
CMPT 125 - Introduction to Computing Science and  Programming II

Linked-Lists



Linked List - Recap

• Chain of separate elements

• Head points to the first element

• Tail points to the last element

• Each element has a data part which contains value and a pointer 

which points to the next node in the list

Fig1: Linked List 

Source:101computing

https://www.101computing.net/linked-lists/


Linked List - Operations

• LL_add_to_head(LL_t*list, int value): Add element to the head

of the list

• LL_add_to_tail(LL_t *list, int value): Add element to the tail of 

the list

• LL_remove_from_head(LL_t *list): Remove element from the

head of the list

• LL_size(const LL_t *list): Return the size of the list

• LL_print(const LL_t *list): Prints all elements of the list from head

to tail

• LLnode_free(node_t *node): Frees memory used by the

node

• LL_free(LL_t *list): Frees memory used by the list

Fig2: Add to Head

Fig3: Add to Tail

Fig4: Remove from Head

Fig5: Remove from Tail



Steps to compile code

• Unzip and open the directory in VSCode

In the terminal, run:

• > cd LL

• > make

• > ./driver_LL



Exercise

• Read and understand the functions defined in LL.c

• Implement the functions:

• LL_remove_from_tail(): removes element from tail of the list

• LL_print_reverse(): prints list elements in reverse order. Try doing it in O(N) time.

• to_array(): gets a linked list and creates an array with same values

• array_to_list(): gets an array and creates a linked list

• are_equal(): check if two linked lists are equal (equal length and same values in order)

• Add more test cases to test the functions you implement




