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Mixed Integer Programming for Time-Optimal Multi-Robot
Coverage Path Planning with Efficient Heuristics

Jingtao Tang1, Hang Ma1

Abstract—We investigate time-optimal Multi-Robot Coverage
Path Planning (MCPP) for both unweighted and weighted ter-
rains, which aims to minimize the coverage time, defined as
the maximum travel time of all robots. Specifically, we focus
on a reduction from MCPP to Min-Max Rooted Tree Cover
(MMRTC). For the first time, we propose a Mixed Integer Pro-
gramming (MIP) model to optimally solve MMRTC, resulting in
an MCPP solution with a coverage time that is provably at most
four times the optimal. Moreover, we propose two suboptimal yet
effective heuristics that reduce the number of variables in the
MIP model, thus improving its efficiency for large-scale MCPP
instances. We show that both heuristics result in reduced-size
MIP models that remain complete (i.e., guaranteed to find a
solution if one exists) for all MMRTC instances. Additionally, we
explore the use of model optimization warm-startup to further
improve the efficiency of both the original MIP model and the
reduced-size MIP models. We validate the effectiveness of our
MIP-based MCPP planner through experiments that compare it
with two state-of-the-art MCPP planners on various instances,
demonstrating a reduction in the coverage time by an average
of 27.65% and 23.24% over them, respectively.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents; Multi-Robot Systems; Combinatorial Optimization

I. INTRODUCTION

COVERAGE Path Planning (CPP) [1] involves finding an
optimal path for a robot to traverse a terrain of interest

to completely cover all its regions. Examples of such terrains
include indoor environments covered by vacuum cleaning
robots [2] and outdoor fields covered by unmanned aerial
vehicles [3]. Multi-Robot Coverage Path Planning (MCPP)
is an extension of CPP that involves coordinating the paths
of multiple robots to achieve complete coverage of the given
terrain, thus improving coverage task efficiency and system
robustness. Therefore, MCPP plays a crucial role in various
applications, including search and rescue [4], environmental
monitoring [5], and mapping [6]. Developing efficient and
robust MCPP algorithms is essential to enable the widespread
deployment of multi-robot systems in robotics applications.

One of the main challenges in MCPP is to effectively
distribute robots over the terrain to be covered while avoid-
ing collisions with static obstacles. This requires considering
factors such as the traversability of the terrain, the mobility
of the robots, and the availability of communication between
the robots. Additionally, the problem becomes increasingly
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complex as the number of robots increases, and we must
consider more potential paths and interactions between robots.
Another challenge in MCPP is to ensure complete coverage,
i.e., all regions of the terrain are covered, which can be chal-
lenging to achieve without sacrificing efficiency or incurring
high computational costs.

This paper considers the fundamental challenge of time-
optimal multi-robot planning in MCPP, which aims to mini-
mize the coverage time, defined as the maximum travel time
of all robots. We focus on MCPP applications in agriculture
and environmental monitoring, where path execution time is
assumed to be orders of magnitude higher than the planning
time, making solution quality more important than planning
runtime. Offline planning is commonly used under this as-
sumption to solve MCPP without inter-robot communication.
To solve MCPP, we adopt a problem formulation similar to that
used in the existing literature, where the terrain to be covered
is abstracted as a graph, and coverage time is evaluated as the
sum of weights along the coverage paths on the graph. We
conclude our main contributions as follows:

1) We propose a Mixed Integer Programming (MIP) model
to optimally solve Min-Max Rooted Tree Cover (MM-
RTC), which results in an MCPP solution with an asymp-
totic optimality ratio of 4. We prove the correctness of
the proposed MIP model.

2) Based on the proposed MIP model, we design two
efficient suboptimal heuristics, the Parabolic Removal
Heuristic and the Subgraph Removal Heuristic, which re-
duce the model size with a configurable loss of optimality.
We prove that the two reduced-size models are complete
(i.e., guarantee to find a solution if one exists) for all
MMRTC instances.

3) We provide open-source code for our MIP-based MCPP
planner and thorough experimental results, including
model optimization warm-startup and performance com-
parisons against two state-of-the-art MCPP planners. Our
MIP-based MCPP planner yields higher-quality solutions
at the cost of longer runtime.

II. RELATED WORK

In this section, we survey related work on MCPP and the
use of MIP for multi-robot planning.
Single- and Multi-Robot Coverage Path Planning: MCPP
is a generalization of CPP, which involves planning paths
for multiple robots to cover a given terrain cooperatively.
We refer interested readers to the comprehensive surveys [1],
[7] on CPP and its extensions. Most MCPP algorithms build
upon existing CPP algorithms by partitioning the terrain into
multiple regions with coverage paths and then assigning the

https://github.com/reso1/MIP-MCPP
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paths to multiple robots. In general, MCPP algorithms can be
categorized as decomposition-based or graph-based methods.
Decomposition-based methods [8]–[10] first partition the ter-
rain geometrically and then generate zigzag coverage paths
within each region. While these methods are simple, they are
not suitable for weighted terrains with non-uniform traversal
costs and obstacle-rich terrains like mazes due to their reliance
on geometric partitioning. This paper focuses on graph-based
methods [11]–[13] that operate on a graph representation of the
terrain to be covered. Graph-based methods consider varying
traversal costs and provide more flexibility. We will discuss
them in more detail in the next paragraph. In addition to
traditional approaches, learning-based planners [14]–[16] have
been developed for application-specific coverage problems,
where the uncertainties of robots and environment are a major
consideration.
Graph-Based Spanning Tree Coverage: One well-known
method for solving graph-based CPP is Spanning Tree Cover-
age (STC) [17], where the terrain to be covered is abstracted
into uniformly sampled vertices, and robots are allowed to
traverse along graph edges connecting adjacent vertices. While
CPP can be solved optimally in unweighted terrains [17]
and near-optimally in weighted terrains [18] in polynomial
time using STC [17], graph-based MCPP with STC has been
proved to be NP-hard [19]. Thus, much MCPP research has
focused on designing polynomial-time approximation algo-
rithms. Multi-Robot STC (MSTC) [12] splits the STC path
into segments based on the initial location of each robot and
then assigns the segments to robots. MSTC extensions have
been developed to construct better spanning trees and STC
paths [20], find balanced cut points on the STC path [21],
and support scenarios with fault tolerance [22] and turning
minimization [23]. Multi-Robot Forest Coverage (MFC) [18],
[19], [24] extends the Rooted Tree Cover (RTC) algorithm
[25] to generate multiple rooted subtrees to cover all vertices
of the input graph and then generate coverage paths using
STC on each subtree. A closely related problem is Multi-
Traveling Salesmen Problem (mTSP) [26] that aims to find
optimal routes for multiple salesmen who start and end at
a city and visit all the given cities. However, most mTSP
algorithms that can handle large-scale instances are designed
for Euclidean spaces. We are unaware of any mTSP algorithms
that are directly applicable to graph-based MCPP.
Integer Programming for Multi-Robot Planning: Integer
Programming (IP) is a mathematical optimization technique
used to solve problems that involve discrete variables under
problem-specific constraints. When the problem model also
involves continuous variables, it is known as Mixed Integer
Programming (MIP). Both IP and MIP models can be solved
to optimal via branch-and-bound methods on top of linear
relaxation of the model, given enough time, and have been
widely used in multi-robot planning. Examples include a
general IP framework [27] for Multi-Robot Path Planning and
Multi-Robot Minimum Constraint Removal, a Branch-and-
Cut-and-Price framework [28] for Multi-Agent Path Finding,
and a MIP model [29] for Multi-Robot Task Allocation with
humans. Despite the effectiveness of MIP and IP in finding
optimal solutions for various problems, as the problem size
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Fig. 1: Graph-based STC in the instance from [19], [21]:
(a) local view of STC modeling of a weighted terrain to be
covered; (b) black squares, color-filled markers, and hollowed
circles represent obstacles, vertices of G, and vertices of D,
respectively; (c)(d) the rooted subtrees (thin lines) in G and
the resulting coverage paths (thick lines) in D.

increases, the computational complexity of the MIP solver
increases exponentially, making it challenging to solve large-
scale instances in limited runtime. Therefore, existing research
has focused on designing efficient heuristics based on the MIP
or IP framework [30], [31].

III. PROBLEM FORMULATION

We address the coverage problem for both weighted and
unweighted terrains using graph-based Spanning Tree Cov-
erage (STC) [11], [17], based on the problem formulation
presented in [18], [19], [24]. STC and its multi-robot variants
operate on a 2D 4-neighbor grid graph G = (V,E) that
represents the terrain to be covered. Following the “cover and
return” setting [18], the robot(s) must start and end at their
respective initial vertex. For simplicity, we restrict ourselves
to a weighted terrain, where each v ∈ V has an associated
weight w(v). In the case of an unweighted terrain, we assign
a uniform weight of 1 to each v ∈ V .

STC generates coverage paths on a decomposition D =
(Vd, Ed) of G = (V,E). Each vertex v ∈ V is decomposed
into four smaller adjacent vertices, as shown in Fig. 1-(a) and
(b). Each resulting vertex u ∈ Vd is assigned a weight w(u) =
w(v)/4 and must be visited by at least one robot for complete
coverage. The edges (u, v) in both E and Ed are connected for
each pair of vertically or horizontally adjacent vertices and are
assigned a weight [w(u) + w(v)] /2. The coverage time t(π)
of a valid complete coverage path π = (v1, v2, ..., v|π|) in
D is defined as t(π) =

∑|π|
i=1 [(w(vi) + w(vi+1)) /2], where

v1 = v|π|+1 is the robot’s given initial vertex from Vd. For a
CPP instance on graph G and its decomposition D (as depicted
in Fig. 1-(c)), STC works by circumnavigating an arbitrary
spanning tree of G, which generates a coverage path in D by
always moving the robot along the right side of the spanning
edges. In practice, STC only requires the terrain graph G and
does not explicitly decompose it into D. Since the path π visits
(i.e., enters and leaves) each vertex of Vd at least once, the
coverage time t(π) =

∑|π|
i=1 w(vi) is at least the sum of the

weights of all vertices in Vd (which is also equal to the sum of
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weights of all vertices in V ). STC is guaranteed to generate
a valid coverage path in D where each v ∈ Vd is visited
exactly once (see Fig. 1-(d)). Consequently, for CPP, STC
is time-optimal using any spanning tree of G in unweighted
terrain [17] and time-optimal using the minimum spanning tree
of G in weighted terrain [18].

