SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

CMPT 125 - Introduction to Computing Science and
Programming Il - Fall 2022

Lab 5. Dynamic memory allocation and measuring performance


Rectangle


Different types of variables

e [ocal Variables:
o Variables which are declared inside of a scope.
e Global Variables:
o  Variables which are declared outside of any function.
e Static variables:
o Variables which are declared inside of a scope but keeps its value.

Reference:
https://overiq.com/c-programming-101/local-global-and-static-variables-in-c/



Dynamic Memory Allocation

e What about the following cases:
o  We don't know the size/number of the variables that we want
o  When we create a local variable and we want to have an access to it from outside of the
scope.



Dynamic Memory Allocation

e Reference:
o https://en.cppreference.com/w/c/memory/malloc

e Function:
void* malloc( size t size );

Input: number of bytes to allocate
Return: the pointer to the beginning of newly allocated memory or a null pointer.

e Reference:
o https://en.cppreference.com/w/c/memory/free

e Function:

void free( void* ptr );

e Input: pointer to the memory to deallocate


https://en.cppreference.com/w/c/memory/malloc
https://en.cppreference.com/w/c/memory/free

Dynamic Memory Allocation

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
int *pl
int *p2
int *p3

malloc(4*sizeof(int)); // allocates enough for an array of 4 int
malloc(sizeof(int[4])); // same, naming the type directly
malloc(4*sizeof *p3); // same, without repeating the type name

if(pl) {
for(int n=0; n<4; ++n) // populate the array
plin] = n*n;
for(int n=0; n<4; ++n) // print it back out
printf("pl[%d] == %d\n", n, pl[n]);
}

free(pl);
free(p2);
free(p3);



Exercise SFU

e Run “get name.c” and “get name wrong.c” and check what is the error in the wrong version.
e Run “random_ar.c” which is for allocating as much memory as needed.
® You can see more samples and read about “calloc” in this link:

o  https://www.programiz.com/c-programming/c-dynamic-memory-allocation



Measuring performance

e Function:

int gettimeofday ( struct timeval *tp , struct timezone *tz )

e The current time is expressed in elapsed seconds and microseconds since 00:00:00, January 1,
1970 (Unix Epoch).

e The 1Ist argument points to the timeval structure. The timeval structure is declared as below in
sys/time.h header file :

struct timeval {
time t tv_sec; //used for seconds
suseconds t  tv usec; //used for microseconds

b

e Return: On success, the gettimeofday() return 0, for failure the function returns -1.
e Reference:
o  https://linuxhint.com/gettimeofday c language/



Exercise

e ‘“measure time.c” allows measuring time of execution.
o Compare the running time of the two functions for different values of n.
o  Compute the actual running time by subtracting time before and time after.

o Compare the running time of different implementations of Fibonacci functions we saw in
lecture 8.



