CMPT 125 D200, Spring 2023

Final Exam
April 15, 2023

Name

SFUID: ||| ||| |||

Problem 1

Problem 2

Problem 3
TOTAL

Instructions:

Duration of the exam is 180 minutes.

Write your full name and SFU ID **clearly**.

This is a closed book exam, no calculators, cell phones, or any other material.
The exam consists of three (3) problems.

Write your answers in the provided space.

There is an extra page at the end of the exam. You may use it if needed.
Explain all your answers.

Really, explain all your answers.

N RWN =

Good luck!

Problem 1 [30 points]

a) [6 points] Rewrite the function what() without using recursion. Explain the functionality of
the function before writing code.
#include <stdio.h>
int what(int n) {
if (n<=0)
return 0;
else {
printf("%d ", n);
return what(n-1)+1;
printf("%d ", n);
}
}

b) [7 points] Will the code below compile?
If yes, what will be the result of the execution? If not, explain errors/warnings/potential issues.
#include <stdio.h>
#include <string.h>
void foo() {
static char* str = "hello";
printf("%s\n", str);

if (strcmp(str,"hello")==0)
str = "hi";

else
str = "hello";

}

int main() {
foo();
foo();
foo();
foo();
return 0;

¢) [7 points] Will the code below compile?
If yes, what will be the result of the execution? If not, explain errors/warnings/potential issues.
#include <stdio.h>
int* foo(int start) {
int arr[3];
arr[@] = start;
arr[1l] = start*2;
int* ret = arr;
return ret;

}

int main() {
int* al = foo(0);
printf("al = [%d, %d]\n", al[e], al[l1]);
int* a2 = foo(3);
printf("al = [%d, %d]\n", al[@], al[1]);
printf("a2 = [%d, %d]\n", a2[0], a2[1]);
return 0;

d) [10 points] Consider the function asterisks().
char* asterisks(int n) {
char* ret = malloc(n+1);
ret[0] = 0;
for (int i = 9; i < n; i++)
strcat(ret, "*");
return ret;

}

[5 points] Explain the functionality of the function.

[5 points] What is the running time of the function? Use big-O notation to express your answer
** Hint: what is the running time of strcat?

Problem 2 [35 points]

a) [10 points] Consider the MergeSort algorithm with linear time merging we saw in class.
1. List all recursive calls the algorithm will perform on the array A =[9,1,8,7,3,6,4,0].
2. List all comparisons the algorithm will perform on the array A = [9,1,8,7,3,6,4,0].

b) [5 points] Give an example of an array of length 5 on which InsertionSort makes exactly
one swap. Explain your answer.

c) [5 points] Give an example of an array of length 8 on which InsertionSort makes a total
of 28 swaps. Explain your answer.

d) [10 points] Consider the following variant of the selection sort algorithm.
Given an array A of length n it works as follows:
- Let M[O...n-1] be an array of length n
- Fori=0...n-1
- Letj be the index of the minimal element in A[i...n-1]
- swap(Ali], Afj])
- M[i]=]j
In the end of the funcion the array A is sorted, and the array M contains the indices of the
minimal elements in each iteration.
For example if we start with A =[5,9,6,1,8], then
- after the iteration i=0 we get M[0]=3, we swap 5 and 1, and A becomes [1,9,6,5,8]
- after the iteration i=1 we get M[1]=3, we swap 6 and 5, and A becomes [1,5,6,9,8]
- after the iteration i=2 we get M[2]=2, we swap 6 and 6, and A becomes [1,5,6,9,8]
- after the iteration i=3 we get M[3]=4, we swap 9 and 8, and A becomes [1,5,6,8,9]
- after the iteration i=4 we get M[4]=4, we swap 9 and 9, and A becomes [1,5,6,8,9]

Write a function that performs “reverse engineering” to the algorithm.

The function gets the sorted array A of length n, and the array M of length n.
The function returns A to its initial state before selection sort was applied.
Explain the idea before writing code.

void reverse_selecion_sort(int* A, const int* M, int n) {

}

[5 points] Use big-O notation to express the running time of your algorithm.

Problem 3 [25 points]

In the problem a Linked List of ints is represented as follows.
struct LL_node {
int data;
struct LL_node* next;
s
typedef struct LL_node LL_node_t;

typedef struct {
LL _node_t* head;
LL node_t* tail;
} LL_t;

a) [10 points] Write a function that gets two linked lists, and checks if they are equal.
The running time of the function must be O(length of the shortest list).

For example, if one list has O(1) nodes, and the other has n nodes for some large n,
then the running time should be O(1) independent of n.

** Note: LL_t does not have the field size.
bool are_equal(LL_t* listl, LL_t* list2) {

b) [15 points: 5 points each] Implement the following standard functions on a Linked List with

pointers to head and tail, using the struct above.

// adds a node with the given value to the head of the 1list
// the running time is 0(1)

void add_to_head(LL_t* list, int val) {

}

// adds a node with the given value to the tail of the 1list

// the running time is 0(1)
void add_to_tail(LL_t* list, int val) {

}

// sets the i’th node to be the given value (indices start from 9)
// Assumption: the list has at least i+l nodes.
void set_value(LL_t* list, int i, int value) {

Extra page

Empty page