STC has also been extended for MCPP. Formally, the
objective of MCPP is to find a set {πi}i∈I of k paths for
a given set I = {1, 2, ..., k} of robots:
{π∗

i }i∈I = argmin
π1,π2,...,πk

max{w(π1), w(π2), ..., w(πk)} (1)

where
⋃k

i=1 πi = Vd (all vertices in Vd are covered) and
each πi starts and ends at the initial vertex of robot i. STC-
based approaches operate on the terrain graph G and rely on a
reduction from MCPP to MMRTC [25], [32] that aims to find
k subtrees rooted at the given initial vertices of k robots to
cover all vertices of V jointly. These approaches then use STC
to convert each of the resulting k subtrees into the coverage
path of a robot. Lemma 4 of [19] shows that this reduction
from MCPP to MMRTC achieves an asymptotic optimality
ratio of 4, provided that the set of subtrees has the smallest
makespan, defined as the maximum sum of edge weights
of all the subtrees. It is worth noting that solving MMRTC
optimally is proven to be NP-hard for unweighted [25] and
weighted terrains [19]. MFC [18], [19], [24] adopts the RTC
algorithm [25] to solve MMRTC but only suboptimally. This
motivates our research to develop an exact approach for
MMRTC, which, to the best of our knowledge, does not exist.

IV. MIP FORMULATION FOR MMRTC

Given an MCPP instance with the terrain graph G = (V,E)
and the set I of robots as defined in Eqn. (1), we define
a set R = {ri}i∈I ⊆ V of root vertices where each ri
corresponds to the robot’s initial vertex. The corresponding
MMRTC instance aims to find a set of k subtrees {Ti}i∈I

such that each Ti must be rooted at ri ∈ R and each
vertex v ∈ V is included in at least one subtree. In our
formulation, each edge e ∈ E is associated with a weight
we. This weight can either be computed by averaging the
given weights of its two endpoints, following the standard
setting from the MCPP literature as described in Sec. III
or be directly given by an edge-weighted terrain graph in
other settings. Therefore, our formulation provides flexibility
in handling both instances with weighted edges and instances
with weighted vertices. Consequently, the weight of a subtree
Ti is defined as w(Ti) =

∑
e∈Ti

we. The optimal set of
subtrees is the one that minimizes the maximum weight among
all subtrees (i.e., makespan):
{T ∗

i }i∈I = argmin
T1,T2,...,Tk

max{w(T1), w(T2), ..., w(Tk)} (2)

To encode an MMRTC instance as a MIP model, we
introduce two sets of binary variables x = {xi

e}i∈I
e∈E and

y = {yiv}i∈I
v∈V , where xi

e and yiv take value 1 if edge e or
vertex v is included in the i-th subtree Ti, respectively, and
0 otherwise. To ensure that each subtree is a spanning tree
without any cycles, we adopt an approach used in MIP models
for the Steiner tree problem, as described in [33], [34]. For

this purpose, we assume that each edge has one unit of flow
and introduce a set of non-negative continuous flow variables
f = {f i

e,u, f
i
e,v}i∈I

e∈E to represent the amount of flow assigned
to vertices u and v for each edge e = (u, v) ∈ E.

Let τ denote the makespan and e ∼ v denote that v is one
of the endpoints of edge e. Our MIP model for MMRTC is
formulated as follows:

(MIP) minimize
x,y,f,τ

τ (3)

s.t.
∑
e∈E

wex
i
e ≤ τ, ∀i ∈ I (4)∑

i∈I

yiv ≥ 1, ∀v ∈ V (5)

yiri = 1, ∀i ∈ I (6)∑
v∈V

yiv = 1 +
∑
e∈E

xi
e, ∀i ∈ I (7)

f i
e,u + f i

e,v = xi
e, ∀e = (u, v) ∈ E,∀i ∈ I (8)∑

e∈E
e∼v

f i
e,v ≤ 1− 1

|V |
, ∀v ∈ V,∀i ∈ I (9)

xi
e ≤ yiv, ∀v ∈ V,∀e ∈ E, e ∼ v,∀i ∈ I (10)

xi
e, y

i
v ∈ {0, 1}, ∀v ∈ V,∀e ∈ E,∀i ∈ I (11)

f i
e,u, f

i
e,v, τ ∈ R+, ∀e = (u, v) ∈ E,∀i ∈ I (12)

We group the constraints of the above model as follows:
1) Makespan: Eqn. (4) ensures that τ equals the maximum

weight among all the subtrees, which is minimized in the
objective function defined in Eqn. (3);

2) Cover: Eqn. (5) enforces that each v ∈ V is included in
at least one subtree;

3) Rooted: Eqn. (6) enforces each Ti is rooted at ri ∈ R;
4) Tree: Eqn. (7) ensures that each Ti is either a single

tree or a forest with cycles in some of its trees, while
Eqn. (8) and (9) eliminate any cycles in Ti. Together,
these constraints ensure that any subtree is a single tree.

