Discrete Combinatorial Laplacian Operators
for Digital Geometry Processing

Hao Zhang

Abstract. Digital Geometry Processing (DGP) is concerned with
the construction of signal processing style algorithms that operate
on surface geometry, typically specified by an unstructured triangle
mesh. An active subfield of study involves the utilization of discrete
mesh Laplacian operators for eigenvalue decomposition, mimicking
the effect of discrete Fourier analysis on mesh geometry. In this
paper, we investigate matrix-theoretic properties, e.g., symmetry,
stochasticity, and energy-compaction, of well-known combinatorial
mesh Laplacians and examine how they would influence our choice
of an appropriate operator or numerical method for DGP. We also
propose two new symmetric combinatorial Laplacian operators for
eigenanalysis of meshes and demonstrate their advantages over ex-
isting ones in several practical applications.

§1. Introduction

Frequency-domain characterization and processing of irregular triangle
meshes has led to some promising developments in mesh filtering (espe-
cially smoothing [5, 22, 26]), geometry compression [13, 21], mesh water-
marking [16, 17], and partitioning [10]. In this setting, the mesh geometry
is represented by a 3D signal, i.e., the Cartesian (z, y, z) coordinates, de-
fined over the vertices of the underlying graph. A mesh signal transform
is given by a projection of the signal onto the eigenvectors of a suitably
defined discrete Laplacian operator [22, 25].

One of the most frequently used operator for this purpose is the discrete
uniform Laplacian, also known as the (normalized) Tutte Laplacian [9],
or TL, for short. Taubin [22] points out that the eigenvectors of the TL
represent the natural vibration modes of the mesh, while the corresponding
eigenvalues capture its natural frequencies, resembling the scenario for
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classical discrete Fourier Transform (DFT). However, the eigenvectors of
the TL possess no analytical form in general and there are no fast methods,
analogous to the Fast Fourier Transform, to compute the corresponding
mesh signal transform.

In addition to the TL, its variants, the Kirchhoff operator (KL) and
the normalized graph Laplacian (GL), have also been used for eigenvalue
decomposition. While these operators are all combinatorial, as they de-
pend on mesh connectivity only, geometry-driven Laplacians account for
measures such as edge lengths and face angles. Operators of this type
include the (edge-length based) scale-dependent Laplacian, or SDL, the
mean curvature flow operator, suggested by Desbrun et al. [5] for implicit
mesh fairing, as well as operators derived from Floater’s shape-preserving
weights [7] and mean-value coordinates [8], designed to generalize Tutte
embedding [24] for minimizing parametric distortion. The mean curvature
flow operator was actually derived much earlier by Pinkall and Polthier [18]
in their study of discrete minimal surfaces. It is generally regarded as the
discrete Laplacian-Beltrami operator for triangle meshes [15].

Traditionally, TL, KL, and GL have been used in spectral graph the-
ory and their graph-theoretic properties have been studied extensively [2].
Recently, these operators have been applied to digital geometry process-
ing, e.g., for mesh compression by Karni and Gotsman [13] and Sorkine
et al. [21], mesh smoothing by Taubin [22], Desbrun et al. [5], and Zhang
and Fiume [26], mesh parameterization by Floater [7] and Gotsman et
al. [9], and spectral mesh watermarking by Ohbuchi et al. [16, 17]. In
particular, we mention the nonlinear extension of Tutte embedding by
Gotsman et al. [9] for spherical mesh parameterization, since it is of some
relevance to our work. They restrict their discussion to first-order sym-
metric Laplacians, noting that such symmetric systems can be viewed as
a mass-spring network, where vertices are point masses joined by springs
of varying strengths along the edges. Symmetry also plays an important
role in their proof of the validity of their spherical triangulations.

Examining these developments closely, we see that a number of impor-
tant properties of the discrete Laplacian operators, e.g., symmetry and
unit row sum (commonly viewed simply as the result of normalization),
have often become necessary but this is not followed by further analyses.
In general, there still lacks a formal and systematic study of the various
properties of these operators and the subsequent theoretical or practical
implications, especially in the context of geometry processing, where the
emphases are often quite different from those in graph theory. For ex-
ample, in transform coding, the main concerns include processing times,
quality of the coded mesh, and the ability of a transform to compact signal
energy. While for implicit mesh fairing [5], a sparse linear system defined
by a discrete Laplacian needs to be solved iteratively, thus the convergence
rate and behavior of the iterative solver becomes the central issue.
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In this paper, we start with a formal treatment of linear systems for
mesh signal processing and examine desirable matrix-theoretic properties,
e.g., symmetry and stochasticity, of such a system. Several important im-
plications, e.g., convergence, will be discussed and detailed proofs of these
results can be found in [25]. We then establish a novel connection between
the linear operators involved and the rather abstract notion of smoothing
matrices [4]. From this, we define the class of generalized shrinking mesh
Laplacians (GSML), which allows for a unified treatment of a larger class
of mesh Laplacian operators than before. We show that the TL, KL, and
the two symmetric operators we propose, the symmetric quasi Laplacian
(SQL) and the second-order symmetric Tutte Laplacian (SSTL), are all
GSMLs. Finally, from a practical point of view, we consider various ap-
plications of eigenvalue decomposition for digital geometry processing and
demonstrate several advantages given by the two new operators.

