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SACHA: Soft Actor-Critic with Heuristic-Based
Attention for Partially Observable Multi-Agent
Path Finding

Qiushi Lin and Hang Ma

Abstract—Multi-Agent Path Finding (MAPF) is a crucial
component for many large-scale robotic systems, where agents
must plan their collision-free paths to their given goal positions.
Recently, multi-agent reinforcement learning has been introduced
to solve the partially observable variant of MAPF by learning a
decentralized single-agent policy in a centralized fashion based
on each agent’s partial observation. However, existing learning-
based methods are ineffective in achieving complex multi-agent
cooperation, especially in congested environments, due to the
non-stationarity of this setting. To tackle this challenge, we
propose a multi-agent actor-critic method called Soft Actor-Critic
with Heuristic-Based Attention (SACHA), which employs novel
heuristic-based attention mechanisms for both the actors and
critics to encourage cooperation among agents. SACHA learns
a neural network for each agent to selectively pay attention to
the shortest path heuristic guidance from multiple agents within
its field of view, thereby allowing for more scalable learning
of cooperation. SACHA also extends the existing multi-agent
actor-critic framework by introducing a novel critic centered
on each agent to approximate ()-values. Compared to existing
methods that use a fully observable critic, our agent-centered
multi-agent actor-critic method results in more impartial credit
assignment and better generalizability of the learned policy to
MAPF instances with varying numbers of agents and types of
environments. We also implement SACHA(C), which embeds a
communication module in the agent’s policy network to enable
information exchange among agents. We evaluate both SACHA
and SACHA(C) on a variety of MAPF instances and demonstrate
decent improvements over several state-of-the-art learning-based
MAPF methods with respect to success rate and solution quality.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents; Reinforcement Learning; Deep Learning Methods

I. INTRODUCTION

ECENT studies have demonstrated the practical success

of Multi-Agent Path Finding (MAPF) [1] in various
domains, such as warehouse and office robots [2], [3], au-
tonomous aircraft-towing vehicles [4], and other multi-robot
systems [5]. MAPF aims to plan collision-free paths for a
set of agents from their start positions to their goal positions
in a shared environment while minimizing the sum of their
completion times (i.e., the arrival times at their goal positions).
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Although MAPF is NP-hard to solve optimally [6], [7],
the Al community has developed many optimal and bounded-
suboptimal MAPF planners for fully observable environments,
where a centralized planner has complete information of the
environment to plan joint paths for agents. These planners do
not apply to agents with limited sensing capabilities and do not
scale well to a large number of agents, as the complexity of
coordinating the joint paths of agents grows exponentially with
the number of agents in the systems. Learning-based methods
with centralized training and decentralized execution have
been proposed to develop scalable and generalizable learning-
based MAPF methods for the partially observable setting. In
this setting, each agent receives a partial observation of its
surroundings. Learning-based MAPF methods aim to train a
decentralized homogeneous policy that each agent will follow
based on its local observation during execution. This policy
can be distributed to any number of agents in any environment,
as the dimension of the single-agent observation space depends
only on the FOV size in the partially observable setting. How-
ever, the non-stationarity of environments from the perspective
of any single agent poses a significant challenge for learning-
based MAPF methods. The transitions of the global state are
affected by the individual actions of other agents towards their
local interests. Moreover, goal-oriented reinforcement learning
with single-agent rewards makes the training process unstable
and time-consuming, further incentivizing the selfishness of
each agent that prioritizes its goal over collaborating with
others. This could hinder coordination and teamwork among
agents, negatively affecting overall performance.