In addition to these group constraints, Eqn. (10) enforces
consistency between edge variables xi

e and vertex variables yiv
for each subtree, implying that a vertex is included if and only
if at least one of its incident edges is included. While the other
group constraints are straightforward to verify, the Tree group
constraint borrowed from [33], [34] are not self-evident for
our MIP model. Therefore, we prove the following theorem,
which ensures the correctness of our MIP model. With this
theorem, we establish that any solution of our MIP model is
a feasible solution of the corresponding MMRTC instance as
defined previously. For convenience, we will use V (·) and E(·)
to denote the vertex set and edge set of a graph, respectively,
in the remainder of the paper.
Theorem 1. Given a solution {Ti}i∈I of the above MIP model
subjected to the Tree group constraint, every Ti from the set
{Ti}i∈I must be a single tree.
Proof. For the Tree group constraint consisting of Eqn. (7),
(8), and (9), we first denote their sub-components regarding
each i ∈ I as Eqn. (7-i), (8-i), and (9-i), respectively. Given
Eqn. (7-i), we can easily verify that for an arbitrary Ti, it is
either a single tree or a forest with C−1 cycles in its C trees.
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Fig. 2: Connected sub-component with a potential cycle.

We now prove the latter case does not hold for Ti as Eqn. (8-i)
and (9-i) eliminate any potential cycles.

Given an MMRTC instance with terrain graph G, without
loss of generality, the forest Ti has an arbitrary connected com-
ponent S from one of its trees, where V (S) = {aj}j=1,2...,s ⊊
V (Ti) and E(S) = {(aj , aj+1)}j=1,2...,s−1 ⊊ E(Ti) are in-
cluded (see Fig. 2). We assume an edge ec = (a1, as) ∈ E(G)
adds a potential cycle to Ti if ec ∈ E(S). By summing up
Eqn. (8-i) for all edges e ∈ {ec} ∪ E(S), we have:

f i
ec,a1

+ f i
ec,as

+
∑

e∈E(S)

(
f i
e,u + f i

e,v

)
= xi

ec + s− 1 (13)

Denote edge set Fi = E(Ti)/E(S)/{ec}, by summing up
Eqn. (9-i) for all vertices v ∈ V (S), we have:∑

v∈V (S)

∑
e∈E
e∼v

f i
e,v

= f i
ec,a1

+ f i
ec,as

+
∑

e∈E(S)

(f i
e,u + f i

e,v) +
∑

v∈V (S)

∑
e∈Fi
e∼v

f i
e,v

≤ s · (1− 1

|V |
)

combining with Eqn. (13), we get the following inequality:

xi
ec ≤ 1− s

|V |
−

∑
v∈V (S)

∑
e∈Fi
e∼v

f i
e,v < 1 (14)

thus xi
ec ∈ {0, 1} can only be 0, which implies that there

cannot be any cycle in Ti,. Recall that Ti is either a single
tree or a forest with cycles, Ti now must be a single tree.
Therefore, we have proved ∀i ∈ I , the subtree Ti must be a
single tree if the Tree group constraint holds. ■

The proposed MIP model has O (k(|V |+ 3|E|)) variables
and O

(
|V |+ k(3 + |E|+ |V |) + kd̄|V |

)
constraints, where d̄

is the average degree of vertices depending on the structure
of the MMRTC instance graph. In this paper, all MMRTC
instance graphs are 2D 4-neighbor grids; thus d̄ = 4.

V. EFFICIENT SUBOPTIMAL HEURISTICS

Although the MIP model is guaranteed to provide optimal
MMRTC solutions given sufficient runtime, it becomes im-
practical to handle large-scale instances due to limited runtime
and memory. However, we have observed that in optimal
or near-optimal solutions of MMRTC instances, each subtree
typically covers a neighborhood around its root, which tends to
be far from the roots of other subtrees. Therefore, we propose
a heuristic approach to reduce the size of the MMRTC MIP
model by generating a graph Hi for each subtree Ti and
preventing Ti from covering the vertices of Hi. Formally,
we refer to Hi as the inferior graph of Ti. To achieve this
reduction, we replace the original terrain graph G for each Ti

in the MIP model with a residual graph obtained by removing
all the vertices and edges of Hi from G. Consequently, all
the vertex, edge, and flow variables associated with Hi are
removed from the MIP model for each Ti.

(a) Parabolic Removal Heuristics (b) Subgraph Removal Heuristics

Fig. 3: Proposed suboptimal heuristics on the root vertex (red
star) to all other root vertices (colored circles). Black squares,
black crosses, and black dots are obstacles, inferior graph
vertices, and residual graph vertices, respectively.

