
CMPT225, Spring 2021
Homework Assignment 1

Due date: Friday, January 29, 2021, 23:59

You need to implement the following classes​:
Part 1:

- myiterators/ArrayIterator.java
- myiterators/FibonacciIterator.java
- myiterators/RangeIterator.java

Part 2:
- rushhour/RushHour.java
- rushhour/IllegalMoveException.java

Note that the files for Part 1 must be in under the package (folder) ​myiterators/​,
and the files for Part 2 must be under the package (folder) ​rushhour/​.
You may add more classes to your solution if necessary.

Submit all your files in ​assignment1.zip​ to CourSys. Make sure your zip file can be unzipped
using the command “​unzip assignment1.zip​” in CSIL. All your solutions in the zip file must be under
the ​src​ folder, same as in the provided ​hw1-cmpt225-spring21.zip​.

Discussion with others​: You may discuss the assignment with your classmates/tutors (or anyone
else), but coding must be entirely your own.

References​: You may use textbooks, wiki, stack overflow, geeksforgeeks, etc. If you do, specify
the references in comments. Posting questions online asking for solutions (e.g. using chegg.com)
is prohibited.

Readability​: Your code should be readable using the standard Java conventions. Add comments
wherever is necessary. If needed, write helper functions or add classes to improve readability.

Compilation​: Your code MUST compile in CSIL using javac.
Make sure that your code compiles without warnings/errors.
If the code does not compile in CSIL the grade on that part will be 0 (zero).
Even if you can’t solve a problem completely, make sure it compiles.

The assignment will be graded mostly ​automatically​, with some exceptions.

Do not​ add main() to your solutions. The main() method will be in the test files.
Examples of such tests are provided in ​TestIterators.java​ and ​TestRushHour.java​.

Warnings​: Warnings during compilation will reduce points.
More importantly, they indicate that something is probably wrong with the code.

Testing​: Test your code. Examples of tests are included. Your code will be tested using the
provided tests as well as additional tests. You should create more tests to check your solution.
Good luck!

Part 1 [50 points] - Integer Iterator

IntegerIterator​ represents a sequence (finite or infinite) of integers a​0​ ,a​1​ ,a​2​
The interface has the following public methods:

public​ ​boolean​ hasNext()​ : Returns true if the sequence has more elements, and returns
false otherwise. If the sequence is infinite, has Next() always returns true.

public​ ​int​ getNext()​:​ Returns the next element in the sequence.

public​ ​void​ reset():​ Resets the iterator to the initial element of the sequence, i.e., to a​0​.

The interface is provided with the assignment under the package myiterators.

Your goal is to write the following 3 classes implementing this interface:

1) ArrayIterator [15 points]
The class has one constructor that gets an array of ints.
public​ ArrayIterator(​int​[] ar)
The iterator iterates through the elements of the array.

2) RangeIterator [15 points]
The class has three constructors:

1) public​ RangeIterator(​int​ n)
The iterator iterates through the elements 0,1...n-1. If n<0, then the sequence is empty.

2) public​ RangeIterator(​int​ a0, ​int​ n)
Defines the sequence a​0​, a​0​+1, a​0​+2,...n-1. If n<a​0​, then the sequence is empty.

3) public​ RangeIterator(​int​ a0, ​int​ n, ​int​ diff)
Defines the sequence a​0​, a​0​+diff, a​0​+2diff,..., a​0​+k*diff, where k is the maximal integer such
that a​0​+k*diff<n. If n<a​0​, then the sequence is empty.

3) FibonacciIterator [20 points]
The ​Fibonacci sequence​ is defined as a​0​=0,a​1​=1, and a​n​ = a​n-1​+a​n-2​ for all n>1.
More generally​, given the initial values of a​0​ and a​1​ we define the sequence as a​n​ =
a​n-1​+a​n-2​ for all n>1.

The class implements the infinite Fibonacci sequence. It has two constructors:

1) public​ FibonacciIterator()
Defines the Fibonacci sequence with a​0​=0,a​1​=1.

2) public​ FibonacciIterator(​int​ a0, ​int​ a1)
Defines the more general Fibonacci sequence with a​0​ and a​1​ given as arguments to the
constructor.

Part 2 [50 points] - Rush Hour

RushHour​ ​is a class representing the game RushHour.
See wiki page for the description ​https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)
Find the game online and play it.

Your goal in this part is to read an initial board from a file, and move the cars on the board.

The file is expected to have 6 rows with 6 chars in each row.

- A dot represents an empty cell.
- Each car is represented by a letter.
- Each car can go either only horizontally or only vertically. The allowed direction of a car is

defined by the longer side of the car.
- Vehicles can only be moved along a straight line on the grid; rotation is forbidden
- The red car (the one we need to get to the exit) is denoted by X.
- The goal is to bring the red car, denoted by X to the right edge of the board.
- You may assume that the file always represents a legal board.

See board1.txt for an example.

Write the class RushHour with the following constructor and three public methods:

1) public​ RushHour(String fileName) ​throws​ FileNotFoundException
The constructor gets a name of a file as an argument. It reads the file and initializes the board.

2) public​ ​void​ makeMove(​char​ carName, ​int​ direction, ​int​ length)
throws​ IllegalMoveException

The method moves the car in the car for length steps in the given direction.
If the move is illegal the method throws IllegalMoveException. The move can be illegal because
the direction is incorrect or because some cells on the way are occupied.

The class IllegalMoveException is provided with the assignment.
It is very simple, it just inherits from Exception.

3) public​ ​boolean​ isSolved()
Returns true if and only if the car X touches the right edge of the board.

Remarks​:
The provided class RushHour has several constants: UP, DOWN, LEFT, RIGHT, and SIZE.
They are provided for your convenience. You may use them , but you don’t have to.

You may add additional private methods if needed. You may also add new classes if needed.
For example, you may want to consider creating a class Car to represent a car on the board.

https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)