To address the challenges posed by solving MAPF in
the partially observable setting, we propose SOFT ACTOR-
CRITIC WITH HEURISTIC-BASED ATTENTION (SACHA), a
novel approach for partially observable MAPF that leverages
heuristic guidance through attention mechanisms to learn
cooperation. SACHA builds upon the multi-agent actor-critic
framework and, along with its communication-based alterna-
tive, SACHA(C), aims to learn a decentralized homogeneous
policy that can be generalized to any number of agents in
any arbitrary partially observable MAPF environment. To
achieve this, we first allow each agent to access the goal-
oriented heuristic guidance of multiple agents in the form of
the shortest path distances to each of the goals, which can
be computed efficiently before execution. We then employ a
self-attention module in the policy network for each agent to
locally select relevant information from the guidance and take
actions towards better cooperation among agents.
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We expect SACHA to make a significant algorithmic impact
not only on MAPF solving but also on other similar multi-
agent tasks in partially observable settings because its learning
process of the homogeneous policy is also guided by a homo-
geneous critic for more stable learning and faster convergence.
Unlike existing multi-agent actor-critic methods with one fully
centralized critic or multiple decentralized critics, SACHA
introduces a novel agent-centered critic network that uses an
attention mechanism to approximate each agent’s @Q-function
and performs credit assignment only based on the information
within each partial observation. The input dimension of this
critic is determined by the number of agents that each agent’s
Q-function should be based on, which is implicitly limited
by the partial observation range (e.g., FOV size in MAPF).
This partially centralized critic ensures that the @)-function is
not biased towards any specific problem instance, resulting
in a well-trained policy network that can generalize well to
different numbers of agents and environments.

We experimentally compare SACHA and SACHA(C) with
state-of-the-art learning-based and search-based MAPF meth-
ods over several MAPF benchmarks. Our results show that
both versions of SACHA result in higher success rates and
better solution quality than other methods in almost all test
cases. The results thus indicate that our methods allow for
better cooperation among agents than the other methods with
and even without communication.

II. PROBLEM FORMULATION

In this section, we first present the standard formulation of
MAPF and then dive into its partially observable variant.

A. Standard MAPF Formulation

In the standard formulation of MAPF, we are given a
connected and undirected graph G = (V,E) and a set of
M agents, indexed by ¢ € {1,2,---,M}. Each agent has
a unique start vertex s; € V' and a unique goal vertex g; € V.
Time is discretized into time steps, t = 0,1, --- , co. Between
two consecutive time steps, each agent can either move to one
of its adjacent vertices or wait at its current vertex. A path
for agent ¢ contains a sequence of vertices that lead agent
from s; to g;, where each vertex indicates the position of the
agent for every time step. The completion time T; of agent ¢
is defined as the length of its path, and it is the earliest time
when agent ¢ has reached and terminally stayed at its goal
vertex. Collisions between agents are not allowed. A vertex
collision occurs when two agents occupy the same vertex v at
the same time ¢. An edge collision occurs when two agents
traverse the same edge (u,v) in opposite directions from ¢
to t + 1. A MAPF solution is a set of collision-free paths for
all agents. A commonly-used objective function is the average
(equivalently, sum) of the completion times of all agents.

B. Partially Observable Environments

In this paper, we consider a more practical scenario where
agents have only partial observation of the environment
but still aim to fully cooperate to minimize the average
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Fig. 1: Illustration of a partially observable MAPF instance
and the multi-agent heuristic maps for the orange agent. Each
agent’s current (circle) and goal (square) positions have the
same color. The orange agent’s 5 x 5 FOV contains 3 agents,
including itself. Therefore, the policy network of the orange
agent will utilize 3 corresponding heuristic maps within the
same 5 x 5 area. A darker shade of color represents a greater
distance to the goal.

completion time. We model this partially observable variant
of MAPF as a decentralized partially observable Markov
Decision Process (Dec-POMDP) [11], defined as a 7-tuple
(S, A;, P,Q;,0,R,~). S is the set of global states. A; is
the set of actions for agent i, and A = [[), A; is the
joint action space. €); is the observation space of agent ¢, and
Q= Hf\il €2; is the joint observation space. O : A X S — Q)
is the observation function, denoting the probability P(o|a, s),
whereas P : A x § — S is the state-transition function for
the environment, representing the probability P(s’|a, s), where
0€N,ac A ands,s’ €S. R:S x A— R is the reward
function, and +y is the discount factor.

In MAPE, the observation and state-transition functions
are deterministic, where each agent has full control of its
next position and observation by taking one of the move
actions or the wait action. To facilitate proper comparison
with existing learning-based MAPF methods, we formalize
the MAPF problem on two-dimensional grid maps with four
neighbors, even though our method can also be generalized to
other MAPF problems. The partial observability limits each
agent’s perception to its FOV, defined as a £ x £ square area
centered on the agent. Agents take their actions based on their
local observation and the history from the beginning to the
current time step.

