
An Investigation into Spectral Sequencing
using Graph Distance

Rong Liu, Hao Zhang, and Oliver van Kaick

GrUVi Lab, School of Computing Sciences,
Simon Fraser University, Burnaby, British Columbia, Canada

{lrong, haoz, ovankaick}@cs.sfu.ca

Technical Report TR 2006-08
School of Computing Science

Simon Fraser University

Abstract. The construction of linear mesh layouts has found various
applications, such as implicit mesh filtering and mesh streaming, where
a variety of layout quality criteria, e.g., width and span, can be consid-
ered. Similar linear sequencing problems have also been studied in the
context of sparse matrix reordering and graph labeling, where width and
span correspond to vertex separation and bandwidth, respectively. One
of the best-known heuristics for generating width-minimizing orderings is
spectral sequencing, which is derived from the Fiedler vector. In terms of
span however, other heuristics, such as the Cuthill-Mckee (CM) scheme,
generally outperform spectral sequencing. In this paper, we study the
general linear sequence generation as a problem of preserving graph dis-
tances and propose to use for sequencing the subdominant eigenvector of
a kernel (affinity) matrix, defined by graph distances and appropriately
chosen transfer functions. The use of Laplacians can then be seen as a
special case, where a step transfer function of unit width is applied. De-
spite the non-sparsity of the kernel matrix we use, the sequences can be
computed efficiently for problems of large size through subsampling and
eigenvector extrapolation. When applied to mesh layouts generation, we
show experimentally that the sequences obtained using our algorithm
outperform those derived from the Fiedler vector, in terms of spans, and
those obtained from CM, in terms of widths and other important qual-
ity criteria. Therefore, in applications where several such quality criteria
can influence algorithm performance simultaneously, e.g., mesh stream-
ing and implicit mesh filtering, the new mesh layouts could potentially
provide a better trade-off.

1 Introduction

The computation of linear mesh layouts is an instance of the general graph
layout problem [1], where an optimal labeling or ordering of the vertices of a
given graph is sought. Many optimization problems, from diverse fields, can be

2 R. Liu, H. Zhang and O. van Kaick

formulated as graph layout problems; these include sparse matrix reordering in
numerical analysis [2–5], circuit layout in VLSI design [6], DNA sequencing in
computational biology [7], archaeological dating, as well as ranking problems in
geography [8] and information retrieval [9]. A variety of layout costs have been
considered and most of them lead to NP-hard optimization problems [1].

The mesh layout problem is of interest since the application-based optimal
sequencing of the mesh faces, vertices, or higher-order entities, e.g., nodes in
a multiresolution or bounding volume hierarchy [10], can lead to superior per-
formance for rendering [11, 10] and geometry processing [10, 12–14], typically
without modifying the run-time algorithm. Such reordering can also make large
mesh data more streamable [15] and facilitate stream processing, e.g., in mesh
simplification [16]. Layout costs relevant to these applications include width and
span [15] for mesh streaming, matrix profile, workbound , and bandwidth [2, 4, 3]
for solution of sparse linear systems related to mesh processing, e.g., in implicit
mesh fairing [13, 14], as well as average cache miss ratio (ACMR) for render-
ing [11]. A variety of heuristics, including spectral sequencing [2, 4], breadth-
first search and its variants [3, 10, 16], space-filling curves [11], and multi-level
schemes via optimized local permutations [10, 17], have been proposed.

We notice that most of the abovementioned layout costs are related to how
well the adjacency information in the mesh or model hierarchy is reflected in the
linear layout, to ensure global coherence and locality preservation. Therefore,
we propose a new spectral sequencing algorithm based on the graph distances
to preserve locality information, as a solution to minimize the various layout
costs, including width and span, without being limited to any specific criterion.
It is worth pointing out that since the ACMR is defined on a different type
of criterion and its goal is very different, it is not a concern of and addressed
by our algorithm. The basic idea of our approach is to compute, from within a
high dimensional feature space which provides a spatial embedding of the mesh
graph vertices, a distance-preserving 1-D projection and use this projection to
derive the ordering. Our algorithm is analyzed in the context of kernel principal
component analysis (Kernel PCA), which is, to the best of our knowledge, a
new way of studying the sequencing problem. Our analysis allows us to motivate
the use of an uncentered kernel matrix (for efficiency) and its subdominant
eigenvector to compute mesh layouts. The general framework we develop also
sheds light on possible further improvements in spectral sequencing.

From a practical point of view, the sequences obtained with our algorithm
outperform those derived from the Fiedler vector, in terms of spans, and those
obtained from CM, in terms of widths, profiles, workbounds, and a few other
important quality criteria. Thus in applications where several such criteria can
influence algorithm performance simultaneously, e.g., mesh streaming and im-
plicit mesh filtering, the new mesh layouts would potentially provide a better
trade-off. In terms of computational cost, although the kernel matrix we arrive at
is in general non-sparse, approximate eigenvector computation via subsampling
and extrapolation using the Nyström method [18] allows us to compute layouts

Investigation into Spectral Sequencing using Graph Distance 3

for large meshes efficiently. Compared to algebraic multi-grid methods, such as
ACE [19], Nyström approximation is much simpler and just as fast.

The rest of the paper is organized as follows. In Section 2, we define the
graph layout problem and several layout costs and explain their relevance to
some geometry processing problems. A few well-known heuristics are briefly
described as well. To make the paper self-contained, we review Kernel PCA in
Section 3. We then describe, in Section 4, our spectral sequencing algorithm.
Various practical issues, such as subsampling for efficient layout computation,
are addressed in Section 5. Experimental results are given in Section 6. Finally,
we conclude and suggest possible future work.

2 The graph layout problem and heuristic algorithms

Consider a weighted graph G = (V, E, w) with V = {v1, . . . , vn} the set of
vertices, E the set of edges, and w : E → R the edge weights. A (linear) layout
of G is a labeling π of its vertices, π : V → {1, 2, . . . , n}. Depending on the
application at hand, one seeks to find a graph layout that minimizes certain
layout cost. For a real number 0 < p < ∞, the p-discrepancy [8] of G with
respect to a layout φ is defined as

σp(G, π) =

(∑

uv∈E

wuv|π(u)− π(v)|p
)1/p

,

and for p = ∞, σ∞(G, π) = maxuv∈E |π(v) − π(v)|. The ∞-discrepancy is also
called the bandwidth of a layout. The minimum value σp(G) = minπ σp(G, π), 0 <
p ≤ ∞, is called the min-p-sum of the graph G. Good bounds on σp(G) are
important but are nontrivial to obtain; see the survey of Mohar and Poljak [8].

LetA be the graph adjacency matrix of G, then the ∞-discrepancy can be
written as max1≤i≤n maxj<i,Aij 6=0(i − j), which is seen to represent the band-
width of the (symmetric) matrix A [3]. Two other matrix-based measures that
have important implications in the solution of sparse linear systems are the pro-
file or envelope size [2] and workbound [4] of a matrix, defined as follows, with
q = 1 and q = 2, respectively,

n∑

i=1

max
j<i,Aij 6=0

(i− j)q.

These measures are closely related to the 1-discrepancy and the 2-discrepancy,
respectively, where the graph layout is induced by the matrix ordering. The 1-
discrepancy is also the cost for the well-known minimum linear arrangement or
MinLA problem for graphs [17]. The MinLA problem can also be generalized to
hypergraphs, which is adopted by Bogomjakov and Gotsman [11] for comput-
ing efficient rendering sequences. Another important layout cost measure is the
vertex separation [1], defined as

max
1≤i≤n

| {π(u) ≤ i : ∃π(v) > i, uv ∈ E} |

4 R. Liu, H. Zhang and O. van Kaick

Intuitively, it measures, at a certain point of the linear layout, the number of
edges for which only one end vertex has been visited.

Several problems in mesh processing benefit from having an optimized mesh
layout, where we either work with the primal graph (for vertex sequencing) or its
dual graph (for face sequencing). Of particular interest in streaming meshes [15]
are span and width, which correspond to bandwidth and vertex separation, re-
spectively. The width of a layout gives a lower bound on the memory required
to store the set of active mesh vertices in the stream at any time, while span is
an upper bound on the time any vertex stays active; it also bounds the number
of bits needed for relative vertex indexing. Both span and width influence mesh
streamability. Profile, workbound, and bandwidth all affect the cost of Cholesky
factorization [3], which becomes necessary when large sparse linear systems for
the implicit mesh filtering problem need to be solved [13, 14].

The optimization problems associated with most of the criteria mentioned so
far are NP-hard [1]. Polynomial-time approximation algorithms exist for many
layout problems [1], e.g., the O(n2.2) algorithm [20] for MinLA, but the time
complexity prevents their use on large graphs. In practice, one resorts to effi-
cient heuristic solutions. One of the best known heuristics for minimizing span
(bandwidth) is the Cuthill-Mckee (CM) scheme [21]. The reverse CM (RCM)
scheme [3] reverses the final order obtained with CM; compared with CM, this
always reduces the profile while keeping the bandwidth unchanged. Both CM
and RCM essentially conduct a degree-oriented breadth-first search. For the
other costs we have mentioned so far, spectral sequencing using the Fiedler vec-
tor has been quite successful empirically. Let A be the adjacency matrix of a
weighted graph and D a diagonal matrix of A’s row sums, then the Fiedler vec-
tor e, i.e., the eigenvector corresponding to the first non-zero eigenvalue of the
graph Laplacian L = D −A is known to minimize

∑

(u,v)∈E

Auv[(eu − ev)]2, where ei is the i-th entry of e and
∑

i∈V

ei = 0.

By sorting the entries of e, the corresponding vertex ordering is obtained. The
above quantity can be seen as a continuous relaxation of the min-2-sum for
graphs and so far this has been the main motivation for using the Fiedler vector
as a heuristic for computing optimal graph layouts [2, 8].

3 Kernel principal component analysis: a review

To make the paper self-complete, we brief in this section the Kernel PCA, which
is utilized by our algorithm to derive sequences.

Given a set of points X = {xi ∈ Rd, i = 1, . . . , n}, principal component analy-
sis (PCA) finds the orthogonal major components of X as the eigenvectors of the
covariance matrix CX = 1

n

∑n
i=1 (xi − x̄i)(xi − x̄i)T , where x̄ =

∑n
i=1 xi. The

first principal component accounts for the direction along which the projections
of X have the largest variation, and each subsequent component accounts for an
orthogonal direction along which as much of the remaining variation as possible

Investigation into Spectral Sequencing using Graph Distance 5

lies. As a convention, we say an eigenvector is “larger” when its corresponding
eigenvalue is larger.