Although we focus on combinatorial mesh Laplacians only in this pa-
per, the type of analyses presented here can also be applied to geometry-
driven operators. Note however that for transform mesh coding [13, 16],
geometric operators are unsuitable to use since geometric information
about the mesh is unknown prior to decoding. Also, as a mesh evolves
geometrically, e.g., in iterative mesh smoothing, a geometric Laplacian
would need to be recomputed, which results in more expensive computa-
tions [5]. Combinatorial operators can provide the necessary remedies, but
there is good reason to believe that their dependence on mesh connectivity
would make them less robust, e.g., against remeshing and mesh decima-
tion, in characterizing 3D shapes. A focused study of the robustness of
mesh Laplacians for shape characterization will be presented elsewhere.

82. Linear mesh processing and generalized mesh Laplacians

2.1. Notations

In this paper, we focus on irregular triangle meshes and the processing
of surface geometry. Thus we assume that the mesh surface is always a
manifold. Mesh vertices are indexed by i, 7, k, ..., edges by (i,7), (4, k),
..., and the graph formed is referred to as the mesh graph; its adjacency
matrix A is defined as usual. The set of vertices adjacent to a vertex 4,
denoted by Ni(i), are the one-ring or first-order neighbors of . Higher-
order neighbors may be defined recursively. The degree of ¢ is denoted by
d;, and the diagonal matrix of 1/d;’s, i = 1,...,n, is denoted by R.

Note that as a convention, we use calligraphic letters to denote special
operators, e.g., Z is reserved for identity matrices. General-purpose matri-
ces and vectors are usually denoted by Q. R, ..., and X,y, ..., respectively.
The transpose of a matrix or vector p is denoted by p”, and its Lo norm
by ||p||. We use e and o, with subscripts, to denote the eigenvectors and
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eigenvalues of a matrix H. The spectral radius of H, that is, the maximum
magnitude of H’s eigenvalues, is denoted by p(H).

While the adjacency matrix A characterizes the connectivity of a mesh,
its geometry is defined by the n x 3 matrix x, called the coordinate vector
— it identifies the mesh. The i-th row x; of x specifies the coordinates of
vertex 4. In this way, we treat the mesh as a 3D signal defined over the
vertices of the mesh graph. This is similar to the vector-space representa-
tion of a 2D image [19]. In our subsequent formulation of linear systems
for mesh processing, it is our intent to follow the standard treatment of
the corresponding topics in image processing, e.g., as given by Jain [12].

2.2. Linear system for mesh processing and impulse response

Consider a mesh M = (A,x) with n vertices, and a connectivity-
preserving linear mesh signal processing (LMSP) system y = Hx with
input x and output y, where H € R"*". In functional form, we have
y(k) = H[x(k)] = H - x(k), where x(k) and y(k) denote the mesh sig-
nals indexed by k. Without loss of generality, let us work with the z-
coordinates only, i.e., x € R"™. We shall treat mesh signal processing
within a similar framework as for a standard linear imaging system [12],
where values at image grids denote light intensities or energy.

We view x; as an amount of signed potential energy, relative to the
origin of the coordinate space and along the x direction, at vertex i of
the mesh. The impulse response of the system is then seen to mimic
the result of an energy dispersion. When the input mesh is given by the
discrete 1D Kronecker delta function at vertex £/, ie., 6(k — k') = 1,
k k' € {1,2,...,n}, if k =k and 0 otherwise, the output at location k is

h(k; k') = H[o(k — k)] = H - 6(k = k') = Hy. o, (1)

and is called the impulse response of the LMSP system. For a fixed %/,
h(k; k") models the distribution of the unit amount of energy at vertex &’
over the mesh grid. As we can see, the impulse response h(k;k’) is com-
pletely characterized by the matrix H. We now discuss various properties
of the impulse response and the LMSP system it defines.

Nonnegativity: A matrix H is nonnegative if H;; > 0 for all ¢ and j.
This is desirable for an impulse response since from a physical standpoint,
it says that the weights characterizing the energy dispersion are positive.
Mathematically, nonnegativity of the linear operator H offers many results
from the theory of nonnegative matrices [14] at our disposal.