One of the key challenges for decentralized planners with
limited access to global information is the occurrence of
deadlocks and livelocks. Similar to time-windowed MAPF
planners [12], these issues arise due to the limited planning
horizon of agents, either in time or space, that prevents them
from reaching their goals. For instance, consider Fig. 1, where
the red agent in a5 and the green agent in a6 are heading
towards their respective goals a6 and ab. An optimal solution
may require the red agent to move north and terminally stay at
its goal while the green agent moves north and takes a detour
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methods for partially observable MAPF

Method Learning Framework Communication | Single-Agent Guidance Cooperative Guidance
PRIMAL [8] A3C (RL) + Behavior Cloning (IL) Inapplicable Goal Direction Goal Directions of Neighbouring Agents
DHC [9] IQL Required Shortest Path Distances —
DCC [10] QL Required Shortest Path Distances —
SACHA (Ours) Multi-Agent Soft Actor-Critic Optional Shortest Path Distances | Shortest Path Distances of Neighbouring Agents

since its direct path is blocked by the red agent. However,
after a few moves, the green agent will no longer observe the
blocking red agent and end up wiggling between a9 and al10
indefinitely. Symmetrically, if the green agent moves south
and terminally stays at its goal, the red agent will eventually
wiggle between al and a2.

Existing learning-based MAPF methods rely on two extra
assumptions to alleviate the above issues: First, each agent
has full visibility of the map (which is consistent with both
standard MAPF and time-windowed MAPF), even though
it does not know the global state. Second, two agents are
allowed to communicate when they are within each other’s
FOV. In this paper, SACHA and SACHA(C) utilize the same
assumptions. Both methods give each agent access to the
shortest path distances to its goal. SACHA(C) enables inter-
agent communication, while SACHA only requires each agent
to identify other agents in its FOV.

III. RELATED WORK

We now survey the related work on learning-based MAPF
methods and multi-agent reinforcement learning methods.

A. Learning-Based MAPF Methods

Recent learning-based MAPF methods [8], [13], [9], [10]
have been proposed to solve MAPF in a partially observable
setting. These methods aim to learn a decentralized policy
that can be generalized to different MAPF instances. While
centralized MAPF planners require full observation of the en-
vironment and must plan paths from scratch for each instance,
the well-trained model can be applied to MAPF instances with
any number of agents and environment size, without increasing
the time complexity.

The most straightforward approach for tackling partial ob-
servability is to treat other agents as part of the environment
and let each agent learn its policy independently, as in In-
dependent ()-Learning (IQL) [14]. However, this approach
results in non-cooperative behavior among the agents, and
its training is not guaranteed to converge due to interference
between the policies of different agents. State-of-the-art MAPF
methods [9], [10] enhance IQL with a communication mech-
anism to promote cooperation between agents. Other MAPF
methods [8], [13] use the actor-critic framework, with guid-
ance from an expert demonstration. PRIMAL [8] combines
on-policy asynchronous advantage actor-critic (A3C) [15]
with behavior cloning from an expert demonstration gen-
erated by a centralized MAPF planner [16]. However, the
centralized MAPF planner requires solving numerous MAPF
instances, which slows down the training process. DHC [9] and
DCC [10] have shown that using single-agent shortest path
distances as heuristic guidance for goal-oriented learning of

each agent is more effective than following a specific reference
path in a multi-agent cooperative setting.

In Section VI, we compare SACHA against PRIMAL, DHC,
and DCC experimentally. Table I summarizes the comparison
of properties of these methods, showing that SACHA improves
over them by adopting a more stable training scheme, utilizing
better heuristic guidance through more complex model design,
and allowing for applicability to both communicating and non-
communicating scenarios.

B. Cooperative Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is a well-
established framework for coordinating multiple agents in
a shared environment. A rich literature [17], [18], [19] on
cooperative MARL has been dedicated to coordinating agents
that work towards a common objective and take actions that
benefit all agents as a whole. To deal with the nonstationarity
of the environment, most existing actor-critic methods use one
or more fully centralized critics that observe the entire envi-
ronment. For example, Multi-Agent Deep Deterministic Policy
Gradient [20] trains each actor with only its local observation
using the DDPG algorithm [21], while its corresponding fully
centralized critic can access the observations and actions of
all agents. Instead of using multiple fully centralized critics,
Counterfactual Multi-Agent Policy Gradient [22] uses only
one fully centralized critic that learns to assign credit to
agents and estimate (Q-functions for all agents based on a
counterfactual baseline that marginalizes out the action of each
individual agent. However, it becomes increasingly difficult to
perform such credit assignments for cases with large numbers
of agents. Therefore, Multiple Actor Attention-Critic[23] de-
ploys an attention mechanism for the fully centralized critic
to selectively pay attention to relevant information from all
agents. SACHA also uses a similar attention mechanism but
differs from existing actor-critic methods by using a novel
homogeneous agent-centered critic that only takes the local
information from each agent as input for generalizability to
different MAPF instances instead of a fully centralized critic
specific to only one MAPF instance.

