CMPT 125, Fall 2019 - (incomplete) solutions

Midterm Exam
October 28, 2019

Name

SFUID: |||]|

Problem 1

Problem 2

Problem 3

Problem 4
TOTAL

Instructions:

Duration of the exam is 90 minutes.

Write your name and SFU ID **clearly**.

This is a closed book exam, no calculators, cell phones, or any other material.
The exam consists of four (4) problems. Each problem is worth 25 points.
Write your answers in the provided space.

There is an extra page at the end of the exam. You may use it if needed.
Explain all your answers.

Really, explain all your answers.

ONoOORWN =

Good luck!

Problem 1 [25 points]

a) [6 points] What will be the output of the following program?
#include <stdio.h>
enum week {MON, TUE, WED, THUR, FRI, SAT, SUN};

x getsptrto a, ygets 1, zgets ptrto c

void foo (int* x, int y, int* z) {
X = z; /I x points to ¢
y = *x; /l the local variable y changes to 2
*z = THUR; Ilc=3

}

int main () {

int a = MON, b = TUE, ¢ = WED; //la=0,b=1,c=2;
foo(&a, b, &c);

printf ("a = %d,
return 0;

}
[IANSWER:a=0,b=1,¢c=3

b =23%d, ¢ = %d", a, b, c);

b) [4 points] Will the code below compile?
If yes, what will be the output? If no, explain why.
#include <stdio.h>

int main () {
char str[5] ={‘a’,’'b",’c’","d’,0};
char* ptr = str;
printf ("$s\n", ptr);
return 0;

//IANSWER: the function prints: abcd

c) Consider the following function.
int bar (int n) {
if (n <= 0)
return O;

else {
int 1 = 0, sum = 0;
while (sum <= n*(n-1)/2) {
i++;

sum += 1i;
}

return 1 + bar(n-1);

}
**Below you may need the following fact: 1+2+3+...+n = n*(n+1)/2.

[4 points] What does bar(n) return on input n = 37 Show some intermediate computation if
needed.

When the while loops exists we have i = n
Therefore, bar(3) returns 3+bar(2) = 3+2+bar(1) = 3+2+1+bar(0) = 6

ANSWER: 6
[5 points] Use the big-O notation to express the running time of bar(n) as a function of n.
Explain your answer.

Denote the runtime by T(n). Then T(n) = O(n) + T(n-1)

That is, T(n) = T(n-1) + Cn for some constant C

We have T(n) = T(n-1) + Cn =T(n-2) + C(n-1) + Cn = =T(n-3) + C(n-2) + C(n-1) + Cn = ...
= C(1+2+3+...(n-1)+n) = O(n?)

[6 points] Explain in words what bar(n) returns, and write a function with the same functionality|
as bar(n) whose running time is O(1).

The function returns 1+2+3+...+n. We can compute it using the following code:
int bar(int n) {
return n*(n+1)/2;

}

Problem 2 [25 points]

a) [15 points] Recall the MergeSort algorithm.

void merge sort (int* A, int n) {
if (n >= 2) {
int mid = n/2;
merge sort (A, mid);
merge sort (A+mid, n-mid);
merge (A, n,mid) ;
}

}
Implement the merge function that gets an array A of length n, and an index mid, and it is

guaranteed that the part A[0,...mid-1] is sorted in ascending order, and A[mid...n-1] is sorted in
ascending order. The function merges the two halves in time in A in time O(n).

You may assume all elements are distinct.
Remember to use malloc/free if you need to use a new array.

void merge (int* A, int n, int mid) {

int* tmp = (int*) malloc (n*sizeof (int)) ;

int indl = 0, ind2 = mid;
int i = 0;

while (i < n) {

if (indl==mid || (ind2<n && A[ind2]<A[indl])) {
tmp[i] = A[ind2];
ind2++;

}

else {
tmp[i] = A[indl];
indl++;

}

i++;

for (int 1 = 0 ; 1 < n; i++)

free (tmp) ;

b) [6 points] Consider the QuickSort algorithm that uses as a pivot the first element (i.e., A[0]).
List all recursive calls made by the algorithm on inputA=[2, 8, 6, 1, 5, 3].
Show some intermediate steps of the computation.