Irreducibility: A matrix @ is irreducible if its corresponding graph G(Q)
is connected [20]. Here, we use the 0-1 pattern of the matrix @ to define
its corresponding graph in the obvious way: (4, j) is an edge if and only if
Qi; # 0. Typically, as long as the mesh is connected, its impulse response
would be irreducible.
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Symmetry: Symmetry of an impulse response has a nice physical inter-
pretation: for any pair of mesh vertices 7 and j, the weight of energy that
i receives from j is the same as the weight of energy that j receives from <.
Symmetric matrices possess many desirable properties, e.g., real eigenval-
ues, orthogonality of eigenvectors (e.g., Parseval’s theorem holds for such
mesh signal transforms [25]), and potentially less costly computations of
eigenstructures and decomposition (e.g., Cholesky), among others.

Constant stable states — unit row sums: Many mesh processing and
analysis tasks we are interested in are carried out in an iterative manner.
One particular notion of interest for all iterative systems is that of a stable
state, which represents an equilibrium of a system or a fized point, i.e.,
x for which Hx = x. A natural choice for a stable is the constant mesh,
defined as any mesh x with x; = x; for all 7 and j. It is not hard to
show [25] that a system y = Hx has a constant stable state if and only if
the sum of each row of the impulse response H is 1.

Energy conservation — unit column sums: Our interpretation of the
impulse response in terms of energy distribution also raises the issue of
energy conservation. Consider again the LMSP system y = Hx. We know
that the distribution of unit energy at a vertex k' is given by the impulse
response h(k; k') for fixed k', which, in turn, is just the k’-th column of
the matrix H. Thus the LMSP system is said to be energy-conserving
if H has unit column sum. An immediate implication is that the LMSP
system preserves the centroid, or DC value in signal processing terms, of
the mesh signal, if and only if its impulse response is energy-conserving.

Stochasticity and double stochasticity: A real matrix is said to be
row-(column)-stochastic if it is nonnegative and has a constant row (col-
umn) sum of 1. Double stochasticity requires both row- and column-
stochasticity. These matrices have been widely used in statistics and nu-
merical analysis and there are numerous results [6, 14] to be utilized, e.g.,
a useful one for row-stochastic matrices is that their spectral radius is 1.

Variance diminishing property: We define the variance of a mesh x
with n vertices by o?(x) = [> i, (x; — X)?]/n, where X is the mean of
[x1,...,%,]. We say that the LMSP system y = Hx has the variance
diminishing property if repeated application of H to x cannot increase
the variance of x. Using Birkhoff’s characterization of doubly stochastic
matrices [6], it can be shown that doubly stochastic matrices do have the
variance diminishing property [25]. This however, does not hold in general
for matrices that are only row- or column-stochastic [25].

2.3. Eigenvalue decomposition

Given a LMSP system defined by the operator H whose eigenvectors
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ey, ..., e, are linearly independent, any mesh x can be written as,
X261X1—|—82X2+... +ean:EX (2)

Typically, H is derived from the connectivity of the mesh. We call (2)
the eigenvalue decomposition of x with respect to H, and X, having the
same dimension as x, the ED-transform of x. The sequence of 3-D vectors
X1,...,X, are referred to as the spectral coefficients, and F is the basis
matrix whose columns are the eigenvectors eq,...,e,.

Convergence of LMSP: Basic eigenanalyses show that a necessary con-
dition for the above LMSP system to converge, e.g., for limy_ ., H*x to
exist, is p(H) < 1. Following the Perron-Frobenius Theorem [6], we can
show [25] that if H is irreducible and doubly stochastic, then the limit
given above is the centroid of the vertices of the mesh x.

Note that it is often believed [23] that such a convergence result also
holds for Laplacian smoothing, which repeatedly moves each mesh vertex
towards the centroid of its one-ring neighbors. This is not true however, as
Laplacian smoothing is defined by a row-stochastic operator, namely, the
TL, and its limit is really a valence-weighted centroid of the vertices [25],
ie., limg_ oo Hx = Y0 | t;x;, where t; = d;/ 2;21 d;.

Discrete Laplacians in the sense of Taubin [22]: It is well-known
that the 1D DFT bases coincide with the orthonormal eigenvectors of
the 1D uniform Laplacian [12]. Thus we are motivated to generalize the
1D Laplacian to irregular triangle meshes and use the corresponding ED-
transform to carry out DFT-type mesh analysis. The TL has been chosen
for this purpose [5, 13, 22, 26]. In general, Taubin [22] defines the (first-
order) discrete Laplacian at a mesh vertex ¢ to be

Axp= Y wig(x) —xq), (3)

JEN1(3)

where w;; are positive weights that sum up to 1. The corresponding
Laplacian operator is given by L = Z — W, where W;; = w;;, while the
Laplacian (measure) Ax = —Lx. Next, we generalize this to allow for a
unified treatment of a larger class of mesh Laplacian operators.

