CMPT 125 D100, Fall 2025

Midterm Exam - SOLUTIONS
October 28, 2025

Name

SFUID: ||| ]|

Problem 1

Problem 2

Problem 3

Problem 4
TOTAL

Instructions:

Duration of the exam is 100 minutes.

Write your full name and SFU ID **clearly**.

This is a closed book exam, no calculators, cell phones, or any other material.
The exam consists of four (4) problems.

Write your answers in the provided space.

There is an extra page at the end of the exam. You may use it if needed.
Explain all your answers.

Really, explain all your answers.

ONoOORWN =

Good luck!



Problem 1 [25 points]

a) [2 points each] Suppose you have a program in C named program.c.
1. Whatis the command in Linux to compile it into an executable file?
Answer: gcc program.c
2. What is the default name of the compiled executable?
Answer: a.out
3. How can you specify the name of the executable in the compilation line?

Answer: gcc program.c -o specific_name

b) [7 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>
enum colors {RED, GREEN, BLUE, YELLOW};

int fun(int* x, int* y) { xpointstoa,y pointstob

long z = 4;
*y = z; sets b=4
*x = YELLOW; setsa=3 (YELLOW is 3)
*y = 8; sets b=8 it does not affect z
return z; returns 4
}
int main () {
int a = RED, b = GREEN; setsa=0, b=1
int ¢ = fun(&a, &b); sets a=3, b=8, and returns 4 [see comments above]

printf("a = %d, b = %d, ¢ = %d\n", a, b, c);
return O;

Answer: it will compile
The function will print: a=3,b=8,c=4




c) [6 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>

int main () {
char str[15] = {0,28,29,30,31,'5",'6","'7",0};
int ind=1;
while (str[ind])
ind++;

printf ("$s\n", str+ind-2);
return 0;

Answer: it will compile
Ind runs until reaches 0.
Now str+ind-2 points to ‘6".
The function will print: 67

d) [6 points] Will the code below compile? If yes, what will be the result of the execution?
If there are any errors/warnings/potential issues explain them.

#include <stdio.h>

int* what () {
int arr([3];
for(int 1i=0;1<3;i++)
arr[i] = 1i;
return arr;

int main () {
int* a = what();
al0] = 100;
printf ("a = [%d,
return 0;

o°
o,
~
o\
[ON
=
Q
(@]
~
Q
—
~
Q
N

Answer: what tries to return a pointer to a local array. Behaviour is unpredictable




Problem 2 [25 points]

a) [15 points] Write a function that gets a string str, and a char de1im, and returns the
number of tokens in the string separated by delim.

For example,
e count tokens ("abc-EFG--", '-') needs to return 2.
e count tokens ("++atb+c+++", '+') needs to return 3.
e count tokens ("***", '*') needs to return 0.
e count tokens ("abcaa", '*') needs to return 1.

int count tokens (const char* str, char delim) ({

// IDEA: read the string char by char
// 1ncrease count 1f str[i] i1s not delim, but str[i-1] is delim

int count=0; // counts the number of tokens
bool is prev delim = true; // checks if previous char was delim

for (int i=0; str[i]!=0; 1i++) {
if (str[i] == delim) { // if the char is delim
is_prev delim = true; // update the flag
}
else { // char is not delim
if (is prev delim) {
count++;
is prev delim = false; // update the flag

}

return count;




b) [10 points] Write a function that gets two strings str1 and str2, andchecksifstr2 is
a suffix str1. For full marks, your function needs to run in time O(strlen(str1)+strlen(str2)).
For example,
e 1is suffix
e is suffix
e is suffix
e is suffix

"abcd", "cd") needs to return true.
"cd"™, "Acd") needs fo return false.
"123v787", "v787") needs to return true.
"xyz", "xyz") needs to return true.

o~~~ —~

You may assume the standard libraries are included (e.g., stdio.h, stdlib.h, stdbool, string.h).

bool is suffix(const char* strl, const char* str2) {

int lenl = strlen(strl);
int len2 strlen(str2) ;

if (len2 > lenl)
return false;

for (int 1i=0; i<len2;i++)
if (strl[lenl-1-1] !'= str2[len2-1-1])
return false;
// alternatively, you could use strcmp(strl+len2-lenl,str2);

return true;




Problem 3 [25 points]

a) [5 points] Give an example of an array of length 10, on which InsertionSort makes exactly
four swaps in each of the last two iterations of the outer loop, and no other swaps.