Instead of working on X directly, Kernel PCA (KPCA) [22] first applies
a mapping φ : Rd → F ,x 7→ φ(x) to transform X to φ(X) = {φ(xi)} and
carry out PCA on φ(X), where F is called the feature space that may have a
much higher, and possibly infinite, dimensionality. The mapping φ allows for
an “unfolding” of the non-linear structures of X into linear ones in F , where a
linear algorithm can be effective. Since the feature space F could have infinite
dimensionality, φ is never explicitly defined, but implicitly defined by a kernel
k(xi,xj) = 〈φ(xi), φ(xj)〉.

Denote by ξ1, ξ2, . . . , ξn the major components of φ(X) and let K be the
kernel matrix, with Kij = k(xi,xj) and (λi,Ui) its ith largest eigenvalue-
eigenvector pair. It is shown [22] that the projection of φ(xi) onto the component
ξm is

ym
i = 〈ξm, φ(xi)〉 =

1√
λm

n∑

j=1

Uj
mK(i, j). (1)

Note that the discussion so far assumes that points in φ(X) are centered; other-
wise the points have to be centered first, indirectly by transforming K through
the following equation

K := (I − 1
n
11T)K(I − 1

n
11T), (2)

where 1 is the column vector of 1’s. We will show in Section 5.2 how our algorithm
can bypass this step for efficient computation of mesh layouts.

If the relation between data, in our case the graph vertices, can be mod-
eled by a kernel matrix, Kernel PCA provides a way to embed the data into a
high dimensional feature space. By finding an appropriate 1-D projection of the
embeddings, we can derive a linear mesh layout that has desirable properties.

4 Spectral sequencing for graph layout

In this section, we present our spectral sequencing algorithm for graph layouts,
where an eigenvector of a kernel 1 matrix is used for labeling. Although we focus
on mesh layouts, our discussions in this section are cast in the general context
of graph layouts. To produce a sequence of mesh vertices or faces, the graph of
interest can be set to the primal graph or the dual graph of the mesh, respectively.
For the mesh layout problem we currently consider, edge weights will be assumed
to be unit. Our approach however can trivially adapt to weighted graphs.

As mentioned before, our algorithm is not targeted to minimizing any specific
layout cost; instead, it is designed to preserve the global coherence and locality
information of the graph. In other words, we stipulate that to minimize the

1 Since the entries of the kernel matrix also measure the affinities between data, we
might use the terminology affinity matrix and kernel matrix interchangeably.

6 R. Liu, H. Zhang and O. van Kaick

various layout costs, such as width, span, profile, workbound, etc., it is desirable
for close-by graph vertices, based on connectivity and edge weights, to be close
in the sequence. Take the min-1-sum problem for example. If all the adjacent
vertices in the graph were consecutive in the sequence, the closest possible in
1-D, an optimal layout would be obtained.

This is of course not possible in 1-D in general, but we can look for an
embedding φ of the graph vertices in a high dimensional space, in which adjacent
vertices are always closer to each other. To obtain the final sequence, the vertices
are projected onto a vector, with the condition that their mutual distances are
preserved as mush as possible. Given a graph G =< V, E >, |V | = n with unit
weights on edges, the following is the overview of our algorithm:

1. Calculate the graph distance, g(vi, vj), between each pair of vertices.
2. Compute an embedding φ(V) = {φ(vi)} of V , such that given any vertex v,
∀(i, j), ||φ(v)− φ(vi)||2 < ||φ(v)− φ(vj)||2, if and only if g(v, vi) < g(v, vj).

3. Project points in φ(V) onto a vector p∗, along which their relative positions
are preserved as much as possible.

4. Sort the projections of φ(V) on p∗ to obtain the resulting sequencing of the
vertices.

If the projections of φ(V) onto p∗ were distortion-free, meaning that the order
among distances between vertices is totally preserved, the optimal layout in our
setting would result. Note that, for the sake of clarity, we ignore several practical
issues for the time being; they will be addressed in detail in Section 5.

4.1 Embedding

To find the embedding φ(V), with φ : V → F , v 7→ φ(v), we resort to the
concepts from Kernel PCA briefed in Section 3. The first step is therefore to
construct the kernel (affinity) matrix K which implicitly defines φ. To this end,
we start by building a distance matrix W , where Wij = g(vi, vj) is the graph
distance between vi and vj .

Once W is computed, the next step is to convert it into the kernel matrix K
using a certain kernel function. One of the most popular kernels is the Gaussian
radial basis function,

k(xi,xj) = e−
||xi−xj ||2

2δ2 , (3)

where δ is the kernel width. Then we have Kij = k(vi, vj) = 〈φ(vi), φ(vj)〉 =

e−
W2

ij

2δ2 . Note that k(vi, vi), the kernel between any vertex and itself, is equal to
1, due to the fact that g(vi, vi) = 0.

Now let’s examine the Euclidean distances among the vertices in the feature
space F . Given any two vertices vi, vj , denote by Wij their distance in F , we

Investigation into Spectral Sequencing using Graph Distance 7

have:

W2
ij = ||φ(vi)− φ(vj)||2

= (φ(vi)− φ(vj))
T (φ(vi)− φ(vj))

= φ(vi)T φ(vi) + φ(vj)T φ(vj)− 2φ(vi)T φ(vj)

= 2− 2φ(vi)T φ(vj)
= 2− 2k(vi, vj)

= 2− 2e−
W2

ij

2δ2

Thus distances in F are seen to be proportional to those in the graph, in that the
order among distances between vertices in the graph is preserved in the feature
space. Specifically, since the graph edges have unit length, neighboring vertices
in the graph are always closest to each other in the feature space F . We refer to
this property as distance monotonicity.