2.4. Smoothing matrices

The TL operator 7 is closely linked with the notion of smoothing in
the sense of low-pass filtering. For instance, Laplacian smoothing uses
an operator of the form (Z — A7)V, where 0 < A < 1/2 and N is the
number of smoothing steps applied. Butterworth filters can also be defined
and efficiently implemented for mesh smoothing [26]. It is quite natural
then to ask what properties of a matrix H would be required for it to be
“smoothing.” The only reference we are aware of is due to Greville [4],
who stipulates, rather abstractly, that a matrix H is “smoothing” if
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1. H has ¢ =1 as an eigenvalue, and

2. H*® =limp_ o H? exists.

The rationale behind this definition is as follows. Let E; be the eigenspace
corresponding to ¢ = 1. If u € F4, then Hu = u. One can view F; as the
space of “infinitely smooth vectors”, which cannot be smoothed further
in the sense of Greville. If we smooth a given vector v using H, then in
the limit we have H>°v. Since H(H>v) = H®v, H>®v € Fj, i.e., it is
“infinitely smooth,” in an abstract sense.

As we can see, there is really no direct correlation between Greville’s
definition and our intuitive notion of de-noising or fairing of a geometric
shape. However, independent of any topological relationship, e.g., connec-
tivity, among the vertices of a mesh, the obvious choice for defining geo-
metrically “infinitely smooth vectors” would be to insist that they all have
zero variation, i.e., they are constant vectors. It follows that the smooth-
ing operator must have unit row sum. Such an infinitely smooth mesh
degenerates to a point, so the smoothing operator has to cause shrinkage.

Combining the row sum property and a necessary and sufficient con-
dition for H to be smoothing in the sense of Greville, we restrict our
definition of smoothing matrices and say that H is smoothing if:

1. H has constant unit row sum

2. The eigenvalue 1 of H is unique (has multiplicity 1) and if o # 1 is
another eigenvalue of H, then |o| < 1.

Note that constant unit row sum implies that H does have an eigenvalue
1, which possesses a constant eigenvector.

2.5. Generalized shrinking mesh Laplacian (GSML)

We define an operator F' to be a generalized shrinking mesh Laplacian,
or GSML, if for some positive scalar k, the operator H = Z — F/k is
smoothing according to our definition above. Intuitively, for a mesh x,
the vector Fx = k(Z — H)x gives a measure of the deviation of the mesh
x from a smoothed version of itself. Specifically, if we let y; = [Fx]; for
vertex ¢, then the direction of y; gives an estimate of the normal of x at
1 and its magnitude estimates the discrete curvature. The mesh may be
smoothed by a vertez flow: x' = Hx = (Z — F/k)x. The following gives
a sufficient condition for I’ to be a GSML:

1. F has constant zero row sum

2. F has real eigenvalues and the smallest one is zero and is unique.

It turns out that if m is the largest eigenvalue of F', then as long as the
scalar k satisfies k > m/2, the H =7 — F/k would be smoothing.
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The GSML can be viewed as a generalization of the Laplacian operators
in the sense of Taubin (3). To see this, note that the generalized mesh
Laplacian (measure) at vertex i, given by F = k(Z — H), is of the form

n

Ax; = (—Fx); = kZHij(xj —X;), (4)

j=1

where the weights H;;’s may be negative and take on nonzero values out-
side the one-ring of 4, but they still sum up to 1. The unit sum property
is a consequence of the zero row sum property of F.

2.6. Frequencies, mesh fairness, and spectral processing

In general, the degree of oscillation of a signal, determined by its fre-
quency contents, corresponds approximately to its fairness. Fairness is a
measure of the total variation or curvature over a mesh surface, which can
be defined by a GSML operator. This motivates the use of ED-transforms
derived from a GSML to mimic the effect of discrete Fourier analysis.

Consider an ED-transform (2) derived from a GSML operator F de-
fined for mesh x. Denote by x(") the projection of x onto the subspace
spanned by the first m < n eigenvectors of F. That is

xM = e1 X1+ ... +enXom.

Roughly, the sequence x(™, ... x(1) give progressively smoother and dis-
torted (in the Lo sense) versions of the original x, ending at the (infinitely
smooth) point x(M. Tt is this analogy to signal transforms such as the DFT
that has inspired many to develop a variety of signal processing style algo-
rithms for irregular meshes [5, 13, 16, 17, 21, 22, 23, 26, 27]. For example,
a JPEG-like compression scheme [13] for mesh geometry can truncate the
ED-transform to {Xi, Xs,..., X,,} for m < n while still retaining most
of the mesh signal energy.