IV. SACHA

We now provide a detailed description of the main compo-
nents of SACHA. First, we describe how we use the shortest
path distances of multiple agents as the cooperative guidance
for each individual agent. Next, we explain how we integrate
the shortest path distances into the commonly applied reward
design. We also elaborate on our new model design, which
includes attention mechanisms applied to both the actors and
the critic and an optional communication module. Lastly, we
discuss SACHA in the context of the multi-agent actor-critic
learning framework.
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TABLE II: Individual reward function from DHC [9].

Action Reward
Move (up / down / left / right) -0.075
Wait (on goal, away goal) 0, -0.075
Collision (obstacles or agents) -0.5
Reaching Goal 3

A. Multi-Agent Shortest Path Distance Heuristic Maps

Empirical studies [10] have shown that shortest path dis-
tances from all vertices to each agent’s goal vertex can greatly
benefit goal-oriented learning for the agent in partially observ-
able environments. SACHA utilizes multi-agent shortest path
distances to guide not only the achievement of single-agent
goals but also better cooperation between agents. Specifically,
a backward uniform-cost search is run from each agent’s goal
vertex to all vertices in the given graph to generate the shortest
path heuristic maps for the agent. The heuristic maps for all
agents can be calculated offline once the graph and all goal
vertices are given. They remain unchanged for the same MAPF
instance during training and can be efficiently generated in
advance for a new MAPF instance during execution. The time
complexity for calculating the distances for M agents on graph
G = (V,E)is O(M|E|log|V|). Many search-based and some
recent learning-based MAPF methods [24], [9], [10] also use
heuristic maps of shortest path distance, but only as single-
agent guidance. SACHA gives each agent access to not only its
heuristic map but also the heuristic maps of other agents within
its FOV, which enables better cooperation. Fig. 1 visualizes the
heuristic maps that the orange agent has access to at the current
time step. Since there are three agents within its FOV, three
corresponding heuristic maps are input to the agent’s policy
network that we will describe later.

B. Reward Design with Heuristic Maps

We design the reward function for each individual agent
based on its heuristic map. We start with the individual reward
function of DHC [9] as shown in Table II. It follows the
intuition that an agent is punished slightly for each time step
before arriving at the goal, thereby encouraging it to reach
its goal as quickly as possible. To improve the success rate
of solving the global MAPF task, each agent is punished
to a greater extent each time it collides with another agent
or an obstacle. The agent receives a positive reward only
when it arrives at its goal. Most existing learning-based
MAPF methods follow the same design idea for their reward
functions. However, the goal-conditioned reward in this reward
design makes the training unstable and difficult to converge,
especially for long-horizon tasks such as MAPE. Also, since
an agent which stays further away from its goal generally has
a larger potential to collide with other agents, the move actions
for it should not be rewarded the same as for ones that are
closer to their goals. Therefore, motivated by Heuristic-Guided
Reinforcement Learning (HuRL) [25], we reshape the reward
function for each agent with an additional heuristic term.
Assume we have a transition tuple, (s,a,r,s’), we reshape
the reward as:

’Fi(S,CL) = TZ'(S,CL) + (1 - )‘)’Yhz(sl)v (H

where h;(s') is the negated normalized shortest path distance
of the global state s’ from the heuristic map of agent 7. This
heuristic term represents a priori guess of the desired long-term
return of an agent from state s’ and thus serves as a horizon-
based regularization. HuRL has been proved both theoretically
and empirically to be able to accelerate the learning process
significantly by intrinsically reshaping the reward of every
position for each agent. We set A to 0.1 in the experiments.

