

CMPT 125 D100, Fall 2025​

Midterm Exam - SOLUTIONS
October 28, 2025

Name_________________________

SFU ID: |__|__|__|__|__|__|__|__|__|

Problem 1

Problem 2

Problem 3

Problem 4

TOTAL

Instructions:

1.​ Duration of the exam is 100 minutes.
2.​ Write your full name and SFU ID **clearly**.
3.​ This is a closed book exam, no calculators, cell phones, or any other material.
4.​ The exam consists of four (4) problems.
5.​ Write your answers in the provided space.
6.​ There is an extra page at the end of the exam. You may use it if needed.
7.​ Explain all your answers.
8.​ Really, explain all your answers.

Good luck!

1

Problem 1 [25 points]

a) [2 points each] Suppose you have a program in C named program.c.

1.​ What is the command in Linux to compile it into an executable file?

Answer: gcc program.c

2.​ What is the default name of the compiled executable?

Answer: a.out

3.​ How can you specify the name of the executable in the compilation line?

Answer: gcc program.c -o specific_name

b) [7 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>
enum colors {RED, GREEN, BLUE, YELLOW};​

int fun(int* x, int* y) { x points to a, y points to b
 long z = 4;
 *y = z; sets b=4
 *x = YELLOW; sets a=3 (YELLOW is 3)
 *y = 8; sets b=8 it does not affect z
 return z; returns 4
}

int main() {
 int a = RED, b = GREEN; sets a=0, b=1
 int c = fun(&a, &b); sets a=3, b=8 , and returns 4 [see comments above]
 printf("a = %d, b = %d, c = %d\n", a, b, c);
 return 0;
}

Answer: it will compile
The function will print: a = 3, b = 8, c = 4

2

c) [6 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>

int main() {
 char str[15] = {0,28,29,30,31,'5','6','7',0};
 int ind=1;
 while (str[ind])​
 ind++;

 printf("%s\n", str+ind-2);
 return 0;
}

Answer: it will compile
Ind runs until reaches 0.
Now str+ind-2 points to ‘6’.
The function will print: 67

d) [6 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>

int* what() {
 int arr[3];
 for(int i=0;i<3;i++)
 arr[i] = i;​
 return arr;
}

int main() {
 int* a = what();
 a[0] = 100;
 printf("a = [%d, %d, %d]\n", a[0], a[1], a[2]);
 return 0;
}

Answer: what tries to return a pointer to a local array. Behaviour is unpredictable

3

Problem 2 [25 points]

a) [15 points] Write a function that gets a string str, and a char delim, and returns the
number of tokens in the string separated by delim.

For example,

●​ count_tokens("abc-EFG--", '-') needs to return 2.
●​ count_tokens("++a+b+c+++", '+') needs to return 3.
●​ count_tokens("***", '*') needs to return 0.
●​ count_tokens("abcaa", '*') needs to return 1.

int count_tokens(const char* str, char delim) {

 // IDEA: read the string char by char
 // increase count if str[i] is not delim, but str[i-1] is delim

 int count=0; // counts the number of tokens
 bool is_prev_delim = true; // checks if previous char was delim

 for (int i=0; str[i]!=0; i++) {
 if (str[i] == delim) { // if the char is delim
 is_prev_delim = true; // update the flag
 }
 else { // char is not delim
 if (is_prev_delim) {
 count++; // increase count
 is_prev_delim = false; // update the flag
 }
 }
 }
 return count;

}

4

b) [10 points] Write a function that gets two strings str1 and str2, and checks if str2 is​
a suffix str1. For full marks, your function needs to run in time O(strlen(str1)+strlen(str2)).
For example,

●​ is_suffix("abcd", "cd") needs to return true.
●​ is_suffix("cd", "Acd") needs to return false.
●​ is_suffix("123v787", "v787") needs to return true.
●​ is_suffix("xyz", "xyz") needs to return true.

You may assume the standard libraries are included (e.g., stdio.h, stdlib.h, stdbool, string.h).

bool is_suffix(const char* str1, const char* str2) {

 int len1 = strlen(str1);
 int len2 = strlen(str2);

 if (len2 > len1)
 return false;

 for (int i=0; i<len2;i++)
 if (str1[len1-1-i] != str2[len2-1-i])
 return false;
// alternatively, you could use strcmp(str1+len2-len1,str2);

 return true;

}

5

Problem 3 [25 points]

a) [5 points] Give an example of an array of length 10, on which InsertionSort makes exactly​
four swaps in each of the last two iterations of the outer loop, and no other swaps.

Answer: [1,2,3,4,7,8,9,10,5,6]

b) [5 points] Write a function called pancake_flip, that gets an array arr and integer k,​
and reverses the order of the first k elements in arr . We call it a k-flip.
For example,

●​ If arr=[1,2,3,4,5,6,7,8] and k=3, then after executing the function​
arr becomes [3,2,1,4,5,6,7,8].

●​ If arr=[1,2,3,4,5,6,7,8] and k=6, then after executing the function​
arr becomes [6,5,4,3,2,1,7,8].