Based on the above observation, we also propose to generate
a good inferior graph Hi for each Ti by heuristically identi-
fying its sub-component Hij with respect to each subtree Tj

with j ∈ I/{i} such that the vertices of Hij are not to be
included in Ti since they are closer to the root rj of Tj and
thus inefficient to be covered by Ti. The inferior graph of Ti

is then the union of all the k − 1 sub-components, namely
Hi =

⋃
j∈I/{i} Hij .

By reducing the size of the MIP model using inferior
graphs, we sacrifice optimality as the search space is reduced.
However, the reduced-size MIP models should still remain
complete, that is, each subtree remains a spanning tree rooted
at its respective root vertex, and all subtrees jointly cover
all vertices from V . The following lemma shows that, if
V (Hij) ∩ V (Hji) = ∅, then any vertex of the inferior graph
Hi of subtree Ti must not be in the inferior graph Ho of at
least one other subtree To (and thus remain in the residual
graph of To).
Lemma 2. For all i ∈ I , if ∀j ∈ I/{i}, V (Hij)∩V (Hji) = ∅,
then ∀v ∈ Hi, there exists o ∈ I such that v /∈ V (Ho).
Proof. To establish the statement ∀v ∈ Hi, there exists o ∈ I
such that v /∈ V (Ho), it suffices to prove that for each j ∈
I/{i}, ∀v ∈ Hij , there exists o ∈ I such that v /∈ V (Ho). If
V (Hij) ∩ V (Hj) = ∅, then it follows that ∀v ∈ V (Hij), v /∈
V (Hj). For the case where V (Hij)∩V (Hj) ̸= ∅, we can show
that the statement holds as long as there exists p ∈ I/{i, j}
such that Q = V (Hij) ∩ V (Hjp) ̸= ∅, given that V (Hij) ∩
V (Hji) = ∅. We assume, for a proof of contradiction, that for
all p ∈ I/{i, j}, Q = V (Hij) ∩ V (Hjp) = ∅. Consequently,
V (Hij) ∩ V (Hj) = V (Hij) ∩

⋃
p∈I/{i,j} V (Hjp) = ∅, which

leads to a contradiction. ■
Therefore, we design two heuristics in the following sub-

sections based on the principle that V (Hij) ∩ V (Hji) = ∅ to
guarantee the completeness of the reduced-size models.

A. Parabolic Removal Heuristic (PRH)

For each i ∈ I and j ∈ I/{i}, we define a parabola Ωij :
y′ = (aijx

′)2 under an Cartesian coordinate system o(x′, y′),
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Algorithm 1: Connectivity-Check
Data: G = (V,E), ri ∈ R, Hi

Result: updated inferior graph Hi for Ti

1 Cr ← connected component of ri in Hi

2 C ← list of connected components of Hi

3 for C ∈ C/{Cr} do
4 v ← vertex of C nearest to residual graph G−Hi

5 π ← shortest path from v to ri
6 Hi ← (V (Hi)/V (π), E(Hi)/E(π))

7 return Hi

with the root vertex rj as its base and ray ri → rj as its
symmetric axis. The width aij of Ωij is:

aij = α · σ [d(rj , cij)/d(ri, rj)] (15)
where α ≥ 0 is a parameter to adjust the parabola width,
d(·, ·) is the shortest path distance between two vertices on G,
and σ(·) is the logistic function that smooths the influences of
the two distances. In addition, cij = argmax v∈B [d(ri, v) −
d(rj , v)] is the vertex selected from the graph boundary vertex
set B, which is the set of vertices whose degrees are less than
4 in a 2D 4-neighbor grid graph. Such a design follows the
aforementioned intuition in the sense that the vertices residing
above Ωij are not likely to be covered by the subtree Ti rooted
at ri, and Ωij becomes smaller when ri is close to rj or rj
is close to the graph boundary. When α = 0, Ωij is a straight
line perpendicular to ri → rj .

Let the graph induced by the inner area of Ωij be the
sub-component Hij of Hi for arbitrary i, j ∈ I, i ̸= j, the
Parabolic Removal Heuristic (PRH) obtains the residual graph
for Ti by removing the vertices and edges of Hi from G.
Fig. 3-(a) demonstrates the relationship between the parabolas
and their resulting inferior graph and residual graph with
PRH. For each subtree, the resulting residual graph might be
disconnected after the removal of vertices and edges of the
inferior graph. Therefore, we adopt Alg. 1 for connectivity
check to ensure the residual graph of each subtree is still
connected. We call the reduced-size MIP model after PRH
and connectivity check as MIP-PRH.
Theorem 3. MIP-PRH is complete for MMRTC instances.
Proof. We need to prove MIP-PRH produces only feasible
MMRTC solutions after the vertex, edge, and flow variables
corresponding to Hi removed for each Ti; that is, the vertex
set union from all subtrees’ residual graphs equals the vertex
set of the original graph and each residual graph is connected.
As we adopt Alg. 1 for connectivity check, we only need to
prove that for any vertex of Hi, it is not included in at least
one other subtree. According to the construction rules of the
parabolas in PRH, it satisfies that Ωij ∩Ωji = ∅ for all α ≥ 0
thus Hij ∩ Hji = ∅ holds for arbitrary i, j ∈ I, i ̸= j. It
follows that based on Lemma 2, we have ∀v ∈ Hi,∃ o ∈ I
such that v /∈ V (Ho), which concludes the proof. ■

