CMPT409/815: Advanced Algorithms

Final Exam

Instructor: Igor Shinkar December 13, 2019

Name:			
SFILID.			

- Write your name and SFU ID **clearly**.
- This is a closed book exam, no calculators, cell phones, or any other material.
- The exam consists of five (5) problems. The sum of all points in the five problems is 120.
- If you score more than 100, your grade will be 100.
- Write your answers in the provided space.
- \bullet There is an extra page at the end of the exam. You may use it if needed.
- Explain all your answers. Provide enough details to convince me that you understand the solution.

Question 1 (20 points) Design a polynomial time algorithm that given a 4-colorable graph G on n vertices outputs a legal $\tilde{O}(n^{4/7})$ coloring of G.

You may use as a subroutine an algorithm we saw in class that given a 3-colorable graph G finds a legal coloring of G using $\tilde{O}(\Delta^{1/3})$ -colors, where Δ is the maximal degree of a vertex in G

Question 2 (25 points)

- (a) [15 points] In the Minimum Vertex Cover problem for 3-uniform hypergraphs the input is a 3-uniform hypergraph H = (U, F), and the goal is to find a vertex cover $C \subseteq U$ of H such that |C| is minimized. Let $\min VC(H) = \min\{|C|: C \text{ is a vertex cover in } H\}$.
 - Design a polynomial time 3-approximation algorithm for the problem of finding a minimum vertex cover in a hypergraph. That is, the algorithm must output a vertex cover C such that $|C| \leq 3 \cdot \min{-\mathsf{VC}(H)}$.
- (b) [10 points] Given an undirected graph G = (V, E), denote by $Rem_{\Delta}(G)$ the minimum number of edges required to remove from G so that the remaining graph contains no triangle.
 - Design a polynomial time 3-approximation algorithm for $Rem_{\Delta}(G)$. That is, the algorithm outputs a subset of edges $E' \subseteq E$ such that $G = (V, E \setminus E')$ contains no triangles, and $|E'| \le 3 \cdot Rem_{\Delta}(G)$.

¹Recall, a vertex cover in H=(U,F) is a collection of vertices $C\subseteq U$ that touches every hyperedge in H, i.e., for every $e\in F$ it holds that $e\cap C\neq\emptyset$.

Question 3 (30 points) In the maximum directed cut problem (MAX-DICUT) the input is a directed graph G = (V, E), and for each directed edge $(i \to j) \in E$ we have a non-negative weight $w_{(i \to j)} \in \mathbb{R}^+$.

The goal is to partition V into two sets (U,W) such that and $W=V\setminus U$ so as to maximize the total weight of the arcs going from U to W (that is, $\sum_{\substack{(i\to j)\in E\\i\in U,j\in W}}w_{i,j}$).

- (a) [10 points] Give a polynomial time randomized 1/4-approximation algorithm for the MAX-DICUT problem. That is the randomized algorithm returns a partition $V = (U, W = V \setminus U)$ such that the expected total weight of the arcs going from U to W is at least 1/4 of the optimum.
- (b) [5 points] Show that the following LP is a relaxation of the MAX-DICUT problem:

$$maximize \sum_{(i \to j) \in E} w_{i,j} z_{i,j}$$

subject to
$$\begin{cases} z_{(i \to j)} \le x_i & \forall (i \to j) \in E \\ z_{(i \to j)} \le 1 - x_j & \forall (i \to j) \in E \\ 0 \le z_{(i \to j)} \le 1 & \forall (i \to j) \in E \\ 0 \le x_i \le 1 & \forall v \in V \end{cases}$$

(c) [15 points] Consider the randomized rounding algorithm for MAX-DICUT that solves the LP above and puts each vertex i into U independently with probability $\frac{1}{4} + \frac{x_i}{2}$. Show that this gives a randomized 1/2-approximation algorithm for MAX-DICUT. That is, in the output the expected total weight of the arcs going from U to W is at least 1/2 of the optimum.

(Hint: Given a solution to LP relate the probability that edge $(i \to j)$ is in the cut (U, W) to the LP value of $z_{i,j}$.)

Question 4 (25 points) In the MAX-3-CNF problem, we are given a collection Φ of clauses C_1, \ldots, C_m over the variables x_1, \ldots, x_n , where each clause is a disjunction (OR) of three literals (i.e. x_i or $\bar{x_i}$). The value of Φ is defined as the maximal fraction of clauses that can be satisfies by an assignment. That is,

$$val(\Phi) = \max_{x=(x_1,\dots,x_n)\in\{0,1\}^n} \frac{\left|\{i\in[m]: C_i \text{ is satisfied by } x\}\right|}{m}.$$

Let Φ be such MAX-3-CNF instance with m clauses over n variables such that $m=n^2$. Consider a random sub-formula Φ' of Φ obtained by keeping each clause of Φ with some probability $p \in [0,1]$. (The sub-formula Φ' is over the same variables as Φ .)

Fix $\varepsilon \in (0,0.1)$. Prove that there exists an absolute constant C>0 such that if Φ' is obtained from Φ by keeping each clause with probability $p \geq \frac{Cn}{\varepsilon^2 m}$, then the following holds.

- (a) [5 points] The number of clauses m' in Φ' satisfies $\Pr[|m'-pm| < \varepsilon pm] > 1 \exp(-\Omega(n))$.
- (b) [5 points] If $val(\Phi) = 1$, then $Pr[val(\Phi') = 1] = 1$.
- (c) [5 points] $\Pr[val(\Phi') \ge val(\Phi) \varepsilon] > 1 \exp(-\Omega(n))$.
- (d) [10 points] $\Pr[val(\Phi') \le val(\Phi) + \varepsilon] > 1 \exp(-\Omega(n))$.

You may want to use the following concentration inequality:

Chernoff bound: Let $X_1, X_2, ..., X_m$ be independent Bernoulli random variables with $\Pr[X_i = 1] = p_i$. Let $X = \sum X_i$, and let $\mu = \mathbb{E}[X] = \sum_i p_i$. Then, for all $\delta \in (0,1)$ we have $\Pr[|X - \mu| \ge \delta \mu] \le 2e^{-\frac{\delta^2 \mu}{3}}$

Question 5 (20 points) Given a Boolean function $f: \{1, -1\}^n \to \{1, -1\}, \ define \ \sigma(f) = \sum_{i=1}^n \hat{f}(\{i\})$.

- [6 points] Let w(x): $\{1, -1\}^n \to \mathbb{R}$ be the real valued function defined as $w(x) = \sum_{i=1}^n x_i$. Prove that $\sigma(f) = \mathbb{E}_x[f(x)w(x)]$.
- [7 points] Prove that for odd n among all Boolean functions $f: \{1, -1\}^n \to \{1, -1\}$ the value $\sigma(f)$ is maximized by the Majority function, where $Maj_n(x) = \text{sign}(\sum_{i=1}^n x_i)$.
- [7 points] The influence of the i'th coordinate on f is defined as $Inf_i(f) = \Pr_{x\{1,-1\}^n}[f(x) \neq f(x^{(i)})]$, where $x^{(i)}$ is the vector obtained from x by flipping the ith coordinates. Prove that if f is a monotone function (i.e., if $x_i \geq y_i$ for all $i \in [n]$, then $f(x) \geq f(y)$), then $Inf_i(f) = \hat{f}(\{i\})$.

Conclude that among all Boolean monotone functions Maj_n has the maximal total influence.