Before we continue, we point out that the points in φ(V) are not centered
when the kernel matrix K is constructed the way described in this section. In
order for the algorithm in the following section to apply, K should be processed
using equation (2) immediately after it is constructed. As a result, φ(V) is now
centered.

4.2 Sequencing

At this point, the vertex embedding φ(V) is already known implicitly through
K. It is also true that the distances between pairs of vertices in the graph are
relatively preserved in the feature space F , in the sense that the close-by vertices
in the graph are also close in the feature space. Therefore, the positioning of the
vertices in φ(V) provides a good start to extract a vertex sequence to minimize
the various layout costs we have defined so far.

We compute a vertex sequence by projecting each φ(v) ∈ φ(V) onto a vector
p. Afterwards, the projections can be simply sorted to obtain the sequence.
Since after the projection the dimensionality of the embedding space for vertices
is reduced to 1, to obtain a smaller layout cost for the resulting sequence, it
is desirable to preserve their mutual distances, hence the relative positions, as
much as possible. To this end, we choose the optimal direction p∗ subject to the
following objective function

p∗ = argmax
p∈Rdim(F),||p||=1

∑

i<j

||pT (φ(vi)− φ(vj))||2. (4)

The underlying reasoning is quite simple. Since the length of a vector projected
onto p is always smaller than the length the original vector, collectively maxi-
mizing the sum of projected distances tends to preserve the original distances.

8 R. Liu, H. Zhang and O. van Kaick

In equation(4),

∑

i<j

||pT (φ(vi)− φ(vj))||2

=
∑

i<j

pT (φ(vi)− φ(vj)) (φ(vi)− φ(vj))
T p

= pT

(
(n− 1)

n∑

i=1

φ(vi)φ(vi)T

)
p− pT


∑

i 6=j

φ(vi)φ(vj)T


p

= pT
(
(n− 1)Cφ(V)

)
p− pT


∑

i6=j

φ(vi)φ(vj)T


p ,

(5)

where Cφ(V) =
∑n

i=1 φ(vi)φ(vi)T is the covariance matrix of the point set φ(V).
Since φ(V) is centered,

∑
j 6=i φ(vj)T = −φ(vi)T . As a result,

∑

i 6=j

φ(vi)φ(vj)T =
∑

i

φ(vi)
∑

j 6=i

φ(vj)T =
∑

i

φ(vi)(−φ(vi))T = −Cφ(V).

Substitute this into equation (5), we have

∑

i<j

||pT (φ(vi)− φ(vj))||2 = npT Cφ(V)p.

Consequently, equation (4) is maximized when p is the largest eigenvector of
Cφ(V). Namely, p∗ should be taken as the first principal component of the point
set φ(V).

If we denote the projections of the points in φ(V) onto p∗ as a vector
φ(V)p∗ , the question is how to compute φ(V)p∗ without knowing φ and p∗

explicitly. Referring to equation (1), we see that this problem can be read-
ily solved since to compute the projection of embedded points to the major
components in the feature space, all we need are the kernel matrix K and its
eigenvalues and eigenvectors. For K = UΛUT , we have U = [U1|U2|, . . . , |Un],
Λ = diag(λ1, λ2, . . . , λn), where λ1 ≥ λ2 ≥, . . . ,≥ λn are the eigenvalues. Denote
Y = [Y1|Y2|, . . . , |Yn] = [y1|y2|, . . . , |yn]T , the matrix form of equation (1) is

Y = KUΛ−
1
2 . (6)

Thus, yi is the projection of φ(vi) onto the principal components of φ(V), while
Yi contains the projections of all φ(v)’s onto the ith principal component of φ(V).
In particular, Y1 is the projections of φ(V) onto the first principal component,
hence the projection φ(V)p∗ that we want to compute. From (6), we also see
that Y = UΛΛ−

1
2 = UΛ

1
2 . As what we are interested in is the vertex ordering

given by Y1 instead of its absolute value, we can simply set Y1 := U1, ignoring
the scaling factor

√
λ1, for the sole purpose of ordering.

Investigation into Spectral Sequencing using Graph Distance 9

To summarize, the spectral sequencing algorithm itself, without dealing with
certain practical issues, turns out to be quite straightforward, though the un-
derlying theory requires non-trivial derivations. It simply constructs the cen-
tered kernel (affinity) matrix K and computes its eigenvalue decomposition
K = UΛUT . Then the entries of the largest eigenvector U1 are sorted to produce
the sequence for V , answering the graph layout problem.

5 Some practical issues

5.1 Choice of kernel function and kernel width

To convert a distance matrix to a kernel matrix, we use the Gaussian kernel,
given in equation (3). Note that other kernels, e.g., step function, exponential,
polynomial and rational polynomial kernels, are also possible. In fact, the use of
the Fiedler vector can be seen as a special case of our general paradigm, when
applied to the dual mesh graph. Specifically, the dual graph of a triangle mesh is
3-regular. Thus the eigenvectors of the graph Laplacian L = D−A coincide with
the eigenvectors of A, which is an affinity matrix with a step function kernel of
width 1. We have experimented with other kernels and have not found particular
reasons to prefer one over the other, but this issue remains to be investigated in
our future work.