B. Subgraph Removal Heuristic (SRH)

Unlike the geometric approach used in PRH, the Subgraph
Removal Heuristic (SRH) generates the sub-components of

Algorithm 2: Subgraph-Removal-Heuristics
Data: G = (V,E), ri ∈ R, bij
Result: inferior graph Hi of Ti

1 Hi ← (∅, ∅)
2 B ← the set of boundary vertices of graph G
3 for rj ∈ R/{ri} do
4 Sij ← {v | d(ri, v) > d(rj , v), v ∈ V }
5 cij ← argmax v∈B [d(ri, v)− d(rj , v)]
6 Hij ← Farthest-First-Search tree rooted at cij on the

subgraph induced by Sij until |V (Hij)| > bij
7 Hi ← (V (Hi) ∪ V (Hij), E(Hi) ∪ E(Hij))

8 return Connectivity-Check(G, r,Hi)

each inferior graph from a graph perspective as described in
Alg. 2. Given a root ri ∈ R and another root rj ∈ R/{ri},
we use the Farthest-First-Search (FFS) to generate the sub-
component Hij (see line 6 of Alg. 2). The FFS is just a
Breadth-First-Search starting from ri with the queue priori-
tized by the distance from each vertex to ri that ensures the
vertex farthest to ri is first included in the FFS tree during the
traversal, where the FFS tree size is restricted by the maximal
number bij of vertices given by:

bij = ⌈β · |Sij | · σ [d(ri, rj)/d(rj , cij)]⌉ (16)
where β is a parameter to adjust bij , and larger bij results more
areas to be removed and vice versa. Sij is a set of vertices
defined in line 4 of Alg. 2 whose inducing subgraph the FFS
will be performed on. As we can see, the construction of the
FFS tree also follows the intuition mentioned earlier, where
the vertices of the FFS tree are not likely to be covered by the
current subtree. Similar to PRH, we also need the connective
check (see line 8 of Alg. 2) to ensure the connectivity of each
residual graph. Once we have the inferior graph Hi returned
by SRH for each Ti, we obtain the MIP-SRH model which
only considers variables relating to the residual graph of each
subtree. Fig. 3-(b) demonstrates the inferior graph, the residual
graph of one subtree with SRH, where the colored regions
correspond to each Sij .
Theorem 4. MIP-SRH is complete for MMRTC instances.
Proof. The proof follows the same derivation in Theorem 3
for MIP-PRH. Since the FFS (line 6) in Alg. 2 is performed
in the subgraphs induced by two disjoint vertex sets Sij and
Sji, we have Hij ∩ Hji = ∅ for all β ≥ 0. Thus we have
∀v ∈ Hi,∃ o ∈ I such that v /∈ V (Ho) based on Lemma 2,
which concludes the proof with the connectivity check. ■

C. Efficiency-Optimality Tradeoff

To verify the effectiveness of the two proposed heuristics,
PRH and SRH, we conduct an empirical study on several
selected MMRTC instances from Fig. 5. The results are shown
in Fig. 4, where we demonstrate the effectiveness of the
variable removals and the corresponding loss of optimality
for the MIP-PRH and MIP-SRH models. We evaluate the
suboptimality by comparing the lower bounds on the objective
value returned by branch-and-bound based MIP solvers (e.g.,
Gurobi [35]) within a 10-minute runtime, which are computed
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Fig. 4: Empirical study on MIP-PRH (crosses and dashed
lines) and MIP-SRH (circles and solid lines). Left: Percentages
of the number of variables reduced from the original MIP
model. Right: Gaps of the obtained lower bounds (with the
10-minute optimization) for MIP-PRH and MIP-SRH over the
original MIP model.

through the linear relaxation of the MIP models during the
optimization process. Based on our empirical findings, both
removal heuristics have demonstrated their effectiveness in
significantly reducing the number of variables in the MIP
model. On average, PRH achieves a reduction of 42.8%,
while SRH achieves a reduction of 50.3%. However, there
is a tradeoff with optimality, resulting in an average loss
of 2.86% for PRH and 12.7% for SRH. In general, SRH
tends to be more versatile than PRH due to its ability to
generate superior inferior graphs by considering the underlying
graph structures. These observations are supported by the
experimental evaluations in Sec. VI. To balance efficiency
and optimality, we recommend selecting a smaller value of
α for PRH or a larger value of β for SRH when the runtime
or memory is limited, or do the opposite to achieve better
solution quality when optimality matters more and resources
are sufficient.

