CMPT 706, Spring 2020

Quiz 1 - January 30

Name \qquad
SF ID:

Instructions:

1. Write your name and SFU ID **clearly**.
2. No calculators, no cell phones, or any other material.
3. Write your answers in the provided space.
4. Explain all your answers.

Question 1 (10 points)

Let $f, g: N \rightarrow N$ be two functions on positive integers that output positive integers.
Suppose that $f=O(h)$ and $g=\Omega(h)$. Is it true that $f=O(g)$?
If true, prove it. If false, provide a counterexample.
This is true.
Proof:
By definition $f=O(h)$ means that there is some constant $C_{1}>0$ and $k_{1}>0$ such that for all $n>k_{1}$ we have $f(n) \leq C_{1} \cdot h(n)$.

By definition $g=\Omega(h)$ means that there is some constant $C_{2}>0$ and $k_{2}>0$ such that for all $n>k_{2}$ we have $g(n) \geq C_{2} \cdot h(n)$.

Therefore, by letting $k=\max \left(k_{1}, k_{2}\right)$ and $C=C_{1} \cdot C_{2}$ we get that for all $n>k$ we have $f(n) \leq C_{1} \cdot h(n) \leq C_{1} \cdot C_{2} \cdot h(n)=C \cdot h(n)$, and hence $f=O(g)$.

Question 2 (10 points)

Show the execution of the Euclidean Algorithm for computing gcd $(144,54)$.
Write explicitly all intermediate steps of the algorithm.
$\operatorname{gcd}(144,54)=\operatorname{gcd}(144 \bmod 54,54)=\operatorname{gcd}(36,54)=\operatorname{gcd}(54,36)=\operatorname{gcd}(54 \bmod 36,36)$ $=\operatorname{gcd}(18,36)=18$

Question 3 (10 points)

Compute the product 43.71 using the fast multiplication algorithm that performs only 3 multiplication on decimal digits.
$U=3^{*} 1=3$
$H=4 * 7=28$
$\mathrm{T}=(4+3)^{*}(7+1)-\mathrm{U}-\mathrm{H}=7 * 8-3-28=56-3-28=25$
Therefore $43 * 71=28 * 100+25^{*} 10+3=3053$