Another issue is the selection of the kernel width δ. In the context of spectral
clustering [23, 24], selecting an appropriate kernel width is not an easy task. The
value of δ influences the quality of the clustering result dramatically, since the
value of δ sets the threshold for considering points as from the same group or
not. However, this is not a problem for us because what is essentially decisive
in our application is the relative positioning of the embeddings in φ(V), and
this is determined by the distance monotonicity property independent of δ, as
discussed in Section 4.1.

We shall point out that the invariance of δ to the layout results is only true
when the kernel matrix K is centered. Practically, the K we use is not centered,
in which case, δ should be sufficiently large. This will be discussed in the next
section.

5.2 Avoiding centering kernel matrix K

Till now, the point set φ(V) has to be centered for our approach to apply. This
is done indirectly by pre-processing the kernel matrix K with equation (2). One
major drawback of centering K is its inefficiency when the size of K is large. As
we shall describe in Section 5.4, the full K is not available for centering due to
the subsampling, which is necessary for handling large data sets. Practically, we
therefore do not have the centered K and its dominant eigenvector U1 to derive
the sequence. Alternatively, we propose to use the subdominant eigenvector U2

of the uncentered K, which can be shown to be a close approximation to the
dominant eigenvector, Ū1, of the centered K, denoted by K̄ in what follows.

10 R. Liu, H. Zhang and O. van Kaick

Since Kii = φ(vi)T φ(vi) = 1, it is clear that each φ(vi) has unit length. Then
Kij is simply the cosine of the angle between vectors φ(vi) and φ(vj). Given any
vector φ(vi), it can be concluded that ∀j 6= i, φ(vj) sits in a cone rooted at the
origin, along vector φ(vi) and with a half angle θi, where θi is determined by the
smallest entry Kit of the ith row of K. If the kernel width δ is set to a sufficiently
large value, Kit will also be close to 1 and, accordingly, θi will be very small. This
situation is depicted in Figure 1. Each point in φ(V) is associated with a cone
and the intersection of these cones gives a region, R, in which all the points lie.
In the figure, R is indicated by the dotted closed curve. Note that the cone and
the region R are enlarged for illustration purpose. Note that if φ(V) is centered,
the region R will move to the place indicated by R̄. Roughly speaking, the idea
is to show that the major components of the points in R̄ are approximately the
same as the major components of the points in R, only shifted by one position.

)(ivφ

R

R

)(jvφ
1e

iθ

Fig. 1. Distribution of embedded points in the feature space.

Denote by Φ = [φ(v1)|φ(v2)|, . . . , |φ(vn)], then the covariance matrix of φ(V)
is given by Cφ(V) = ΦΦT . The largest eigenvector e1 of Cφ(V) is the vector p
which maximizes the variance

∑
i ||pT φ(vi)||. Since all φ(v)’s have unit length

and small angles between each other, the region R is small and the distance
between any point inside R and the origin is about 1. As a result, e1 should
roughly point from the origin to the center of R to maximize the variance,
as illustrated in Figure 1. With the same reasoning, R is “shallow” along the
direction of e1. Consequently, the space spanned by φ(V) is close to the null space
of e1. The subsequent eigenvectors {e2, e3, . . .} of Cφ(V), in the null space of e1,
are then a good approximation to the principal components which characterize
the intrinsic distribution of φ(V). On the other hand, if φ(V) is centered to

Investigation into Spectral Sequencing using Graph Distance 11

φ̄(V), R moves to R̄. We denote the corresponding centered covariance matrix
by Cφ̄(V) = Φ̄Φ̄T , where Φ̄ = [φ̄(v1)|φ̄(v2)|, . . . , |φ̄(vn)] and let {ē1, ē2, . . .} be
the leading eigenvectors of Cφ̄(V). Since φ(V) and φ̄(V) have the same intrinsic
distribution and are displaced only by a translation, they should have the same
intrinsic major components, namely we have ē1 ≈ e2, ē2 ≈ e3, etc., where the
approximation is exact if the space spanned by φ(V) coincides with the null
space of e1.

Finally, we are prepared to show that U2 ≈ Ū1. Since K̄ = Φ̄T Φ̄, it is easy
to prove that K̄ and Cφ̄(V) have the same eigenvalues and Φ̄T ē1 is the largest
eigenvector of K̄, i.e. Ū1 = Φ̄T ē1. Similarly, U2 = ΦT e2. Therefore, we only
need to show that Φ̄T ē1 ≈ ΦT e2. Let us write ψ = 1

n

∑
i φ(vi), then we have

ΦT = Φ̄T +1ψT . Therefore ΦT e2 = (Φ̄T +1ψT)e2 = Φ̄T e2+1ψT e2 ≈ Φ̄T ē1+0 =
Φ̄T ē1. Recall that ē1 ≈ e2 and ψT e2 ≈ 0 since ψ ≈ e1.

Figure 2 provides an experimental comparison between U2 and Ū1. The
kernel matrices K and K̄ are computed from the dual graph of a mesh with
600 faces. The kernel function in equation (3) is used. As we can see from the
plots, the approximation quality is quite good when δ is sufficiently large. In our
experiments in Section 6, we set δ to be the average of the distances computed.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

kernel width δ

||U
1 −

 U
2||

0 100 200 300 400 500 600
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

index

ei
ge

nv
ec

to
r

en
tr

y

U
1

U
2

Fig. 2. Influence of δ to the approximation quality of U2 to Ū1. The left plot shows that
||Ū1 −U2|| decreases quickly while δ increases. The right plots the two eigenvectors
when δ = 50, in which case the dominant (subdominant) eigenvalue of K̄ (K) is
λ̄1 = 24.5022 (λ2 = 24.4998), and ||Ū1 −U2|| = 0.0025.

