
CMPT125 - Introduction to Computing Science
and Programming II

Quick Recap – Classes and Objects

LL* a = new LL();

LL* b = new LL();

LL* c = new LL();

Memory Stack Memory Heap
a
b
c

LL Object

LL Object

LL Object

Note that objects in heap are
instances of class LL

Outline

● Aim: understanding Linked List and Stack

● To do:
○ Compile and run example4.cpp and example5.cpp
○ Read example4.cpp and example5.cpp and understand what each line is doing
○ open LinkedList folder and complete implementation for following functions in

LL.cpp and LLnode.hpp

■ LLnode(int value, LLnode* n) {}

■ void add_to_head(int value) {}

■ int remove_from_head() {}

■ LL::~LL() {}

○ open Stack folder and complete implementation for following functions in
stack.cpp

■ void stack::push(int item) {}

■ int stack::pop() {}

■ int stack::isEmpty() {}

■ stack::~stack() {}

Compile and run example4.cpp and example5.cpp

● compite them using g++

ex: "g++ example4.cpp" -- creates a.out and then run ./a.out

 "g++ example4.cpp -o run_ex4" -- creates run_ex4 then run./run_ex4

● Please do similar thing for example5.cpp

Read and understand what each line is doing

● Open example4.cpp

● In the main function each time Constructors/Destructors are being called, in each print
function please first try to guess what is going to be printed and why and compare your
result with what has been printed.

● Please do same for example5.cpp

complete LL.cpp

● Go to LinkedList folder.
● open LL.hpp, LL.cpp and LLnode.hpp.
● Complete implementation for following functions in LL.cpp and LLnode.hpp

○ LLnode(int value, LLnode* n){}

it is in LLnode.hpp

It is the constructor that should take both value and next node, don’t forget to update the head!

○ void add_to_head(int value){}

It is going to add a note to the head with the data equal to value

○ int remove_from_head(){}

It should delete first node in the list, don’t forget to update the head !

○ LL::~LL(){}

Destructor. It should delete all nodes from the list before deleting itself.

● compile and test your code using make file.

complete stack.cpp

● Go to Stack folder.
● open LL.hpp, LL.cpp and LLnode.hpp and stack.cpp and stack.hpp
● Complete implementation for following functions in stack.cpp

● void stack::push(int item) {}

It pushes a given item to the stack, we are assuming the stack is not empty.

hint: think about adding a node with a value to the head in linked list.

● int stack::pop() {}

It pops the element from the stack.

hint: thing about removing the element from the head in the linked list.

● int stack::isEmpty() {}

It check if the stack is empty.

hint: we had a getSize function in linked list and when the size is 0 it means it is empty.

● stack::~stack() {}

Destructor

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

