
CMPT 125 - Introduction to Computing Science and
Programming II - Fall 2022

Lab 02

Outline

● Passing arguments to main()

● Redirecting stdin and stdout

● Reading letters from input and calculating
the frequencies.

Passing arguments to main()

Until now :

Our main() functions were not receiving any arguments.

But main() similar to other functions can receive arguments, just there is some notes to follow:

● main() function can receive two arguments.

● To do that, the main() function should be defined as int main(int argc, char* argv[])

● argv: Array of strings. The array has size argc+1

● argv[0] is the name of the exe file
● argv[1] is the first argument
● argv[0] is the second argument
● ...
● argv[argc-1] is the last argument
● argv[argc] is the null
● let say our main() function is in test.c, we can pass arguments to it using :

gcc test.c -o test

. ./test argv1 argv2 … argvn

argv[0]

argv[1]

argv[2]

./sum

"7"

"-3.4"

ex: ./sum 7 -3.4

argv[3]
null

Passing arguments to main()

Lest clear thing up with an example:

Write a function that receives arguments to main and prints the arguments

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf("Hello world\n");

 printf("argc = %d\n", argc);
 for (size_t i = 0; i < argc; i++)
 printf("argv[%d] = %s\n", i, argv[i]);

 printf("argv[%d] = %s\n", argc, argv[argc]);
 printf("argv[%d] = %s\n", argc+1, argv[argc+1]);
 return 0;
}

Passing arguments to main()

Lest clear thing up with an example:

Write a function that receives two integer as main function arguments and return their sum.

#include <stdio.h>
#include <stdlib.h> // contains atoi() function

int main(int argc, char* argv[]) {
 if (argc!=3) {
 printf("wrong number of arguments %d", argc);
 return 1;
 }

 int x = atoi(argv[1]); // atoi() gets a string containing an integer and returns an int
 int y = atoi(argv[2]);
 printf("%d + %d = %d", x, y, x+y);
 return 0;
}

Passing arguments to main()

Exercise 1:

Now write a function the receives three number and return the biggest one.

Redirecting stdin and stdout

you can use > and < to direct your stdin and stdout.

for example:

./hello > myfile.txt will redirect your printf to myfile.txt

so if you have a program that do printf(“Hello World”), instead of seeing output on terminal you can find it in myfile.txt

similarly ./read_numbers <numbers.txt will use numbers.txt to read the input from the file instead of reading from the user

redirecting stdout

Exercise 2:

Compile a program hello that prints "hello world".
Run: ./hello > hi.txt
See what hi.txt contains

Modify the file hi.txt
Run again: ./hello > hi.txt
See what hi.txt contains now

Run again this time use >> (double right):
./hello >> hi.txt

See what hi.txt contains now

Try again. Conclude about append vs overwriting the target file

redirecting stdin

Exercise 3:

1) Compile the program into an executable
called sum

2) Run ./sum
Enter some numbers when needed.

3) Run the program again, this time
./sum < nums.txt

This will read the input from the file

Write the following program sum.c:

#include <stdio.h>

int main() {
 int x;
 int y;
 printf ("Enter x:\n");
 scanf("%d", &x);
 printf ("Enter y:\n");
 scanf("%d", &y);
 printf("%d + %d = %d", x, y, x+y);
 return 0;
}

Create a file nums.txt that
contains several numbers one in
each line. For example:

8
5
12

computing frequencies of letters

Exercise 5:

Write a program called freqencies that calculates the frequency of letter occurrences in text.
1. The programs gets one argument, and it is a string given as argv[1].
2. Print the string to check that you got the correct string
3. use > my_output.txt to create the file that will contain the frequency of each letter in the obtained argument
4. Letters that occur zero times should not appear in the output.
5. Characters other than lower and upper case letters should be ignored.
6. Lower and upper case instances count as the same letter, e.g. 'a' and 'A' are both reported for the letter 'a' on the

output.
7. The frequencies reported should sum up to the total length of the string.

In your program declare an array of length 26, where each entry counts the number of appearances of a letter.
Each letter has a numerical ASCII value. Use the ascii value to compute the corresponding index in the array.

8. You should not implement this function by writing 26 "if" statements (1 for each letter).

For example: if you run
./frequencies HihElloAAAA > my_output.txt

then the output file will look something like this:

