SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

CMPT125 - Introduction to Computing Science

and Programming |l

Quick Recap — Classes and Objects SF U

Memory Stack Memory Heap
LL* a = new LL(); a
LL* b =new LL(); b
LL* ¢ = new LL(); ¢

> LLObject
Note that objects in heap are \<'I?L()bjezt\
instances of class LL \ \)

Outline

e Aim: understanding Linked List and Stack

e Todo:
o Compile and run example4.cpp and example5.cpp
o Read example4.cpp and example5.cpp and understand what each line is doing
o open LinkedList folder and complete implementation for following functions in
LL.cpp and LLnode.hpp

[| value, LLnode
| add to head(
|

remove from head/()

[] LL::~LL() {}

o open Stack folder and complete implementation for following functions in
stack.cpp

Compile and run example4.cpp and example5.cpp SFU

e compite them using g++
ex: "g++ exampled.cpp" -- creates a.out and then run ./a.out

"g++ exampled.cpp -o run_ex4" -- creates run_ex4 then run./run_ex4

e Please do similar thing for example5.cpp

Read and understand what each line is doing

e Open example4.cpp

e In the main function each time Constructors/Destructors are being called, in each print
function please first try to guess what is going to be printed and why and compare your
result with what has been printed.

e Please do same for example5.cpp

complete LL.cpp

e Go to LinkedList folder.
e open LL.hpp, LL.cpp and LLnode.hpp.
e Complete implementation for following functions in LL.cpp and LLnode.hpp

o value, LLnode* n) {}

it is in LLnode.hpp

It is the constructor that should take both value and next node, don’t forget to update the head!
o add to head (value) {}

It is going to add a note to the head with the data equal to value
e} remove from head() {}

It should delete first node in the list, don’t forget to update the head !

o) LL::~LL () {}

Destructor. It should delete all nodes from the list before deleting itself.
e compile and test your code using make file.

complete stack.cpp

e Go to Stack folder.
e open LL.hpp, LL.cpp and LLnode.hpp and stack.cpp and stack.hpp
e Complete implementation for following functions in stack.cpp

° _, item) {}

It pushes a given item to the stack, we are assuming the stack is not empty.
hint: think about adding a node with a value to the head in linked list.

It pops the element from the stack.
hint: thing about removing the element from the head in the linked list.

It check if the stack is empty.
hint: we had a getSize function in linked list and when the size is 0 it means it is empty.

Destructor

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