83. Discrete combinatorial mesh Laplacian operators

The Kirchhoff operator (KL) K of a mesh is given by K = R~ — A,
where we recall that A denotes the adjacency matrix of the mesh graph
and R is a diagonal matrix of 1/d;’s, i = 1,...,n, and d; is the degree of
vertex 7. Thus, K;; =d;, if i = j, Ky = —1if ¢ # j and (4, 5) is an edge,
and IC;; = 0 otherwise. Clearly, the KL is symmetric and it has constant
zero row sum. By the Gerschgorin’s Theorem [20], the eigenvalues of K
are within [0, 2d,,,4.], where d;,q, is the maximum vertex degree. Also, it
is well-known [2] that the number of zero eigenvalues of K is precisely the
number of components in the mesh graph. Thus for a connected mesh,
the smallest eigenvalue of the KL is 0 and it is unique. It follows that the
KL is indeed a GSML.
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SO

Original bunny. GL compression. Original sphere. GL compression.

Fig. 1. Results of JPEG-like mesh compression using GL transforms
(ED-transforms with respect to the GL operator) illustrates that they are
unsuitable to use in DGP.

The normalized graph Laplacian (GL) § = 7 — @, where Q;; =
Qji = Aij/\/did;. Clearly, G is symmetric. It is also known [2] that the
smallest eigenvalue of G is 0 and it has multiplicity 1. However, the GL is
not a GSML since it does not have constant zero row sum. In general, the
eigenvectors of G corresponding to the zero eigenvalue are not constant,
and these supposedly “infinitely smooth vectors” are not really smooth.

Consequently, the sequence of eigensubspace projections (4), when de-
rived from an ED-transform with respect to the GL, does not give progres-
sively smoother versions of the original mesh, as shown in Figure 1, where
we show the result of JPEG-like compression of a bunny and sphere model
by truncating the GL spectrum. Thus we can conclude that even though
the GL has proven to be quite useful in analyzing topological properties
of graphs, it is unsuitable to use in DGP, such as for mesh smoothing or
spectral mesh compression.

The Tutte Laplacian (TL) 7 = RK =7 — RA =7 — C, where C is
the centroid matriz: C;; = 1/d; if and only if (4,7) is an edge. Although
C has the same zero-nonzero structure as the adjacency matrix A, it is
not symmetric in general, and neither is it doubly stochastic, as such the
variance diminishing property does not always hold [25].

It can be shown however that the eigenvalues of 7 are all real and lie
in the interval [0, 2]. Also, 7 has constant zero row sum. It turns out that
the TL and GL are similar and thus they share the same set of eigenvalues.
To see this, note that since C = RA, R™Y2CRY? = RY2ARY?. Note
that Q = RY2ARY? =T — G, therefore

RV2TRY2 = R=V2(T _C)RV2 = - RV2CRY2=T - Q=g.

Therefore, the zero eigenvalue of 7 also has multiplicity 1, and 7 is a
GSML. In general however, the eigenvectors of 7 are not orthogonal, since
7T is not symmetric. Next, we propose a new operator which can be seen
as a symmetric approximation of 7.
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3.7. The symmetric quasi-Laplacian (SQL)

We define the symmetric quasi-Laplacian, or SQL, operator S, of a
mesh x as § = D — W, where D is a positive diagonal matrix and W is a
matrix of weights with W;; = 0 if (¢, ) is not an edge.

First let us suppose that 7 is an interior vertex. Then we set D;; = 1. If
j, k, 1 € N1(i) are as shown in Figure 2(a), where k and ! can be uniquely
identified in a manifold mesh, then we set

Fig. 2. Relevant vertices for defining the SQL operator. (a) For an interior
vertex i. (b) For a boundary vertex 1.

Now consider the case where ¢ is a boundary vertex. Let its neighbors
be as shown in Figure 2(b). Then for m = 1,2, we set

11 1 T~/ 1 1
Wijm':d7i+77W and D”:1+§Z (dkd)
m m m=1

Note that the TL and the SQL become identical over any region of a
mesh with regular connectivity. We can view the SQL as derived from the
TL with some perturbations added to achieve symmetry and desired row
sum. To see this, consider an interior vertex i. Without loss of generality,
let x1, ..., X, be the neighbors of x; in order. It is not hard to show that

m

W, ii ZI(X' W) ox; f::
d: 7J 7 2 :d

We can see that the weighted average [Wx]; for the SQL operator is simply
the centroid [Cx]; perturbed by a weighted average of the vector displace-
ments v;. The situation for boundary vertices is similar. Geometrically,
the displacement v; is the discrete uniform 2D Laplacian at the vertex j
of the polygon formed by the neighbors of i. We expect the total pertur-
bation vy /dy + va/dy + ... + Vp, /dpy to be small in most cases.

Symmetry, row sum, and negative weights: Unlike the TL, S is
nonuniform. But it has constant zero row sum, as one can easily verify.
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The main advantage of S over the TL is its symmetry, while its disad-
vantage is the possible negative weights in W — this happens when the
degrees of nearby vertices differ significantly. In practice, we find such
large degree discrepancies to occur rarely and the negative weights appear
to have no noticeable negative effect on smoothing or other applications.