C. Model Design with Attention Mechanisms

We propose a novel model architecture based on the multi-
agent actor-critic framework. Our model aims to achieve
generalization across different instances by restricting the actor
and the critic to operate only within the observation of each
agent. At each time step ¢, we define an undirected observation
graph G; = (V, E;), where V is the set of all agents and each
edge in F} indicates that the corresponding agents can observe
each other. The time-varying graph G captures the dynamic
correlation of agents in partially observable environments. We
denote the subgroup centered on agent ¢ as {¢ UN;(i)}, where
N;(4) is the set of the nearest K —1 neighbors of node 7 inside
its FOV. The observation of each agent i consists of a set of K
feature maps F; = {F }jeiun, () Where F} € R“*£>X3 Each
feature map in the set corresponds to an agent in the subgroup
of agent ¢ and contains three channels: (1) a binary matrix
that identifies the obstacles and the free space, (2) a binary
matrix that marks the positions of agents, and (3) a heuristic
channel that shows the normalized shortest path distances for
each empty cell. K is set to 3 in our experiments.

We present the learning framework of SACHA in Figure 2.
Given the observation features, the policy network starts
with the observation encoders with shared parameters. The
encoders consist of several convolutional layers followed by
a GRU [25] memory unit. The output set of K encoding
is input into the Multi-Head Attention (MHA) [26] module
that learns the interaction between agent ¢ and its subgroup
members by selectively attending to relevant information. The
MHA module outputs a set of features the sum of which
is used for the observation representation, denoted as o;. It
then will be passed to decoders to generate the correspond-
ing action vector a; € R®. Each element in a; represents
the probability of choosing one of the five discrete actions
{up, down, left,right, stay}.

We propose a novel agent-centered critic, that evaluates
each agent’s action individually based on its local observation
and information about its subgroup members. Unlike previous
methods that use a centralized critic with global information,
our critic leverages the attention mechanism to dynamically
assign credit to each agent. We first pass the policy network’s
output through a linear function and then apply a multi-head
attention module. The sum of the concatenated output vectors
is then forwarded through the decoders to obtain the final Q-
value, which is used to update the policy networks via the
policy gradient method. Since our agent-centered critic takes
only requires the local information of the central agent, it is
not dependent on any specific environment information, and
the learned policy network can thus generalize better.
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Fig. 2: Model design of SACHA and SACHA(C). The framework consists of the actors (red) and the critics (blue). The bottom
part demonstrates agent 7’s policy network. Within its 5 x 5 FOV, there are three agents inside and hence three heuristic maps
are fed into its network. After going through a set of encoders, three output features will then be processed by the attention
block, picking out the relevant information required for agent ¢ to take its action. The upper part shows how the critic assigns
the credit for agent ¢ based on the local observations and the corresponding actions from agents in its subgroup via a similar

attention mechanism.

D. Optional Communication Module

Furthermore, we propose a communication-based variant
of our method, named SACHA(C). To encourage better co-
operation, our method should be able to take advantage
of communication when it is allowed. We add an optional
communication module after the multi-head attention block, as
shown in Fig. 2. We first gather all observation representation
{0;}M, as the initialization ,//(*), and then feed it into a multi-
layer Graph Convolution Network [27] (GCN). Recalled that
M is the number of agents. Let A; be the adjacency matrix of
Gy and /L = A; + Iy. Define Dt as a diagonal matrix where
Dy = > A,;. The output of the (I 4 1)-th layer would be:

HY = o(D; 2 A,D; 2 HOWO), )

where o(-) is the sigmoid function and W is a layer-specific
trainable weight matrix. After [ layers of GCN, we can decom-
pose H*1) to M corresponding vectors, {6; 2, which will
eventually be decoded by each network to their corresponding
action vectors as usual. We choose a two-layer GCN in the
SACHA(C). The communication module is optional, but it can
make agents reach information outside their local observation
and hence achieve better cooperation.