5.3 Positive SemiDefiniteness of K

It is known in Kernel PCA literature that a valid kernel matrix has to be posi-
tive semi-definite. However, K constructed so far is generally not positive semi-
definite. To overcome this problem, K can be preprocessed to K̃ which is pos-
itive semi-definite. Suppose K = UΛUT and has r non-negative eigenvalues

12 R. Liu, H. Zhang and O. van Kaick

(λ1, . . . , λr), we can set Λ̃ = diag(λ1, . . . , λr, 0, . . .); then the kernel matrix for
use is reconstructed as K̃ := UΛ̃UT .

As a matter of fact, our experiments show that the results produced by using
either K or K̃ are almost the same. This is because albeit negative eigenvalues
exist, their number and especially magnitude are much smaller than those of
leading positive eigenvalues. This suggests that K and K̃ are quite similar and
the corresponding inferred positions of points in φ(V) are basically the same.
Therefore we simply use K for the sake of efficiency.

5.4 Subsampling

The algorithm so far is not able to handle large meshes, unless we lift the two
bottlenecks in computing the 1-D embedding U2. The first one is to compute
the distance matrix W . When Dijkstra’s algorithm is used, the complexity of
computing W is O(n2 log n). The second one is to calculate the eigenvalue de-
composition of K, of which the complexity is O(n3). Although it is possible to
reduce the complexity of this step by computing only leading eigenvectors using
software packages such as ARPACK [25], the overhead is still unbearable because
K is not sparse, especially when n is large. To overcome these two difficulties,
we use subsampling and the Nyström method [26].

By means of subsampling, not all pair-wise graph distances are needed; in-
stead, a subset of vertices are carefully selected, and only the graph distances
between these sampled vertices and the remaining vertices are computed. Thus
we only need to construct a partial W , and the complexity therein is reduced to
O(mn log n), where m is the number of samples. We can then write the resulting
kernel matrix in block form

K =
[

P Q
QT S

]
.

Without loss of generality, assume P ∈ Rm×m encodes the kernels within sam-
pled vertices and Q ∈ Rm×(n−m) contains kernels between sampled and un-
sampled vertices. Due to sampling, only the sub-block [P Q] is known. The
question that remains is how to find the second largest eigenvector U2 of K by
only knowing [P Q]. Nyström method [26] serves this purpose. Let P = FΣFT

and K = UΛUT , Nyström method approximates the m leading eigenvectors of
K as

U(1,...,m) :=
[

Σ
QT ΣΛ−1

]
. (7)

Note that the eigenvectors extrapolated through Nyström method are the leading
eigenvectors and only m of them can be found. With equation (7), we are able
to find an approximation to U2 and the complexity is O(mn log n) + O(m3).
As we will see later, our algorithm applies aggressive sampling, using a fixed
number (m = 10) of samples for meshes with tens of thousands of vertices. Since
m << n, the overall complexity becomes O(mn log n), allowing us to process
large meshes efficiently. Another practical issue is the selection of the small
sample set without sacrificing too much quality. Based on our previous work [26],

Investigation into Spectral Sequencing using Graph Distance 13

we resort to farthest point sampling, which chooses samples that are mutually
furthest away. Our experiments demonstrate that Nyström approximation with
furthest point sampling works remarkably well for the layout problem, at an
extremely low sampling rate.

6 Experimental results

This section presents an experimental comparison which evaluates the quality
of the layout generated by the Fiedler vector, the Cuthill-Mckee scheme and
our approach, referred to as Laplacian, CM, and Affinity, respectively. Given a
mesh, its vertex or face sequence is generated by considering the primal or dual
graph, respectively. In our experiments, we consider six quality measures of the
layout: span, width, profile, workbound, 1-discrepancy and 2-discrepancy, where
the first two are of particular interest to mesh streaming [15].

Figure 3 shows the triangle meshes used in our experiments, which are per-
formed on a Pentium 1.7GHz processor with 1GB RAM. Note that models with
boundary (Crater), elongated aspect ratio (Isis) and non-zero genus (Rocker
Arm) are tested on. Table 1 presents the characteristics of these models in con-
junction with the time required to compute the vertex and face sequence by our
algorithm. Note that CM works the fastest among the three, while Affinity and
Laplacian perform similarly in speed.

(a)Bunny (b) Bone (c) Igea (d) Crater

(e) Bowl (f) Teeth (g) Rocker Arm (h) Isis

Fig. 3. Models used in the experiments.

Figures 4 and 5 show the comparison for the six layout measures, when
considering the mesh primal graph and the dual graph, respectively. It can be
seen that the CM obtains the best results in terms of span, while the Laplacian
operator provides the best results in terms of the other measures. However,

14 R. Liu, H. Zhang and O. van Kaick

Table 1. Characteristics of models and timing in seconds, I/O excluded.

