
CMPT125, Fall 2018

A sample of Final Exam

Name_________________________

SFU ID: |__|__|__|__|__|__|__|__|__|

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

TOTAL

Instructions:

1. Write your name and SFU ID **clearly**
2. This is a closed book exam, no calculators, cell phones, or any other material.
3. The exam contains five (5) problems.
4. Each problem is worth 20 points.
5. Write your answers in the provided space.
6. There is an extra page at the end of the exam. You may use it if needed.
7. Explain all your answers.

Good luck!

Problem 1 [20 points]

a) Consider the following function.
void​ foo(​unsigned​ ​int​ k, ​unsigned​ ​int​ n)
{

 ​for​ (​int​ i = ​0​; i < n; i++)
 printf(​"%d "​, k+i);
 printf(​"\n"​);

 ​if​ (k < n-1)
 foo(k+​1​, n);
}

[3 points] What will be printed when we invoke ​foo(​0​,​3​)​? Explain your answer.

[4 points] Use big-O notation to express the running time of ​foo(​0​,n)​ as a function of n?
Explain your answer.

b) [3 points] What will be the output of the following code? Explain your answer.
enum​ direction {NORTH, SOUTH, EAST, WEST};

void​ foo(​enum​ direction* a, ​enum​ direction b)
{

 ​enum​ direction* c = a;
 b = WEST;

 *c = NORTH;

 c = &b;

 *c = WEST;

}

int​ main(​void​) {
 ​enum​ direction d1 = SOUTH;
 ​enum​ direction d2 = EAST;
 printf(​"d1 = %d, d2 = %d\n"​, d1, d2);
 foo(&d1, d2);

 printf(​"d1 = %d, d2 = %d\n"​, d1, d2);
 ​return​ ​0​;
}

c) Consider the following function.
int​ foo(​int​ n)
{

 ​if​ (n <= ​0​)
 ​return​ ​0​;
 ​return​ n + foo(foo(n-​1​));
}

[2 points] What happens when foo is called with n = 2?

[2 points] What happens when foo is called with n = 3?

d) [2 points] What is a virtual method in C++? Give an example.

e) [4 points] Explain what is a class in C++ and what is an object in C++.

Problem 2 [20 points]
In this problem you need to use the following implementation of a Linked List on ints.

 struct​ LLnode {
 ​int​ data;
 ​struct​ LLnode* next;
 };

 ​typedef​ ​struct​ LLnode LLnode_t;

a) [2 points] Write an algorithm that gets two linked list nodes, and swap their values.
void​ swap(LLnode_t* node1, LLnode_t* node2) {

 }

b) [6 points] Implement in C the ​Selection Sort ​algorithm on a Linked List.
The algorithm gets a pointer to the head of the list, and sorts the list.
void​ selection_sort(LLnode_t* head) {

}

c) [4 points] Consider the ​Insertion Sort ​algorithm. How many swaps will it perform on the input
A = [5,1,8,2,6,9]? Explain your answer by writing intermediate steps of the algorithm if necessary.

d) [8 points] Write a function in C that solves the following problem.
Input​: An array of ints ​A​ of length ​n​ with all values distinct such that for some (unknown)
index ​K​ it holds that ​A[0…K]​ is sorted in increasing order, and ​A[K…n-1]​ is sorted in an increasing
order, but ​A[K] > A[K+1] and ​ ​A[0] > A[n]​. That is, ​A[K+1,K+2,...,n-1,0,1,...,K]​ is a sorted array.
Output​: the maximal element in the array.
The running time of the algorithm must be O(log(n)).
For example: A = [8, 10, 15, 1, 3, 5, 7], the output should be 15 (in this example K = 2).

int​ find_max(​int​* A, ​int​ n) {

}

Problem 3 [20 points]
In this problem use the following struct for Binary Tree of ints.
struct​ BTnode {
 ​int​ value;
 ​struct​ BTnode* left;
 ​struct​ BTnode* right;
 ​struct​ BTnode* parent;
};

typedef​ ​struct​ BTnode BTnode_t;

a) [8 points] Write a function in C that gets a pointer to the root of a Binary Search Tree, and a
number, and returns the node containing this number.
If the number is not in the tree, the function returns 0.

BTnode_t* find(BTnode_t* node, ​int​ num) {

}

b) [6 points] Write an algorithm that gets a Binary Tree representing an arithmetic expression, and
prints the fully parenthesized expression in Infix Notation. For example, for the tree below the
function will print: ​ ((4 * (4 / 2)) + (6 - (9 / 3)))

You may assume that the operations are implemented as
enum ​operators {PLUS=​'+'​, MINUS=​'-'​, MULTIPLY=​'*'​, DIVIDE=​'/'​};
(Use %c to print an operator, and %d to print a number)
void​ print_infix(BTnode_t* expression} {

}

c) [3 points] Convert the following expression from Infix Notation to the Polish Notation.
(5 * ((3 - (2 / 1)) + 4))

d) [3 points] Convert the following expression from Reverse Polish Notation to Infix Notation.
7 1 5 * - 6 3 / +

Problem 4 [20 points]

a) [5 points] Write a function in C that decides the language accepted by the following DFA.
Explain your answer.

int​ decide_lang(​char​* str) {

b) Consider the following regular expression: ((b*bb)|(a*aa))(a|b)*

[4 points] Describe in words the language defined by the regular expression above.

[4 points] Draw a DFA that accepts the language defined by the regular expression.

c) Consider the following description of DFA:

∑ = {a,b}
S = {s​0​, s​1​, s​2​}
F = {s​2​}

δ(s​0​,a) = s​0
δ(s​0​,b) = s​1
δ(s​1​,a) = s​2
δ(s​1​,b) = s​0
δ(s​2​,a) = s​2
δ(s​2​,b) = s​0

[3 points] Draw the corresponding DFA.

[4 points] Describe the language accepted by the DFA.

Problem 5 [20 points - 4 points each item]
Implement the ADT ​queue of ints​. The running time of each operation must be O(1).
In your code you may use the struct ​node_t​.
If you want to use functions related to Linked List, you need to implement them.
 struct​ node {
 ​int​ data;
 ​struct​ node* next;
 };

 ​typedef​ ​struct​ node node_t;

a) typedef​ ​struct​ {

} queue_t;

b) queue_t* queue_create() {

}

c) void​ enqueue(queue_t* q, ​int​ item) {

}

d) int​ dequeue(queue_t* q) {

}

e) int​ queue_is_empty(queue_t* q) {

}

Extra page

