CMPT125, Fall 2020

Homework Assignment 4
Due date: Wednesday, November 25, 2020, 23:59

For this assignment you need to:

1) Implement your solutions to problems 1 and 2 in assignment4.c

2) Implement your solutions to problem 3 in my_array.h and my_array.c
Submit all files to CourSys.

The sum of all points for the 3 problems is 120.
The assignment will be graded both automatically and by reading your code.

Correctness: Make sure that your code compiles without warnings/errors,
and returns the required output.

Readability: Your code should be readable. Add comments wherever is necessary.
If needed, write helper functions to break the code into small, readable chunks.

Compilation: Your code MUST compile in CSIL with the Makefile provided.
If the code does not compile in CSIL the grade on the assignment is O (zero).
Even if you can’t solve a problem, make sure it compiles.

Helper functions: If necessary, you may add helper functions to the assignment1.c file.

main() function: do not add main(). Adding main() will cause compilation errors, as the
main() function is already in the test file.

Using printf(): Your function should have no unnecessary printf() statements. They may
interfere with the automatic graders.

Warnings: Warnings during compilation will reduce points.
More importantly, they indicate that something is probably wrong with the code.

Testing: Examples of tests are included in test _trees.c and test_my array.c.

Your code will be tested using the provided tests as well as additional tests.

You are strongly encouraged to write more tests to check your solution is correct, but you
don’t need to submit them.

When working on one problem, comment out all other tests.

Good luck!



Implement your solutions to problems 1 and 2 in assignment4.c
For Problems 1-2 use the following structs for Binary Tree and Binary Search Tree.

struct BTnode {
int value;,
struct BTnode* left;
struct BTnode* right;
struct BTnode* parent;
b7
typedef struct BTnode BTnode t;

typedef struct BST {
BTnode t* root;
} BST t;

Problem 1 [20 points]
Write a function that gets a binary tree representing an arithmetic expression and returns the evaluation of

the expression. For operations we use the following enum.

typedef enum {PLUS, MINUS, MULT, DIV} bin op;

float eval arithmetic expression(BTnode t* root)

O O )
® O & O © &® ©

& & 6 6

((10+(8/3))+(5*(5-18))) (e+3) 8

The outputs for the tree above should be 10+2.6666+ 5*(-13)=-52.33333, 6+3 =9, and 8.
(Here you may find the switch-statement useful.
https://www.programiz.com/c-programming/c-switch-case-statement)

Problem 2 [15 points each]
Implement the following two functions on Binary Search Trees.
In both questions you may assume the tree in not null and not empty

int get max (BST t* tree)

int get median (BST t* tree)


https://www.programiz.com/c-programming/c-switch-case-statement

Problem 3 [70 points]
Implement your solutions to problem 3 in my_array.h and my_array.c

In this problem you need to implement the ADT my_array of ints.
You need to implement the data structure to support the functions stated below.
Try to implement all functions as efficiently as possible.

For all questions below in all three parts you may assume that the arguments are legal
(e.g., my_array is not NULL, length>0, index in the array is between 0 and length-1, etc)

Part 1 [20 points]

typedef struct {

} my array;

my array* create my array(int length);

int my ar get length(const my array* ar);

int my ar set value(my array* ar, int index, int item);

int my ar get value(const my array* ar, int index);

void my ar free(my array* ar);

Part 2 [20 points]

[6 points]

int my ar resize(my array* ar, int new size);



[6 points]

my array* my ar copy(const my array* src);

[8 points]

my array* my ar append(my array* dest, const my array* src);

Part 3 [30 points]

[6 points]

int my ar find(const my array* ar, int element)

[6 points]

void my ar map (my array* ar, int (*f) (int));

[8 points]

int my ar reduce(const my array* ar, int (*f) (int,int));

[10 points]

my array* my ar filter (my array* src, bool (*f) (int));