Model vertex # face # time (Vertex) time (Face)

Bunny 34,834 69,451 2.00 3.27

Bone 50,002 100,000 3.14 5.00

Igea 60,002 120,000 4.20 7.14

Crater 100,000 199,114 7.31 11.87

Bowl 102,402 204,800 7.45 12.21

Teeth 100,002 200,000 7.58 13.58

Rocker Arm 160,704 321,408 15.50 23.97

Isis 187,644 375,276 23.80 35.83

since the Affinity outperforms the Laplacian in span and the CM in width and
other measures, it provides a trade-off between these two sets of measures, thus
providing potential benefits to applications where all these measures influence
performance simultaneously. Since the models we use have different structural
properties, we believe that our result is model independent.

It is worth pointing out that Affinity tends to outperform both CM and
Laplacian in terms of span and width on dual graphs (for face sequencing). This
can be seen from the span measure in Figure 5, where the Affinity presents
the best results for some models. We believe this has something to do with the
regularity of the graphs. Note that since the tested models are triangle meshes,
the dual graphs are regular graphs. This issue is currently under investigation.

Figure 6 illustrates another test to verify that the subdominant eigenvector
U2 of the uncentered kernel matrix is a good approximation to the dominant
eigenvector Ū1 of the centered kernel matrix, by comparing the span and width
measures against different kernel width. It is clear that using U2 or Ū1 produces
similar results when a sufficiently large kernel width δ is used. In order to obtain
Ū1 from the centered kernel matrix, subsampling is not applied (Section 5.2).
As seen from the plots, Ū1 and U2 produce almost the same result after δ is
sufficiently large. After the Affinity enters the stable region, its performance lies
between Laplacian and CM consistently.

In our experiments, we fix the number of samples to 10, which is extremely
small against the size of meshes used in our experiments. To demonstrate the
effectiveness of subsampling, we provide results in Table 2 for span and width
obtained from various models with and without sampling. In this test, the mesh
primal graph is considered. As can be observed from the table, sampling is able
to produce results comparable to those obtained when sampling is not applied.
Surprisingly, it is sometimes able to produce even better results. Note that we
only consider relatively small-sized models because the computational overhead
without subsampling prevents the use of large models.

Investigation into Spectral Sequencing using Graph Distance 15

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

hgfedcba

S
pa

n

Laplacian
Affinity

CM

 0

 200

 400

 600

 800

 1000

 1200

hgfedcba

W
id

th

Laplacian
Affinity

CM

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

hgfedcba

P
ro

fil
e

Laplacian
Affinity

CM

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

hgfedcba

W
or

k
bo

un
d

Laplacian
Affinity

CM

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

hgfedcba

1-
di

sc
re

pa
nc

y

Laplacian
Affinity

CM

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

hgfedcba

2-
di

sc
re

pa
nc

y

Laplacian
Affinity

CM

Fig. 4. Comparison of layout quality measures for primal graph (vertex) sequencing
of different models: (a) Bunny (b) Bone, (c) Igea, (d) Crater, (e) Bowl, (f) Teeth, (g)
Rocker Arm, (h) Isis.

16 R. Liu, H. Zhang and O. van Kaick

 0

 10000

 20000

 30000

 40000

 50000

 60000

hgfedcba

S
pa

n

Laplacian
Affinity

CM

 0

 500

 1000

 1500

 2000

 2500

hgfedcba

W
id

th

Laplacian
Affinity

CM

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

hgfedcba

P
ro

fil
e

Laplacian
Affinity

CM

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

hgfedcba

W
or

k
bo

un
d

Laplacian
Affinity

CM

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

hgfedcba

1-
di

sc
re

pa
nc

y

Laplacian
Affinity

CM

 0

 100000

 200000

 300000

 400000

 500000

 600000

hgfedcba

2-
di

sc
re

pa
nc

y

Laplacian
Affinity

CM

Fig. 5. Comparison of layout quality measures for dual graph (face) sequencing of
different models: (a) Bunny (b) Bone, (c) Igea, (d) Crater, (e) Bowl, (f) Teeth, (g)
Rocker Arm, (h) Isis.

Investigation into Spectral Sequencing using Graph Distance 17

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 10 20 30 40 50

S
pa

n

Kernel width

Laplacian
Affinity (uncentered)

CM
Affinity (centered)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

W
id

th

Kernel width

Laplacian
Affinity (uncentered)

CM
Affinity (centered)

Fig. 6. Comparison of layout quality measures for an simplified Isis model. The Affinity
(uncentered) and Affinity (centered) legends correspond to our algorithm making use
of Ū1 and U2, respectively.

Table 2. Comparison of span and width for various mesh graphs when subsampling is
either applied or not.

Vertex #
Without sampling With sampling

Span Width Span Width

865 89 61 87 62

1002 164 48 121 41

1002 108 70 116 71

1002 125 58 142 61

1032 126 83 128 66

1121 131 67 149 72

1210 160 70 178 74

1872 210 92 186 82

2360 179 97 169 100

7 Conclusion and future work

In this paper, we present a spectral sequencing algorithm for linear mesh layouts.
We study this problem in the more general context of linear graph layouts.
Independent of any specific cost measure, we abstract that a desirable vertex
sequence should be one in which close-by vertices in the graph are also close-by
in the sequence. To this end, Kernel PCA is utilized to embed graph vertices
in a high dimensional feature space so as to preserve their relative distances
in the input graph. A sequence, the layout, is then obtained by projecting the
embeddings onto a vector, so that the mutual distances between the embeddings
are least distorted according to an appropriately defined objective function.