E. Soft Actor-Critic with Multi-Agent Advantage Function

SACHA updates the agent’s policy network 7 parameterized
by 6 and the critic network parameterized by v simultaneously
through the soft actor-critic framework. We let # and v denote
the moving average of 6 and v (target parameters of the actor
and the critic network), respectively. We first define the action-
value temporal difference (TD) error for any experience, e =
(s,a,7,s"), from the replay buffer D:

8; = QY (03, a;) — 74
= VB oy (o) QY (0], 07) — arlog(mg(aflo)))]  (3)
where « is the temperature parameter that decides the weight
of the entropy term in the soft actor-critic framework [28].
SACHA runs the critic network through every agent-centered

subgroup and updates it by minimizing the mean square error
loss function:

M(e) 52
Lo(¥) =Eewp Y Ok )
=1

where M (e) is the number of agents in e. On the other hand,
the actors update their underlying policy networks by the
policy gradient via the ()-values from the critic network:

V@J(Q) = EOiND,aiNﬂ'Gi(Oi)[VGi log(ﬂ—(’i (al|ol))
(QY (01, a;) — b0s, a\;) — alog(mg, (ailo;)))]  (5)
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where Vg log(mg(as|o;)) is the score function and QY (0;, a;)—
b(0s,a\;) is the multi-agent advantage function. Inspired by
COMA [22], SACHA adopts the counterfactual baseline in a
discrete action space as follows, which marginalizes out the
specific action of agent i:

blo,avi) = Y w(ajlo)Q

al€A;

(04, (af, ar1)), 6)

where a\; € Ay; = Hj 2;Aj is the combination of actions
from all agents except for ¢ and A; is each agent’s action
space. This baseline specifically compares an action to other
actions of agent ¢ by fixing the actions of all other agents and
invoking the critic network for |.A4;| times. In each instance,
we collect these M updated policies and aggregate them into
the new policy by averaging all the locally updated policies:
et = M %7 yhere 91 = 90 — ¥y J(0®)). The
policy and the critic network are updated together iteratively
to reach fast and stable convergence.

V. ANALYSIS

In this section, we analyze the effectiveness of the policy
gradient in our multi-agent actor-critic framework. Most of
the existing learning-based MAPF methods use IQL, in which
each agent treats others as part of the environment and updates
the global policy 6 as follows:

V@J(Q) = ESND,GNM [VG IOg(WQ (a|5))Q(S> a’)}v @)

where s and a denote the joint state and joint action, respec-
tively. Now we show that this gradient is equivalent to Eq. (5).
We omit the entropy term here, but the proof can be easily
extended to include it.

Since each agent acts on its policy independently, we
have mg(als) = [], e, (ai|s). We represent the stationary
distribution induced by 7y as dy(s), meaning the probability
of being in the state s by following my. Following the proof
in [29], we get:

= ng Zﬂ'g als)Vo, [Zlog g, (a;]5)) | Q(s, a)
s€D acA Jj=1

= Z dy(s Z mo(als)Vy, log(me, (a;]$))Q(s, a)
seD acA

= Z dy(s) Z [H o, (aj|s)} Vo, 7o, (a;|$)Q(s, a).
s€D a€A jAi

To further the proof, we consider the following equation:

> [H uz (aj|8)} Vo, m, (ai]s)F (s, ay;)

acA j#i
= Z [Hﬂg (aj|s } sa\l)[ Z Wei(ai|8)}
a\;EA\; j#i a; €A;
=1
=0.

This will stay true as long as F(s,ay;) is a function indepen-
dent of a;. Let F'(s,a\;) = —Q(s,a\;)—b(s, a\;) and combine
it with the equation above:

) = Z dg(s) Z [H Ty, (aj|3)} Vo, mo, (ails)-

seD a€A j#i
[Q(s,a) — Q(s,a\;) — b(s,a\;)]
=" dols) S [T 70, (a515)]| Voo, (ails)-
seD a€A j#i

[Qi(s,ai) — b(s,a\;)]

=Y do(s) Y mlals) Vi, log(ms, (ais)):

seD acA
[Qi(s,ai) — b(s,a\g)]-

Here, we prove that the policy gradient with respect to
each 6; can be obtained locally using the corresponding score
function, Vy, log(my, (a;|s)). By averaging 91@ from all agents
updated by Q;(0;,a;) —b(0;, ay;), we obtain the same effect as
updating the global # based on Q(s, a). Therefore, our method
is as effective as IQL, but with a faster convergence rate due to
parallel updates among all agents. Moreover, our framework
for learning a homogeneous policy from local observation in
the multi-agent learning framework is not restricted to MAPF
and can potentially be applied to other MARL tasks, especially
ones in partially observable settings.

VI. EXPERIMENTS

In this section, we implement our methods! and experimen-
tally evaluate them with other methods on a server equipped
with an Intel 2.3GHz 16-Core CPU and an NVIDIA A40 GPU.