Observe that the effect of a negative weight is expected to be small as it
would only occur around a vertex ¢ with a large degree and the influence
from other neighbors of i tends to “correct” the situation. But from a
theoretical point of view, having a nonnegative W is highly desirable as it
would ensure that S is a GSML and furthermore, all the nice properties
listed in Section 2.2 for an LMSP system will be satisfied by the smoothing
operator H corresponding to S, where H =7 —S/k = (I —D/k)+W/k,
k > max(D). In particular, H would be doubly stochastic.

An effective heuristic to eliminate negative weights is via edge swap-
ping. That is, when W;; < 0, implying that there is a relatively large
discrepancy between the degrees of 4, j and the degrees of k,l (see Fig-
ure 2(a)), then swapping (7, j) with (k,[) tends the correct the situation.
However, new negative weights may be introduced as a result. A greedy
approach, where edge swapping order is determined by the extent of the
negative weights, has worked well in practice. Another approach to elimi-
nate high-degree vertices is by splitting them as done in the “vertex-split”
phase of progressive mesh construction [11]. But so far we cannot yet
prove that either heuristic is guaranteed to eliminate all negative weights.

Positive semi-definiteness: In our subsequent analyses, let us assume
that the weight matrix W is nonnegative. Then it is not hard to show
that S is positive semi-definite, since for any vector u, the quadratic form

uTSu — Z Wij(ui _ uj)2 > 0. (5)

(¢,7)is an edge

Note that a similar argument holds for the TL, GL, and KL as well.

Eigenvalue range: Since S is positive semi-definite, its eigenvalues are all
nonnegative. If there are no boundary vertices, then by the Gershgorin’s
Theorem [20], an upper bound for the eigenvalues of S is 2. With boundary
vertices, the upper bound could be slightly larger than 2.

GSML: To show that S is a GSML, it only remains to show that the
zero eigenvalue of & has multiplicity 1. Let u be an eigenvector of S
with corresponding eigenvalue o. Then Su = ou and it follows that
u’Su = o||u||?. For the eigenvalue o = 0, we have u” Su = 0. Examining
(5), we see that since W;; > 0, we must have u; = u; for all edges (i, j).
Therefore, as long as the mesh is connected, u must be a constant vector,
implying that the zero eigenvalue is unique. Hence, if W is irreducible and
nonnegative, then the SQL is a GSML.
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3.8. Second-order symmetric Tutte Laplacian (SSTL)

One unsatisfying aspect of the SQL, at least from a theoretical point
of view, is that for it to be a GSML, the negative weights in W need to
be eliminated. We now propose another symmetric operator, SSTL, given
by J = TTT, where T is the TL. As a direct consequence of the zero row
sum property of 7, the SSTL also has constant zero row sum. It is also
positive semi-definite. This can be verified trivially by noting that for any
vector v, vIJv =vIT ' Tv = (Tv)T(Tv) = ||Tv|]> > 0.

GSML: It remains to show that the zero eigenvalue of J has multiplicity
1. Let e be an eigenvector of J corresponding to the zero eigenvalue.
Then 777Te = 0, but e # 0. It follows that €777 7e = 0, so ||Te||> = 0.
Thus 7e = 0 and e is an eigenvector of 7 corresponding to 0, so it has to
be the constant one, as long as the mesh is connected. In this case, the
multiplicity of the zero eigenvalue of J is one, and J is a GSML.

Approximation to 72: Unlike the TL, KL, and SQL, the SSTL extends
weights to the second-order neighbors of a vertex. One may view it as a
symmetric approximation of the second order TL 72. It has been shown [5]
that second-order fairing operators tend to achieve a good balance between
smoothing and having less shape distortion. Thus we expect SSTL to
perform well in spectral mesh processing.

84. GSMLs for digital geometry processing

4.9. Direct spectral geometry processing

We first compare the performances of the TL, KL, SQL, and SSTL
operators where the corresponding ED-transform has to be constructed
for spectral geometry processing. As we have explained before, the GL is
unsuitable to use here. The mesh models used in our experiments include
the well-known Stanford bunny, the horse mesh, the Igea, the Isis, etc.,
and patches generated from them. These models have been decimated
down to having a couple of hundred vertices so that the ED-transforms
can be computed in reasonable time in Matlab. We have also included
some tessellated cubes, spheres, etc.

Computation of the ED-transforms: Karni and Gotsman [13] propose
spectral compression of mesh geometry. The vertex positions of a mesh
are transformed into the spectral domain via a TL transform. Spectral
coefficients corresponding to the highest eigenvalues are neglected as they
represent high-frequency information. Ohbuchi et al. [16, 17] embed a
watermark bit stream into the leading spectral coefficients so that the
resulting watermarked model can resist attacks such as smoothing. The
biggest bottleneck of both of these schemes is the computation of the
eigenvectors of the Laplacian operator. As this is prohibitively expensive



Discrete Laplacian operators 587

Cost of computing eigenvectors with eig()

Cputime in seconds in Matlab 6.5

250 300 350 00 350 500 550 500 650
Eight mesh models with 252, 302, 379, 386, 454, 502, 557, 602 vertices

Fig. 3. Cost of computing the eigenvectors of different combinatorial
Laplacians. UL is the most expensive to eigen-decompose. Note that
although the GL is symmetric, its eigenvectors are as expensive to compute
as those of the UL using Matlab’s routines.

for very large matrices, the original mesh must first be partitioned into
smaller pieces [10]. Subsequent processing is carried out in a piece-wise
fashion. Typically, each piece contains several hundred vertices and the
number of pieces could be several hundred for very large meshes.