To overcome the computational overhead required by kernel matrix gener-
ation and eigenvalue decomposition, we resort to subsampling and eigenvector
extrapolation, using the Nyström method, and propose to use the subdominant

18 R. Liu, H. Zhang and O. van Kaick

eigenvector of the uncentered kernel matrix, rather than the dominant eigenvec-
tor of the centered kernel matrix. An intuitive argument is provided to validate
our approach, assuming that a Gaussian kernel with a sufficiently large kernel
width is applied in Kernel PCA.

Our extensive experiments demonstrate that for span and width, the two
principal quality measures for mesh streaming, as well as other graph layout
cost criteria, e.g., profile and workbound, our algorithm potentially provides a
better trade-off compared to ordering schemes based on localized graph traversal,
e.g., Cuthill-Mckee, and spectral sequencing using the Fiedler vector.

The geometric appeal of our framework and analysis based on Kernel PCA
has shed some light on possible further improvement of layout qualities. One
particularly intriguing problem is to investigate the distribution properties of the
vertex embedding in the feature space. It seems desirable to embed the vertices
in a way such that after the projection, less “overlaps” of distant embeddings
would occur. It is therefore important to have most of the variance along the first
principal component. We believe this is related to the “gap” between the first
and second eigenvalues of the centered kernel matrix. To this end, we would like
to investigate the influence of locally adaptive kernel functions, e.g., as suggested
in [24], and more sophisticated distance measures between graph vertices that
take into consideration more global mesh connectivity information.

References

1. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Survey 34(3) (2002) 313–356

2. Barnard, S.T., Pothen, A., Simon, H.D.: A spectral algorithm for envelope re-
duction of sparse matrices. In: Proc. ACM/IEEE Conference on Supercomputing.
(1993) 493–502

3. George, A., Liu, W.H.: Computer Solution of Large Sparse Positive Definite Sys-
tems. Prentice-Hall (1981)

4. Corso, G.M.D., Romani, F.: Heuristic spectral techniques for the reduction of
bandwidth and work-bound of sparse matrices. Technical report, Universitá di
Pisa, Dipartimento di Informatica (2001)

5. Gibbs, N., Poole, W., Stockmeyer, P.: An algorithm for reducing the bandwidth
and profile of a sparse matrix. SIAM J. on Numerical Analysis 13 (1976) 236–249

6. Hur, S.W., Willis, J.: Relaxation and clustering in a local search framework: appli-
cation to linear placement. In: Proc. ACM/IEEE Conference on Design Automa-
tion. (1999) 360–366

7. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molec-
ular biology. In: Proc. ACM Symposium on Theory of Computing. (1993) 278–285

8. Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In Brualdi, R.A.,
Friedland, S., Klee, V., eds.: IMA Volumes in Mathematics and Its Applications.
Volume 50. Springer-Verlag (1993) 107–151

9. Brin, S., Page, L.: Anatomy of a large-scale hypertextual web search engine. In:
Proceedings of the 7th International World Wide Web Conference. (1998) 107–117

10. Yoon, S.E., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-oblivious mesh lay-
outs. ACM Trans. Graph. 24(3) (2005) 886–893

Investigation into Spectral Sequencing using Graph Distance 19

11. Bogomjakov, A., Gotsman, C.: Universal rendering sequences for transparent ver-
tex caching of progressive meshes. Computer Graphics Forum 21(2) (2002) 137–148

12. Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J.: Large mesh simplification
using processing sequences. In: Proc. of the 14th IEEE Visualization. (2003) 61–68

13. Zhang, H., Fiume, E.: Butterworth filtering and implicit fairing of irregular meshes.
In: Proceedings of Pacific Graphics. (2003) 502–506

14. Kim, B.M., Rossignac, J.: Geofilter: Geometric selection of mesh filter parameters.
In: Computer Graphics Forum. Volume 24. (2005) 295–302

15. Isenburg, M., Lindstrom, P.: Streaming meshes. In: IEEE Visualization. (2005)
16. Vo, H.T., Callahan, S.P., Lindstrom, P., Pascucci, V., Silva, C.T.: Stream simpli-

fication of tetrahedral meshes. (2005)
17. Koren, Y., Harel, D.: A multi-scale algorithm for the linear arrangement problem.

In: WG ’02: International Workshop on Graph-Theoretic Concepts in Computer
Science. (2002) 296–309

18. Press, W., Tekolsky, S., Vetterling, W., Flannery, B.: Numerical Recipies in C.
Cambridge Univ. Press (1992)

19. Koren, Y., Carmel, L., Harel, D.: Ace: A fast multiscale eigenvector computation
for drawing huge graphs. In: IEEE Information Visualization. (2002) 137–144

20. Bar-Yehuda, R., Even, G., Feldman, J., Noar, J.: Computing an optimal orientation
of a balanced decomposition tree for linear arrangement problems. Journal of
Graph Algorithms and Applications 5(4) (2001) 1–27

21. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proc. 24th Nat. Conf. ACM. (1969) 157–172

22. Schölkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10 (1998) 1299–1319

23. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: NIPS. (2002) 857–864

24. Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS. (2004)
25. Lehoucq, R., Maschhoff, K., Sorensen, D., Yang, C.: (Arpack)
26. Liu, R., Jain, V., Zhang, H.: Subsampling for efficient spectral mesh processing.

In: Proceedings of Computer Graphics International 2006 (to appear). (2006)

