp. 83–97, 1955.

[33] F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, “A multi-label A*
algorithm for multi-agent pathfinding,” in ICAPS, 2019, pp. 181–185.

https://youtu.be/WFPl3wKDXXY

	Introduction
	Related Work
	Contributions

	Problem Definition
	Complexity and Solvability
	Complexity
	Baseline Complete Algorithm for Well-Formed Instances

	MAPF-DECOMP
	Building Dependency Graph
	Updating Agent States
	Shelf Assignment and Path Planning
	Moving Agents and Shelves
	Running Example
	Optimization: Involving Future (IVF)

	Prioritized Planning (PP) for Completeness
	Experiments
	MAPF-DECOMP with IVF
	Comparison of Algorithms on Well-Formed Instances
	Warehouse Rearrangement Demo

	Conclusions and Future Work
	References