We examine the cost of computing the eigenvectors of the various
Laplacian operators. The eig() function from Matlab 6.5 is used, which in-
vokes routines from the LAPACK. Plots in Figure 3 shows a rather consis-
tent trend. Evidently, both the KL and our new symmetric GSMLs would
save us considerable amount of time in computing the ED-transforms,
needed by both the encoder and the decoder. It is also worth noting
that since the eigenvectors of the TL are not orthogonal, computing the
spectral coefficients requires us to solve a dense linear system EFX = x.
The symmetric GSMLs allow us to obtain these coefficients via projec-
tion, X; = el'x. Although the relative saving in computation is quite
significant, the absolute gain becomes insignificant in comparison to the
time required for eigenvector computations. This does make a difference
however when the basis vectors have been precomputed.

Energy compaction: We measure the transform efficiency of the ED-
transforms, which corresponds to the ratio between energy concentrated in
the first m spectral coefficients and the total signal energy. We find that
although the TL is not orthogonal, it can still achieve excellent energy
compaction. Overall, we have only noticed slight differences between the
energy compaction capabilities of the four GSML operators. Typically,
when a mesh model is fairly smooth, e.g., the bunny or sphere in Figure
1, the order, from better energy compaction to worse, tends to be SSTL,
SQL, TL, and KL. This order is often reversed for models that contain
sharp transitions, such as tessellation of a step function or cube.
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006

SSTL KL SSTL
compression. compression. compression. compression.

Fig. 4. JPEG-like compression (note that the sphere mesh has a 4-8
connectivity). Artifacts at low-degree vertices are quite evident for KL.

Shape distortion and artifacts: A key measure in evaluating the qual-
ity of spectral compression or watermarking schemes is shape distortion.
We realize that the Metro tool [3] has become a standard error measure
for mesh approximation. But since we expect mesh vertices to vary only
slightly in our experiments, a rough and simple-to-compute measure sim-
ilar to the one used by Karni and Gotsman [13] has been adopted. We
compute the sum of: (1) squared differences between the scale-dependent
Laplacian (as vectors) at corresponding vertices, note that this geometric
Laplacian measure is tailored to the local mesh geometry, and (2) squared
vertex displacements projected along the direction of the SDL (as an es-
timate of the normal) at the vertex.

Our experiments show that the SSTL and SQL consistently give better
results. In most cases, the SSTL gives the best visual results, as we had
anticipated. The KL is prone to various artifacts, especially at vertices
with small degrees (3 or 4), as shown in Figure 4. This does not come
as a surprise since the expected local variance at such vertices is inversely
proportional to the vertex degrees [27].

4.10. Implicit mesh fairing

The GSML operators can also be applied to very large meshes to per-
form filtering. But instead of manipulating the ED-transforms directly,
e.g., using an ideal filter, polynomial or rational filters can be imple-
mented [5, 22, 26] — this corresponds to performing vertex averaging
in the spatial domain. In polynomial filtering, a polynomial of a GSML
operator is applied to a mesh repeatedly [22], while for a rational filter, a
large sparse linear system involving the GSML has to be solved [5, 26].

In practice, visual results generated using the SQL and TL are almost
indistinguishable for large meshes at similar levels of smoothing. The
same holds for SSTL vs. the second-order TL 72. However, we have
found the symmetric positive semi-definiteness of the SQL operator to
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be beneficial in solving sparse linear systems for implicit fairing. In this
section, we report the performance of conjugate gradient (CG) for the
symmetric SQL systems vs. bi-conjugate gradient (BiCG) for the non-
symmetric TL systems. The convergence rates for higher-order filters,
such as the SSTL, are quite low, and we propose alternative numerical
techniques in our other work [26].

Implicit fairing, CG, and BiCG: Implicit fairing of a mesh using a
GSML operator F requires the solution of a large sparse linear system

B(F)x=(Z+ AF)x =D, (6)

where b represents the original mesh and A = 1/ypp > 0 is related to
the pass-band frequency vypp of the rational low-pass filter (1 4+ \y)~t —
larger v implies a higher level of smoothing. Note that the choice of vpp,
and thus A, depends on the eigenvalue range of F.

