CMPT409/815: Advanced Algorithms

Midterm Exam

Instructor: Igor Shinkar November 2, 2020

- Write your name and SFU ID (numerical and alphabetical) at the top of your solution.
- Submit your solution to Coursys before 12:30.
- Allowed formats for solutions: word, pdf, or any other readable format in a zip file.
- Coursys may give you a warning that you submitted only one file. That's ok.
- This is an open book exam. You may use books, lecture notes, the internet for hints/solutions.
- If you find the solution on the internet, you should add the reference. (No penalty for that)
- No matter how you find the solution, you need to explain all your answers.
- Provide enough details to convince me that you understand the solution.
- You may not go to chegg.com or similar websites and ask for solutions.
- You may not discuss your solutions with other students.
- The exam consists of four (4) problems. The sum of all points in the four problems is 125.
- Explain all your answers. Provide enough details to convince me that you understand the solution.

Question 1 (30 points)

- (a) [10 points] Consider the Minimum Vertex Cover problem¹ for 3-uniform hypergraphs: Given a 3-uniform hypergraph H = (U, F) the goal is to find a vertex cover $C \subseteq U$ of H such that |C| is minimized. Let \min -VC $(H) = \min\{|C|: C \text{ is a vertex cover in } H\}$.
 - Design a polynomial time 3-approximation algorithm for the problem of finding a minimum vertex cover in a hypergraph. That is, the algorithm must output a vertex cover C such that $|C| \leq 3 \cdot \min{-\mathsf{VC}(H)}$.
- (b) [15 points] Given an undirected graph G = (V, E), denote by $Rem_{\Delta}(G)$ the minimum number of edges required to remove from G so that the remaining graph contains no triangle.
 - Design a polynomial time 3-approximation algorithm for $Rem_{\Delta}(G)$. That is, the algorithm outputs a subset of edges $E' \subseteq E$ such that $G = (V, E \setminus E')$ contains no triangles, and $|E'| \le 3 \cdot Rem_{\Delta}(G)$.

¹Recall, a vertex cover in H is a collection of vertices $C \subseteq U$ that touches every hyperedge in H, i.e., for every $e \in F$ it holds that $e \cap C \neq \emptyset$.

Question 2 (40 points) In the MAX-CUT problem, we are given graph $G = (V, E_G)$, and our goal is to find a partition of the vertices into two parts $V = V_1 \cup V_2$ such that the number of edges with exactly one end point in each V_i is maximized. Denote the MAX-CUT of G by

$$\mathsf{MAX} - \mathsf{CUT}(G) = \max_{V = V_1 \cup V_2} \frac{|\{(u,v) \in E_G : (u \in V_1, v \in V_2) \ or \ (v \in V_1, u \in V_2)\}|}{|E|}.$$

Let G be a graph with m edges and n vertices such that $m > n^{1.5}$. Let $H = (V, E_H)$ be a random sub-graph of G obtained by keeping each edge of G with some probability $p \in (0, 1]$.

Fix $\varepsilon \in (0,0.1)$. Prove that there exists an absolute constant C>0 such that if we remove each edge with probability $p>\frac{Cn}{\varepsilon^2m}$, then the following holds:

- (a) [5 points] If MAX CUT(G) = 1, then Pr[MAX CUT(H) = 1] = 1.
- (b) [10 points] Let $m_G = |E_H|$ be the number of edge in H. Then $\Pr[|m_H pm| < \varepsilon pm] > 1 2^{-n}$.
- (c) [10 points] $\Pr[\mathsf{MAX} \mathsf{CUT}(H) \ge \mathsf{MAX} \mathsf{CUT}(G) \varepsilon] > 1 2^{-n}$.
- (d) [15 points] $\Pr[\mathsf{MAX} \mathsf{CUT}(H) \le \mathsf{MAX} \mathsf{CUT}(G) + \varepsilon] > 1 2^{-n}$. (Hint: use Chernoff bound)

Question 3 (35 points) Consider the following linear problem.

$$minimize_{x,y\in\mathbb{R}}$$
 $3x + 2y$

subject to
$$\begin{cases} 2x + 4y & \geq 1\\ y - 2x & \leq 2\\ -5 \leq x \leq 5\\ -5 \leq y \leq 5 \end{cases}$$

- (a) [15 points] Find the optimal solution for the LP.
- (b) [10 points] Convert the LP into a canonical form. Write explicitly the matrix A and the vectors b and c representing the LP.
- (c) [10 points] Write the dual LP of the canonical form.

Question 4 (20 points) Generalizing on the notion of a cut, we define a k-cut in an undirected graph as follows. In the min-k-cut problem, the input is a graph G = (V, E) and the goal is to find a partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ into k non-empty disjoint sets that minimizes the number of edges of G that do not belong to the same V_i .

Recall Karger's min-cut algorithm we saw in class. Show that the algorithm can be modified to find a minimum k-cut in time $n^{O(k)}$ with high probability.