CMPT 125, Fall 2021 - SOLUTIONS

Midterm Exam
October 25, 2021

Name

SFUID: |||]|

Problem 1

Problem 2

Problem 3

Problem 4
TOTAL

Instructions:

Duration of the exam is 90 minutes.

Write your name and SFU ID **clearly**.

This is a closed book exam, no calculators, cell phones, or any other material.
The exam consists of four (4) problems. Each problem is worth 25 points.
Write your answers in the provided space.

There is an extra page at the end of the exam. You may use it if needed.
Explain all your answers.

Really, explain all your answers.

ONoOORWN =

Good luck!

Problem 1 [25 points]

a) [6 points] What will be the output of the following program? Explain your answer.
#include <stdio.h>
enum numbers {ZERO, ONE, TWO, THREE};

void foo (int* x, int y) {
int z = 5;
*X = zZ;
y = z;
X = &Yy;
}

int main () {
int a = ONE, b = TWO;
foo(&a, b);
printf ("a =
return 0;

%d, b = %d"/ a/ b);

}
ANSWER:a= 5b=2
Explanation:
e Inthe beginninga=1,b=2
e *x gets the value 5, hence the variable a in main becomes 5.
e The line y=z changes y to 5.
e The line x=&y makes x point to y, but this has no effect on a,b in main

b) [6 points] Will the code below compile?
If yes, what will be the output? If not, explain why.
#include <stdio.h>

void str manipulate (char* s) {
char ¢ = ;
*(s+2) = ¢c;

}

int main () {
char str[l13] = ;
str manipulate (str+3);
printf ("%s\n", str+l);
return 0;
}
ANSWER: The code will compile, the output will be “MPT1”
Explanation:
e str+3 points to the letter T, so str_manipulate() gets “T125” as argument
e *(st+2) =0’ changes the char 2’ to \0’, thus changing str to “CMPT1”
e printf() prints str starting from M

c) [7 points] Will the code below compile?
If yes, what will be the output? If not, explain why.
#include <stdio.h>

int* get arr3() {
int arr[5] = {1,2,3};
int* ret = arr;

return ret;

}

int main () {
int* al = get _arr3();
int* a2 = get arr3();
al[0] = 7;
az2[1l] = 8;
printf ("al = [%d, %d, %d]\n", al[0], alll]l, all2]);
printf ("a2 = [%d, %d, %d]\n", a2[0], a2[1l], a2[2]);

return 0;
}
ANSWER: The code will compile, but the output is undefined because get_arr3 returns a
pointer to a local array. This means a1 and a2 are not guaranteed to have the values {1,2,3}
when the function returns.

*Remark: arr[5] = {1,2,3} means that the first 3 elements of arr are set to 1,2,3 but the
remaining two are not initialized. That’s not an error, but in practice we should initialize
variables before using them

d) [6 points] What is the running time of the function below. Use Big-O notation to express you
answer. Explain your solution.
int foo(int n) {

if (n>0) |
int i, sum = 0;
for (1i=0; sum<n ; i++) // note the condition is sum < n
sum = sum+i;

return i+foo(n-1);
}
return O;
}
ANSWER: In the i'th iteration the sum is equal to 1+2+3+4+_..i = i(i+1)/2 > i?/2.
Therefore, the for loop will not have more than O(\n) iterations.
This gives us the recursive formula for running time: T(n) <= T(n-1) + C*n”*, and T(0) = 1

If we open this formula using T(n-1) <= T(n-2) +C*(n-1)*, we’'ll get

T(n) <= T(n-2) + C*(n-1)"* + C*n* <= T(n-3) + C*(n-2)”* + C*(n-1)* + C*n* ...

By repeating it n times we get: T(n) <= C*n”* + C*(n-1)”* + C*(n-2)”* + C*(n-3)” + ...
There are n terms in the sum, each less than C*n” . Therefore, the total time is O(n"®)

Problem 2 [25 points]

a) [5 points] Consider the Binary Search algorithm. How many comparisons will it make on
the inputA =12, 4, 6, 8, 10, 12, 14, 15, 18, 90, 100] when searching for 7. Explain your answer

ANSWER: Two possible solutions will be accepted:

A) Total 3 comparisons.

The algorithm will make the following comparisons:
1. Compare 7 to 12 — search in [2,4,6,8,10]
2. Compare 7 to 6 — search in [8,10]
3. Compare 7 to 8 — search in []
4. Return “NOT FOUND”

B) Total 4 comparisons.

The algorithm will make the following comparisons:
Compare 7 to 12 — search in [2,4,6,8,10]
Compare 7 to 6 — search in [8,10]
Compare 7 to 10 — search in [8]

Compare 7 to 8 — search in []

Return “NOT FOUND”

R

b) [8 points] Give an example of an array of length n, on which InsertionSort makes exactly
one swap in each iteration of the outer loop.

ANSWER: A=[n,1,2,3,4,5,...n-1] That s, the array is almost sorted except for the first
element.

Insertion sort will work as follows:
e Insert 1: swap 1 withn — [1,n,2,3,4,5,6,7, ..., n-1]
e Insert 2: swap 2 withn — [1,2,n,3,4,5,6,7, ..., n-1]
e Insert 3: swap 3 withn — [1,2,3,n,4,5,6,7, ..., n-1]
e Andsoon

In the i’th iteration we’ll swap i with n

c) [6 points] Recall the MergeSort algorithm.
void merge sort (int* A, int n) {
if (n >= 2) {
int mid = n/2;
merge sort (A, mid);
merge sort (A+mid, n-mid);
merge (A, n,mid) ;
}

}
What is the running time of this algorithm when applied on a sorted array of length n?