The BiCG method is applicable to general, sparse, non-symmetric sys-
tems. The convergence of BiCG is often observed for a variety of problems,
but few theoretical results are known about the rate and behavior of its
convergence [1]. In certain situations, BiCG can exhibit “plateaus” during
the iterations, with the residual norm stagnating at some constant value
for many iterations before decreasing again. The convergence of BiCG
may also break down due to division by zero [1]. In many respects, the
CG solver is more stable numerically and its convergence behavior is of-
ten more regular than that of the BiCG method [1]. However, CG is only
applicable to symmetric positive definite systems.

SQL systems vs. TL systems: Assume that the negative weights in S
has been eliminated, thus S becomes positive semi-definite. It is not hard
to see that then the coefficient matrix of the SQL system B(S) = (Z+\S)
is symmetric positive definite and thus CG applies. For the TL system,
which is positive definite but non-symmetric in general, we employ the
BiCG method. Note that the TL system may be made symmetric positive
definite by multiplying both sides of (6) by the diagonal matrix R™* of
vertex degrees. The resulting system becomes (R_l + A\O)x = R~ b,
where K = R™'7 is the KL. Then CG can be applied to this system.

We have tested the CG and BiCG solvers on some large real-world
mesh models. In Table 1, we show the execution times and number of
iterations required for seven meshes: cow (3K vertices), horse (20K), cube
(25K), Stanford bunny (36K), a teeth model (116K), the Igea (134K),
and the Isis (187K). Note that “CG (TL)” refers to the symmetric system
converted from the TL, as described above.

We have used a weak stopping criterion: ||x§") - XER_I)H < e\|x§”_1)||
for all 4, where xgn) is the n-th iterate. That is, we stop the iteration when
no apparent progress is being made. The error tolerance of € = 107° is
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used in our experiments. We have found that the strong stopping criterion
||sz(-”) — bi|| < €||b;]| often results in many more iterations with little
improvement in mesh quality; this stopping criterion is also more expensive
to test. The weak stopping criterion applied appears to be quite effective
for CG, since for all our test cases, good convergence results are obtained
when the iterations are stopped. For BiCG however, we have experienced
the “plateau” problem described earlier, as we explain below.

As shown in Table 1, CG and BiCG require about the same number
of iterations, while the real execution time for CG is about 50% — 60%
of that of BiCG. This is because the per-iteration cost of BiCG is about
twice as much as that of CG [1]. We have neglected the execution times for
A = 100 to save space. Note that the symmetric system converted from a
TL system has a slower convergence. The use of a diagonal preconditioner
yields the same results as BiCG on the original TL system.

Mesh CG | CG (TL) | BiCG CG | BiCG
Cow | 0.56 [15] | 1.38[37] | 0.99 [15] 24] [30]
Horse | 0.97 [15] | 2.21 [34] | 1.81 [15] 28] [30]
Cube | 1.04[12] | 1.78 [21] | 1.33[9] [17] [17]
Bunny | 1.67 [14] | 3.66 [31] | 3.75 [18] [24] [28]
Teeth | 4.60 [12] | 12.65 [31] | 9.94 [14] [21] [24]
Igea | 4.91 [11] | 13.07 [29] | 9.18 [12] [16] [14]
Isis 9.03 [15] | 23.56 [33] | 11.27 [10] 22] [18]
X=30 | A=230 A=30 | A=100 | A =100

Tab. 1. Execution time in seconds [iteration count].

The “plateau” problem shows up for the Igea and Isis models when
A = 100, as highlighted in Table 1. In these cases, the models obtained
after the iterations are stopped are not close to the true solution at all.
Note that CG has not suffered from this problem in our experiments.

85. Summary and future work

We have conducted a careful study of various discrete combinatorial
Laplacian operators, their matrix-theoretic properties, and several theo-
retical and practical implications. The notion of smoothing matrices and
GSMLs enables us to provide a unified treatment. We propose two new
symmetric operators, the SSTL and the SQL, for eigenvalue decomposi-
tion. They are shown to provide better alternatives for digital geometry
processing. In particular, the SSTL achieves the best quality in transform
coding without any comprise in speed. This is followed by the SQL. On
the other hand, the KL is prone to various artifacts, the ED-transforms of
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the TL are much harder to compute, and the GL is not even a GSML. Fi-
nally, we demonstrate through our experiments the numerical advantages
of replacing the TL by the SQL for implicit mesh fairing. However, much
work still remains to be done to study these important linear systems,
especially for higher-order filters.

From a theoretical point of view, there is still a great deal we do not
understand about the ED-transforms derived from these Laplacian op-
erators. Questions related to the robustness of the spectral coefficients
against alterations in mesh connectivity and precise characterization of
the vibration patterns of the eigenvectors remain to be answered. On the
practical side, we plan to test more sophisticated eigensolvers, such as the
Arnoldi method, on our Laplacians operators. We are also interested in
applying the type of analyses given here to geometric Laplacian operators.
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