TIn first rearrangement the algorithm swaps(8,1) and gets A =[2,1,6,8,5,3].
The we swap 2 to the correct position: = [1,2,6,8,5,3]
We make a two recursive calls: [1] and [6, 8, 5, 3]
- [1] doesn’t do anything
- [, 8, 5, 3] choose 6 as the pivot. Then we swap (8,3), and get [6, 3, 5, 8].
Then we swap the pivot to the middle: [5, 3, 6, 8]
- We make two more recursive calls: [5, 3] and [8]
- [5,3] chooses 5 as pivot, then swaps(5,3) and gets [3,5]. Then it makes a
recursive call on [3], and returns.
- [8] make no more recursive calls.

c) [4 points] Consider the Binary Search algorithm. How many comparisons will it make on
inputA=1[2,4,6, 8, 10, 12, 14] when searching for 6.

Compare 6 to 8, then go to [2, 4, 6]
Compare 6 to 4, then go to [6]
Compare 6 to 6, and return the index

Problem 3 [25 points]

a) [6 points] Consider the following sequence of operations on a stack. What will be the state
of the stack in the end? Show some intermediate steps of the computation.

stack t* s = stack create();
push (s, 1); [1

push (s, 2); [1,2
push(s, 3); [11213
push(s, 4); [1121314
pop (s) ; [(1,2,3
push (s, 5); [1,2,3,5
push (s, 1); [1,2,3,5,1
pop (s) ; [1,2,3,5
push (s, 1); [1,2,3,5,1
push (s, 3); [(1,2,3,5,1,3
pop (s) ; [1,2,3,5,1
ANSWER: [1,2,3,5,1

b) [6 points] Consider the following sequence of operations on a queue. What will be the state
of the queue in the end? Show some intermediate steps of the computation.

queue_t* g = queue create();

enqueue (q,

enqueue
enqueue
enqueue
dequeue

enqueue (g,
enqueue (g,
dequeue (q) ;

enqueue (q,
enqueue (q,
dequeue (q) ;

1); -—> [1]
(a, 2); -—> [2,1]
(a, 3): -—> [3,2,1]
(q, 4); --> [4,3,2,
(a) s -—> [4,3,2]
5); --> [5,4,3,2]
1), == ;5,4
; ——> ;5,4,3
1) --> [1,1,5,
3); --> [3,1,1,
--> [3,1,1,

ANSWER: TAIL -> [3,1,1,5,4] -> HEAD

SO W

c) Consider the following function.
void do what (queue t* qg) {

if (queue is empty(q));
return;

int data = dequeue (q);
do what (q) ;

enqueue (q, data);

[8 points] If the input to the function is a queue in the state q =[1,2,3] (1 is the head, 3 is the
tail), what will be the state of g when the function returns? Explain your answer.

The function returns the queue in the reversed order.
The state of g will be [3,2,1].

[5 points] Use the big-O notation to express the running time of do_what. Explain your answer,

ANSWER: O(n), where n is the size of the queue.
Explanation: each element in the queue is removed once and added once.

Problem 4 [25 points]

In this problem we represent a Linked List of ints using LLnode_t:
struct node {
int data;
struct node* next;
bi
typedef struct node LLnode t;

a) Consider the following function
int fun list (LLnode t* head) {

if (head == NULL) {
printf ("\n");
return 1;

}

else {
int w = fun list (head->next);
printf ("$d ", head->data);
return w * head->data;

[4 points] What will fun_list() return on input 1— 2— 3— 2— 57 Explain your answer.

The function returns 1*2*3*2*5 = 60.

[4 points] What will fun_list() print on input 1— 2— 3— 2— 57 Explain your answer.

The function skips a line and the prints 52 32 1 “

b) [12 points] Write a function in C that gets a linked list and a number, and returns the first
node containing the number. If the number is not in the list, the function returns NULL.
The linked list is represented as a pointer to the first node in the list LLnode t* head.

The state of the list on return should not change.

LLnode t* find(LLnode t* head, int number) {
if (head == NULL)
return NULL;
if (head->data == number)
return head;

return find(head->next, number) ;

}
[5 points] Use big-O notation to express the running time of your function?

ANSWER: O(size of list) because each item is touched at most once

Extra page

