
CMPT125, Fall 2018

Midterm Exam
October 30, 2018

Name_________________________

SFU ID: |__|__|__|__|__|__|__|__|__|

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

TOTAL

Instructions:

1. Write your name and SFU ID **clearly**
2. This is a closed book exam, no calculators, cell phones, or any other material.
3. The exam contains five (5) problems.
4. Each problem is worth 20 points.
5. Write your answers in the provided space.
6. There is an extra page in the end of the exam. You may use it if needed.
7. Explain all your answers.

Good luck!

Problem 1 [20 points]
a) [4 points] What will be the output of the following program?
 #include < stdio.h >

 int foo(int * x, int * y, int z) {
 y = x;

 z = 7 ;
 *y = z;

 }

 int main() {
 int a = 0 , b = 1 , c = 2 ;
 foo(&a, &b, c);

 printf("a = %d, b = %d, c = %d" , a, b, c);
 return 0 ;
 }

b) Consider the following function.
 void bar(int n) {
 int i = 1 , sum = 0 ;
 while (sum < n*(n+1)/2) {
 printf("%d " , i);
 sum += i;

 i++;

 }

 }

[4 points] What will it print on input n = 3? Show your intermediate computation if needed.

[4 points] Use the big-O notation to express the running time of bar(n) as a function of n.

c) [4 points] Will the code below compile?
If yes, what will be the output? If no, explain why.
 #include < stdio.h >

 int main() {
 int b[5] ={1,2,3,4,5};
 int * a = b;
 printf("a[2] = %d\n" , a[2]);
 return 0 ;
 }

d) [4 points] Will the code below compile?
If yes, what will be the output? If no, explain why.
 #include < stdio.h >
 #include < stdlib.h >

 int main() {
 int * a = (int *) malloc(5 * sizeof (int));
 for (int i = 0 ; i < 5 ; i++)
 a[i] = i;

 int b[5];
 b = a;

 printf("b[2] = %d\n" , b[2]);
 return 0 ;
 }

Problem 2 [20 points]
In this problem we represent a Linked List of ints using LLnode_t :
 struct node {
 int data;
 struct node* next;
 };

 typedef struct node LLnode_t;

a) Consider the following function
 void fun_list(LLnode_t* head)
 {

 if (head == NULL) {
 printf("\n");
 return ;
 }

 printf("%d " , head->data);
 if (head->next != NULL)
 fun_list(head->next);

 printf("%d " , head->data);

 }

[6 points] What will be the output of fun_list() on input 1→ 2→ 3→ 4→ 5 ?

[4 points] Use big-O notation to express the running time of fun_list()?

b) [8 points] Write a function in C that gets a sorted linked list, and removes duplicates.
For example, for input 1→ 1→ 1→ 2→ 2→ 2→ 5→ 6→ 6→ 6→ 7, the list will become
1→ 2→ 5→ 6→ 7.
You need to free the memory used by the nodes removed from the list.

 void remove_duplicates(LLnode_t* head) {

 }

[2 points] What is the running time of the function?

Problem 3 [20 points]
You may assume that the functions below are implemented, but you cannot make assumptions
about how they are implemented.
 typedef struct {

 ...

 } stack_t;

 stack_t* stack_create(); //create empty stack
 void push(stack_t* s, int item); //adds item to the stack
 int pop(stack_t* s); //removes the top of the stack and returns it
 bool is_empty(stack_t* s); //checks if the stack is empty
 void stack_free(stack_t* s); //free the memory used by the stack

a) [12 points] Write a function that creates a copy of a stack, i.e., it gets a stack and creates
another stack with the same elements in the same order.
**In the end on the function, the original stack must be returned to its initial state.
**If you allocate memory for any temporary variables, you need to release them.

// returns a copy of orig

stack_t* stack_copy(stack_t* orig) {

}

[3 points] What is the running time of you function stack_copy()?

b) Consider the following sequence of operations on a stack:

stack_t* s = stack_create();

push(s, 1);
push(s, 2);
push(s, 3);

printf("%d " , pop(s));
push(s, 4);
push(s, 5);
push(s, 6);

printf("%d " , pop(s));
printf("%d " , pop(s));

push(s, 7);

[5 points] What will be the state of the stack in the end?
Show the intermediate steps of the computation.

Problem 4 [20 points]
Consider the following Binary Search Tree

a) [1 point] What is the depth of this tree?

b) [3 points] Write the InOrder traversal for this tree.

c) [6 points] Add the elements 15, 13, 22 to the Binary Search Tree.

d) [10 points] Write an algorithm that gets a Binary Tree and convert it into its mirror reverse.
For example

struct BTnode {
 int value;
 struct BTnode* left;
 struct BTnode* right;
 struct BTnode* parent;

};

typedef struct BTnode BTnode_t;

void mirror_tree(BTnode_t* root) {

}

Problem 5 [20 points]
a) [8 points] How many swaps will Insertion Sort perform on the input [9, 6, 2, 1, 4]?

b) [8 points] List all recursive calls made by Merge Sort on input [9, 6, 7, 2, 1, 4]?

c) [6 points] What is the running time of Selection Sort on a sorted array of length n? Use
big-O notation to express the running time.

Extra page