A. Environment Setups

Training Environments: As mentioned above, our model is
trained using the multi-agent actor-critic learning framework.
Not only does each agent’s policy network share parameters
but also the critic networks applied to each subgroup of
agents are homogeneous. We train our model over random
grid maps of different sizes with randomly generated obstacles.
The obstacle density is sampled from a triangular distribution
between 0 and 0.5 with its peak value at 0.33. To fairly
compare with other decentralized MAPF planners, our agent’s
policy network exclusively has 9 x 9 square-shaped FOV, the
same as DHC and DCC, regardless of the environment size.
Inspired by the curriculum learning [30], we design a training
pipeline that starts with only 2 agents on 10 x 10 grid maps
and gradually increases the number of agents and the size
of the map once the success rate reaches a certain threshold.
More and more complicated tasks are constantly added to the
training pool until the map size exceeds 100 x 100 or the
number of agents exceeds 72.

Testing Environments: We test our methods over a variety
of maps all from the standard benchmark [1]. We first select

IThe code is available at https://github.com/Qiushi-Lin/SACHA.
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Fig. 3: Success rates for different learning-based MAPF meth-
ods on different maps.

two random maps (32 x 32 and 64 x 64) with uniformly
distributed obstacles. Besides, we also use two game maps,
den312d (65 x 81) and warehouse (161 x 63). The start-
goal pairs of agent locations are randomly generated with
the guaranteed existence of solutions. The number of agents
is chosen from {4,8,16,32,64} respectively. The maximum
time step is 256 for random32, randomé64, and den312d,
and 512 for warehouse. For cases that cannot be solved
successfully within the time horizon or the runtime limit, we
count each agent’s step as the maximum time step.

B. Baselines

Learning-Based Methods: We compare our methods with
several state-of-the-art decentralized learning-based MAPF
methods summarized in Table I. PRIMAL uses expert demon-
stration from centralized MAPF planners to train its model.
The expert demonstration has a positive effect on speeding up
the training process but is very time-consuming and requires
global information about the specific environment, which
limits its generalization to unseen instances. DHC adopts
IQL along with single-agent heuristic guidance and broadcast
communication mechanism. The resulting model performed
better than PRIMAL without any experts. DCC improves on
DHC by learning selective communication with a decision
causal unit, which can filter out redundant messages and focus
on relevant information. This also reduces the communication
frequency significantly.

Search-Based Methods: Furthermore, we also compare our
method with the centralized planners. We use two optimal but
computationally expensive search-based methods for compari-
son: Conflict-Based Search (CBS) [24] and ODrM* [31]. CBS
performs a best-first search that expands the constraint tree
node by adding constraints to each agent involved in every
conflict, while ODrM* is a suboptimal planner based on M*
that applies Operator Decomposition (OD) to split agents into
independent conflict sets and thus reduce the complexity of
joint planning. We also use Priority-Based Search (PBS) [32]

TABLE III: Solution quality for different MAPF methods.

Average Step per Agent

Map | Agents

CBS ODiM* wPBS| PRI SAC SAC

(120s) (20s) (1205)| MAL PHC DCC g™ yao)
w | 4 [2182 2182 2290 3296 35.70 32.83 29.93 31.03
Q| 8 |2138 2137 4606|3862 4264 3956 3634 3830
S| 16 [3116 3126 17212]4512 4867 4356 4171 4130
2| 32 |133.86 19947 24661|50.34 5217 56.11 5026 47.72
= | 64 |25130 25600 256:00| 69.40 66.05 88.79 7647 74.48
- | 4 |[4294 4295 48.14|67.82 71.04 7080 6547 67.10
S| 8 4274 4280 8452|7468 8243 8894 7049 7238
S| 16 |5151 5152 15447|89.22 9422 10227 8374 8217
£ | 32 |9436 136.67 222.08|98.02 103.05 12671 95.67 93.08
-

64 |234.66 251.65 256:00|105.12 120.68 154.72 99.02
4 51.74 5176 69.32 |196.54 86.56 82.99 78.33
8 55.50 7874 116.32|245.02 100.70 97.95 84.24 89.73
16 |118.97 186.44 208.28|256:00 109.24 108.29 97.86 96.74
32 |251.86 256:00 248.06|256:00 124.38 119.15 111.28 104.30
64 |256:00 256:00 256:00|256:00 153.17 145.21 140.79 142.97
4 77779 7779 104.41|355.80 146.12 135.89 131.43 134.59