VI. EXPERIMENTS

In this section, we present detailed experimental results on
our proposed MIP model and its two heuristics variants, MIP-
PRH and MIP-SRH, including the use of model optimization
warm-startup and the performance comparisons with two state-
of-the-art MCPP planners. Tab. I specifies the details of the
MMRTC instances used for MCPP performance evaluation.
All instances are visualized in Fig. 5 except that floor-small is
visualized in Fig. 1-(b). The terrain graphs of terrain-large-1
and terrain-large-2 are generated from two large-scale outdoor
satellite maps [21], where the graph vertices are weighted
by the estimated traversability. For instances with weighted
terrains, the weights range from 1 to 4 with a float precision
of 3, whereas instances with unweighted terrains have uniform
edge weights of 1. Our implementation employs Python to
build the proposed MIP models and adopts Gurobi [35] as the
MIP solver with up to 16 threads. All experiments are executed

terrain-small maze-small floor-medium

terrain-medium maze-medium floor-large

maze-large terrain-large-1 terrain-large-2

Fig. 5: MMRTC instances for MCPP performance evaluation.
Grey circles and lines, black squares, and red circles are the
terrain graphs, obstacles, and root vertices, respectively.

Instance Grid spec. % of obs. |V| |E| k # of vars. weighted
floor-small 5× 10 8.0% 46 73 4 1061 ×

terrain-small 10× 10 20.0% 80 121 8 3545 ✓
maze-small 10× 10 40.0% 60 60 6 1441 ×

floor-medium 20× 20 19.0% 324 524 12 22753 ×
terrain-medium 20× 20 0.0% 400 760 4 10721 ✓
maze-medium 20× 20 39.0% 244 303 6 6919 ×

floor-large 30× 30 15.56% 760 1370 4 19481 ×
maze-large 30× 30 38.56% 553 717 8 21633 ×

terrain-large-1 32× 32 27.83% 739 1275 4 18257 ✓
terrain-large-2 32× 32 19.53% 824 1495 4 21237 ✓

TABLE I: Specifications for MMRTC instances. The header
row corresponds to the instance name, the grid width and
height, percentage of obstacles, number of vertices, number of
edges, number of subtrees, number of variables, and whether
the instance terrain is weighted, respectively.

on an Intel® Xeon® Gold 5218 CPU operating at 2.30 GHz.
Our code is open-sourced and available on Github1.

A. Model Optimization Warm-Startup

In this subsection, we investigate and discuss the use of the
model optimization warm-startup technique in our proposed
MIP models. This technique allows the MIP solver to initialize
the values of all variables with a feasible solution, typically
obtained from a polynomial-time approximation algorithm.
This technique has been empirically shown to significantly
reduce the time required to find the optimal solution. It proves
advantageous and is commonly employed when solving large-
size and intricate models, where finding a feasible solution can
be computationally expensive.

1https://github.com/reso1/MIP-MCPP.

https://github.com/reso1/MIP-MCPP
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Instance Model Warm 0.15 0.3 0.45 0.6 0.75 0.9 +∞/0

terrain-
medium

MIP-
PRH

× 218 228 209 307 308 / /
✓ 225 231 226 223 242 225 219

MIP-
SRH

× / 215 209 209 209 239 /
✓ 230 250 235 211 209 239 219

maze-
medium

MIP-
PRH

× / / / / / / /
✓ 49 52 58 64 54 53 91

MIP-
SRH

× / 44 / 47 46 51 /
✓ 61 46 48 47 47 51 91

floor-
large

MIP-
PRH

× 229 / / / / / /
✓ 229 580 610 639 624 679 288

MIP-
SRH

× / / / / / 273 /
✓ 665 595 374 350 226 273 288

TABLE II: Objective (i.e., τ ) values with and without the use
of model optimization warm-startup in different MIP models
with a 10-minute runtime limit. According to the header row
from left to right: 1) the column Warm represents whether
warm-startup is used; 2) the columns from 4th to 9th represent
the parameters (i.e., α or β) used in each corresponding MIP
models, and 3) the last column represents the original MIP
model.

To apply the model optimization warm-startup technique
to our MIP models, we use the modified version of the
RTC [25] algorithm proposed in [19] to produce an initial
feasible solution for the original MIP model and use the
minimum spanning trees on the residual graphs of the rooted
subtrees as feasible solutions for the MIP-PRH and MIP-
SRH models. Tab. II shows that this technique allows MIP,
MIP-PRH, and MIP-SRH to quickly find feasible solutions
for all instances within the given 10-minute runtime limit,
which may not be possible without the technique. Furthermore,
when the technique is applied, the resulting solutions for
MIP-PRH and MIP-SRH exhibit decreased sensitivity to the
values of their respective parameters (i.e., α and β). Overall,
it is generally advantageous to employ the technique for our
proposed MIP models, even though we have observed cases
where the technique yields slightly worse solutions.