Write the tightest possible upper bound on the running time. Explain your answer.

ANSWER: The running time is O(n log(n)) even on a sorted array.
Indeed ,even if the array is sorted, the running time is T(n) = 2T(n/2) + O(n), which behaves
like O(n log(n)).

d) [6 points] Consider the following variant of MergeSort:
bool is sorted(int* A, int n);

void merge sort (int* A, int n) {
if (n <=1 || is_sorted(A, n))
return;

int mid = n/2;

merge sort (A, mid);

merge sort (A+mid, n-mid);

merge (A, n,mid) ;
}
What is the running time of this algorithm when applied on A=[n, n-1, n-2, n-3, n-4,... 3, 2, 1]?
Write the tightest possible upper bound on the running time. Explain your answer.

ANSWER: The running time is O(n log(n)) on this array..
This is because the subarrays we are sending in recursive calls are never sorted, so the
running time is still T(n) = 2T(n/2) + O(n), which behaves like O(n log(n))

Problem 3 [25 points]

a) [8 points] Write a function that gets two strings and computes the length of their longest
common prefix. For example,

- longest_common_prefix(“abcd”, “ab12”) is 2 - the prefix is “ab”

- longest_common_prefix(“abcd”, “cd”) is 0 - the prefix is empty

- longest_common_prefix(“abcd”, “abcdefg”) is 4 - the prefix is “abcd”
Explain your idea before writing code.

int longest common prefix(const char* strl, const char* str2) ({

ANSWER: have a counter.
We'll iterate over both arras, and as long as str1[i]==str2[i] we will increase the counter.
We will stop when either str1[i]!=str2[i] or when we reach the end of one of the strings

int count = 0; // this will be the return value
int i = 0;

// increase ret as long as strl[i]==str2[i]
//and we haven't reached the end of the strings

while (strl[i]==str2[i] && strl[i] != && str2[0] '= 0) {
count++;
it++;

}

return count;

}

*Remark: In the while condition it is ok to check

while (strl[i]l==str2[i] && strl[i] != 0)
**or

while (*(strl+i)==*(str2+i) && *(strl+i) '= 0)
**or

while (*(strl+i)==*(str2+i) && *(strl+i))

}

[4 points] What is the running time of your function? Use big-O notation to state your answer.
Give the tightest possible answer.

ANSWER: The running time is O(n), where n is the length of the longest common prefix.
Note that n can be potentially much smaller than the input length

*Answers O(input length) will also be accepted

b) [10 points] Implement the function strcat. The function gets dest and src, and appends the
string pointed to by src to the end of the string pointed to by dest.
This function returns a pointer to the resulting string dest.

For example, if dest = “ABC” and src = “DEF”, then after the function returns we have
dest = “ABCDEF".

You are not allowed to use any library functions to solve this.

// assumption: dest has enough memory allocated
// to store the concatenation of the two strings
char* strcat (char* dest, const char* src) {

char* ptrl = dest;
const char* ptr2 = src;

// f£find the end of dest
while (*ptrl !'= 0) // same as *ptrl !=
ptrl++;

// copy ptr2 to ptrl
while (*ptr2 !'= 0) {
*ptrl=*ptr2;

ptrl++;
ptr2++;
}
*ptrl = ; // don’t forget to end with NULL terminator

return dest;

}
[3 points] What is the running time of your function in terms of the length of the strings in the
worst case? Use big-O notation to state your answer. Give the tightest possible answer.

ANSWER:
The first loop runs for O(length(dest)) time
The second loop runs for O(length(src)) time

The total running time is O(length(dest) + length(src)).

Problem 4 [25 points]

a) [8 points] Write a function that gets a parameter n. It reads n ints from the user (using
scanf), and prints the numbers in the reverse order.
void read and print reverse (int n) {

// make sure to use malloc
// never use variable length arrays: int ar[n] is wrong!

int* ar = (int*) malloc(n*sizeof (int)) ;
int i;
for (i=0;i<n;i++)
scanf (, &ar[i]); // same as scanf(, ar+i) ;

for (i=n-1;i>=0;i--)
printf (, ar[i]); // printf(, *(ar+i));

free (ar) ;

b) [15 points] Write a function that gets an array of ints of length n, and returns an array of
length n, such that the output[i] is equal to the maximal element in the input subarray [O,..., i].
For example,

You may write helper functions if that makes the solution more readable.
e A correct answer with linear running time, will give you 15 points
e A correct answer with quadratic running time, will give you 10 points

int* max prefixes(int* ar, int n) {

if (n==
return NULL;

int* output = (int*) malloc(n*sizeof (int)) ;
if (output==NULL)
return NULL;

output[0] = ar[0];
int i;
for (i=1;i<kn;i++) {
if (output[i-1] > ar[i])
output[i] = output[i-1];
else
output[i] = ar[i];

}

return output;

}
[3 points] Explain the running time of your function.

ANSWER: O(n).
We have one for loop of length n with O(1) operations in each iteration

khkkkkkkhhkkkkhkhkkhkhkhhkkhkhkkhkhkhkkkhkhhkkhkhkhkkkhkhhkkkhkkkkhkhkkkkk

Alternatively can define a helper function that computers max of the first i elements
int max(int* ar, int i) {}

Then, we can populate output using this max function
for (i=1;i<n;i++) {

output[i] = max(ar, i);

This runs in O(n?) time

Extra page

10