(Note that k=0 or k=1 do not affect arr.) You may assume that the length of arr is at least k.
void pancake_flip(int* arr, int k) {

 int tmp;
 for (int i=0; i<k/2; i++) {
 tmp = arr[i];
 arr[i] = arr[k-1-i];
 arr[k-1-i] = tmp;
 }

}

c) [15 points] Write a function pancake_sort that gets an array A and sorts it using a
sequence of k-flips from the previous item. The function returns an array that​
represents the sequence of k-flips that sort A. For example,

●​ pancake_sort(A =[3,2,4,1]) can return the sequence [5, 3,4,2,3,2].
The zeroth element is the length of the sequence (in this case 5), followed by a
sequence of k’s.
By applying the 5 flips the result will be:
3: A =[4,2,3,1]
4: A =[1,3,2,4]
2: A =[3,1,2,4]
3: A =[2,1,3,4]
2: A =[1,2,3,4]

Note: the answer is not unique. For example for A =[3,2,4,1]) the function can also
return the sequence [4, 4,2,4,3] -- 4 is the length of the sequence, and the flips are [4,2,4,3].​

6

Explain your idea before writing code!
// The function gets an array A of length len.
// It returns an array SEQ specifying the sequence of k-flips,​
// so that the following code sorts A:
// ----------------------
// for (i=1; i <= SEQ[0]; i++)
// pancake_flip(A,SEQ[i]);
// ----------------------
// That is, SEQ[0] holds the length of the sequence,
// and A is sorted by the sequence of flips SEQ[1…SEQ[0]].
// (Note: the returned array must be allocated on the heap)
int* pancake_sort(int* A, int len) {
IDEA: We can do something similar to Insertion Sort (in reverse order).
First find maximum in A, and send it to position A[len-1] using 2 flips. Specifically, suppose
A[m] is maximal, then we apply:

-​ pancake_flip(m+1) sends max to A[0]
-​ pancake_flip(len) sens max to A[len-1]

Now max is in place, and we continue to the subarray A[0…len-2]. We find max in A[0…len-2],
and then send it to A[len-2] using two flips the same way. If A[m] is maximum, we apply:

-​ pancake_flip(m+1) sends max to A[0]
-​ pancake_flip(len) sends max to A[len-2]

And so on… Total we will have at most 2*len flips.

 int seq_len = 0;
 int* ret = malloc((2*len + 1) * sizeof(int));

 for (int i=0; i<len-1;i++) {​
 int m = find_max(arr, len-i); // find max elt in A[0…len-1-i]
 ret[++seq_len] = m+1;
 ret[++seq_len] = len-i;
 pancake_flip(arr, m+1); // put max in A[0]
 pancake_flip(arr, len-i); // put max in A[len-1-i]​
 }​
 ret[0] = seq_len
 return ret;
}

int int find_max(int* arr, int len) { // finds index of max elt in arr
 int max_ind = 0;
 for (int i=1;i<len;i++)
 if (arr[i] > arr[max_ind])
 max_ind = i;
 return max_ind;
}

7

Problem 4 [25 points]

Consider the following function.
int foo(unsigned int n) {
 if (n<=3)
 return n;
 return 3*foo(n-1) + 2*foo(n-2) + 1*foo(n-3);
}

a) [5 points] Compute foo(5). Explain your answer.​

Answer: base case: foo(1)=1, foo(2)=2, foo(3)=3,
Recursion:
foo(4)=3*foo(3)+2*foo(2)+1*foo(1)=3*3+2*2+1*1=14
foo(5)=3*foo(4)+2*foo(3)+1*foo(2)=3*14+2*3+1*2=50

b) [8 points] Rewrite the function foo() with the same functionality so that on input n,​
it returns the answer in time O(n). Explain your answer.

int foo(unsigned int n) {
 if (n<=3)
 return n;

 int* a = (int*)malloc((n+1)*sizeof(int));
 a[0]=0; a[1]=1; a[2]=2; a[3]=3;

 for (int i=4; i<=n; i++)
 a[n] = 3*a[n-1] + 2*a[n-2] + a[n-3];

 int ret = a[n];
 free(a);
 return ret;
}

8

c) [12 points] Consider the following definition of a Linked List.
 struct LL_node {
 int data;
 struct LL_node* next;
 };
 typedef struct LL_node LL_node_t;

 typedef struct {
 LL_node_t* head;
 } LL_t;

Write a function that gets a Linked List and prints it in reverse order in time O(n),​
where n is the length of the list.

 void print_reverse(LL_t* list) {

 if (list==NULL)
 return;
 else
 print_reverse_helper(LL_t* list->head) {
 }

 // helper function that takes a head of the list as an argument
 void print_reverse_helper(LL_node_t* head) {
 if (head==NULL) // base case
 return;
 else {
 print_reverse_helper(head->next) {
 printf("%d", head->data);
 }
 }

9

Extra page

​
​

10

Empty page

11

	Problem 1 [25 points]
	Problem 2 [25 points]
	Problem 3 [25 points]
	Problem 4 [25 points]
	Extra page
	Empty page