B. Performance Comparison

In this subsection, we validate the effectiveness of our
MIP-based MCPP planner by comparing it with two state-
of-the-art MCPP planners, MFC [19], and MSTC∗ [21]. All
these planners are based on applying STC on the terrain
graph of the given MCPP instance, which ensures a fair
comparison. Tab. III reports the coverage times, as defined
in Sec. III, and runtimes. Note that our planner uses the
original MIP model only for the floor-small instances with
around 1k variables. The runtime for large-size instances is
significantly long without applying PRH or SRH to restrict
the number of variables in the MIP model. Therefore, for
other instances, our MIP-based planner first performs two
quick parameter searches from the set {0.3, 0.6, 0.9} for the
α parameter of MIP-PRH and the β parameter of MIP-SRH
within a short runtime (i.e., 2% of the runtime limit for each
candidate), respectively, and then selects the best candidate
that results in a MIP model with the smallest lower bound
to solve with the remaining runtime (i.e., 88% of the runtime
limit). These parameter searches aim to minimize optimization

Instance Method ct rt Instance Method ct rt

floor-
small

MFC 23.0 0.029
maze-
small

MFC 14.0 0.034
MSTC∗ 21.0 0.016 MSTC∗ 36.0 0.052

MIP 16.0
(0.0%) 20.25 MIP-PRH

(α=0.9)
11.0

(0.0%) 0.064

terrain-
small

MFC 36.12 0.073
terrain-
medium

MFC 368.2 0.576
MSTC∗ 36.98 0.057 MSTC∗ 269.5 0.320

MIP-SRH
(β=0.9)

28.41
(2.9%) 600 MIP-SRH

(β=0.6)
248.8
(1.0%) 3.6e3

floor-
medium

MFC 55.0 0.686
maze-

medium

MFC 79.0 0.349
MSTC∗ 47.5 0.174 MSTC∗ 65.0 0.340

MIP-SRH
(β=0.9)

29.0
(7.1%) 3.6e3 MIP-SRH

(β=0.3)
52.5

(0.0%) 4.936

floor-
large

MFC 294.0 2.368
maze-
large

MFC 105.0 0.997
MSTC∗ 212.5 0.094 MSTC∗ 139.5 0.575

MIP-PRH
(α=0.3)

208.0
(8.7%) 1.08e4 MIP-SRH

(β=0.9)
91.5

(0.0%) 54.32

terrain-
large-1

MFC 597.4 1.672
terrain-
large-2

MFC 575.9 2.520
MSTC∗ 468.6 1.930 MSTC∗ 487.7 0.898

MIP-PRH
(α=0.9)

436.7
(10%) 2.16e4 MIP-SRH

(β=0.6)
454.4
(1.2%) 1.08e4

TABLE III: Results for different planners. The columns ct and
rt report the coverage time and the runtime in seconds. The
percentage within each cell of the MIP-based planner reports
the gap of the obtained objective (i.e., τ ) value of the MIP
models to the obtained lower bound.

loss while benefiting from the efficiency provided by PRH
and SRH. All MIP models are solved with warm-startup, and
their reported runtimes include the computation time of their
respective warm-startup solutions.

Overall, our MIP-based MCPP planner consistently delivers
superior solution quality, resulting in an average reduction
in coverage time of 27.65% and 23.24% compared to MFC
and MSTC∗, respectively. The performance improvements
are significant across different instance types. Specifically,
the average reduction ratios compared to MFC and MSTC∗

are 22.61% and 41.03% for maze instances, 35.65% and
21.62% for floor instances, and 25.43% and 11.11% for
terrain instances, respectively. Notably, our MIP-based planner
performs exceptionally well for maze instances with rela-
tively shorter runtimes. However, when the root vertices are
clustered, particularly in a straight line, the proposed MIP
models may result in a smaller reduction in coverage time.
This is due to the increased likelihood of the inferior graphs
of roots coinciding, requiring more time to converge. Fig. 6
demonstrates the planning results of MFC, MSTC∗, and MIP-
SRH for the terrain-large-1 instance.

VII. CONCLUSIONS AND FUTURE WORK

We studied time-optimal MCPP in multi-robot systems,
aiming to minimize the coverage time. We formulated MCPP
on a graph abstraction of the terrain with spanning tree
coverage, where an optimal solution can be obtained with
an asymptotic optimality ratio of 4 if its reduced MMRTC
instance is solved to optimal. We proposed a MIP model to
optimally solve the NP-hard MMRTC problem for the first
time and two suboptimal heuristics to reduce the model size
if given limited runtime and memory. Experimental results
showed that our proposed MIP-based MCPP planner is com-
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MFC

MSTC* MIP-SRH (𝛽=0.6)

The terrain to be covered

Fig. 6: MCPP simulation results on the terrain-large-1 in-
stance [21] by MFC, MSTC∗ and MIP-SRH (β=0.6). Lines
with different colors represent coverage paths resulting from
circumnavigating the rooted subtrees via STC [17].

petitive and significantly more effective than state-of-the-art
MCPP planners at the cost of more runtime.

Future work can include developing specialized heuristics
for instances with clustered root vertices to improve our MIP-
based MCPP planner. For large-scale MMRTC instances, data-
driven methods can be used to train a model to stitch or merge
sub-solutions from relatively smaller instances decomposed
from the original instance. Sophisticated meta-heuristics can
also be designed to select the best MIP model and parameters
for different scenarios. Furthermore, our proposed MIP model
can be extended to other variants of MCPP, such as those that
consider inter-robot collision avoidance, turning minimization,
or robots with limited coverage capacity.
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