96.42
81.43

den312d

8 83.48 100.37 170.46|451.82 198.82 169.50 164.83 166.72
16 | 81.64 133.59 340.18|492.04 281.37 208.72 192.30 198.72

warehouse

32 |262.15 417.22 542:00|505.58 432.28 335.81 370.65 354.33
64 49493 512:00 512:00|512:00 51200 473.92 449.83 437.29

that searches for certain agent orders that can be used in the
prioritized planning, which makes this solver incomplete but
efficient. To simulate centralized planning in the same partially
observable setting, we use windowed PBS (wPBS) [12], which
only avoids conflicts within a bounded time horizon. We set
the time window length of wPBS to be equal to the caliber
of the FOV to simulate the partially observable environments.
We set the runtime limit of CBS and wPBS to 120 seconds
and ODrM* to 20 seconds.

C. Empirical Results

We evaluate the performance of the MAPF methods based
on two widely-used metrics, success rate and average step per
agent. Success rate measures the ability to solve the given
instances within the runtime limit, whereas the average step
per agent measures the quality of the solutions over a given
set of instances. We test our approach along with multiple
baselines in around 300 MAPF instances for each map with
different numbers of agents.

Fig. 3 shows the success rate of our methods compared
with all other baselines over four different MAPF maps.
Within the time limit, all decentralized planners have a re-
markable advantage in success rate. Even by including the
precomputing time of shortest path heuristics, decentralized
planners find solutions much faster than centralized ones.
Among decentralized planners, PRIMAL tends to result in
solutions with the worst quality, especially in those two game
maps, which indicates that learning from the expert data cannot
be easily generalized to instances with different numbers of
agents and on maps with different structures. DHC and DCC
have their advantages over PRIMAL by allowing the shortest
path heuristics and the communication mechanism, although
our methods can both outperform them in most cases. The
advantages are more obvious over maps with higher obstacle
density and more agents where more cooperation is demanded.

Table III reports the average step required to finish goals
from each agent in multiple different instances. If planners
exceed the runtime limit in some cases, we consider them
failures and count them as spending the maximum time hori-
zon. The stroke-out data with maximum time steps indicates
zero success. When compared to search-based planners with
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relatively small numbers of agents, as expected, all learning-
based methods cannot provide comparable results. However,
as the number of agents grows, the search-based methods
are significantly more time-consuming than learning-based
methods and the success rate would drop rapidly due to the
runtime limit. The two communication-based methods DHC
and DCC have greater solution quality over PRIMAL in all
cases. However, SACHA and SACHA(C) outperform them
by a decent margin in most instances, with and without the
communication block, which demonstrates their advantages
over other learning-based methods. It is worth mentioning that,
generally, SACHA(C) has better performance than SACHA in
instances with larger numbers of agents where communication
can be rather helpful.

As reported in [9], DHC always has better performance than
its alternative without the communication unit. Hence, it shows
that our method can serve the non-communicating scenarios
when SACHA can outperform DHC and thus DHC without
communication. Besides, DHC can essentially be viewed as
training our communication-based model without the attention
block via the independent @)-learning. Therefore, the fact that
SACHA(C) has greater performance than DHC demonstrates
the strength of the heuristic-based attention mechanism and the
multi-agent learning framework. Overall, our methods have a
better chance to solve given MAPF instances, with and without
communication, and among those solved instances, they result
in solutions with better quality.

VII. CONCLUSION

In this paper, we introduced SACHA, a novel approach
for learning cooperative policies for MAPF and potentially
other MARL problems in partially observable environments.
SACHA combines the multi-agent soft actor-critic that maxi-
mizes both expected reward and entropy with heuristic-based
attention mechanisms that enhance the network architectures
of both the actor and the critic. Specifically, we proposed to
augment each agent’s local observation with heuristic guidance
from other agents and to use an attention module that learns
to focus on the most relevant information for each agent to
avoid collisions and achieve the goal. To the best of our
knowledge, we are the first to apply the soft actor-critic with
a novel agent-centered critic to homogeneous MARL settings
with partial observability and to incorporate heuristic guidance
and attention in the agent’s policy network. We evaluated our
method on various MAPF benchmarks and showed that it
outperforms existing baselines for almost all the cases in terms
of success rate and solution quality.
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