Answer: [1,2,3,4,7,8,9,10,5,6]

b) [5 points] Write a function called pancake flip, that gets an array arr and integer k,
and reverses the order of the first k elements in arr . We callita k-f1ip.
For example,
o Ifarr=[1,2,3,4,5,6,7,8] and k=3, then after executing the function
arr becomes [3,2,1,4,5,6,7,8].
o I|farr=[1,2,3,4,5,6,7,8] and k=6, then after executing the function
arr becomes [6,5,4,3,2,1,7,8].
(Note that k=0 or k=1 do not affect arr.) You may assume that the length of arr is at least k.
void pancake flip(int* arr, int k) {

int tmp;

for (int 1i=0; i<k/2; 1i++) {
tmp = arr[i];
arr[i] = arr[k-1-11;
arr[k-1-1] = tmp;

}

c) [15 points] Write a function pancake sort that gets an array A and sorts it using a
sequence of k-flips from the previous item. The function returns an array that
represents the sequence of k-flips that sort A. For example,

e pancake sort (A =[3,2,4,1]) can return the sequence [5, 3,4,2,3,2].
The zeroth element is the length of the sequence (in this case 5), followed by a
sequence of K’s.

By applying the 5 flips the result will be:
3:A =[4,2,3,1]

[1,3,2,4]
[3.1,2,4]
[2,1,3,4]
2:n = [1l.2,3,4]
Note: the answer is not unique. For example fora =[3,2,4,1]) the function can also
return the sequence [4, 4,2,4,3] -- 4 is the length of the sequence, and the flips are [4,2,4,3].

4: n
2: A
3:a




Explain your idea before writing code!

// The function gets an array A of length len.

// It returns an array SEQ specifying the sequence of k-flips,
// so that the following code sorts A:

/) —mmmmmmmm e ——

// for (i=1; i <= SEQ[0]; i++)
// pancake flip(A,SEQ[i]);
/] —mmmmm e

// That 1is, SEQ[0] holds the length of the sequence,
// and A is sorted by the sequence of flips SEQ[1..SEQ[O0]].
// (Note: the returned array must be allocated on the heap)
int* pancake sort (int* A, int len) {
IDEA: We can do something similar to Insertion Sort (in reverse order).
First find maximum in A, and send it to position A[len-1] using 2 flips. Specifically, suppose
A[m] is maximal, then we apply:
- pancake_flip(m+1) sends max to A[0]
- pancake_flip(len) sens max to A[len-1]
Now max is in place, and we continue to the subarray A[O...len-2]. We find max in A[O...len-2]
and then send it to A[len-2] using two flips the same way. If A[m] is maximum, we apply:
- pancake_flip(m+1) sends max to A[0]
- pancake_flip(len) sends max to A[len-2]
And so on... Total we will have at most 2*len flips.

int seq len = 0;
int* ret = malloc((2*len + 1) * sizeof (int));

for (int 1=0; i<len-1;i++) {

int m = find max(arr, len-i); // find max elt in A[O..len-1-i]
ret[++seq len] = mtl;
ret[++seq len] = len-i;
pancake flip(arr, m+l); // put max in A[0]
pancake flip(arr, len-i); // put max in A[len-1-i]
}
ret[0] = seq len

return ret;

int int find max(int* arr, int len) { // finds index of max elt in arr
int max ind = 0;
for (int i=1l;i<len;i++)
if (arr[i] > arr[max ind])
max ind = i;
return max ind;




Problem 4 [25 points]

Consider the following function.
int foo(unsigned int n) {
if (n<=3)
return n;
return 3*foo(n-1) + 2*foo(n-2) + 1*foo(n-3);

}

a) [5 points] Compute foo(5). Explain your answer.

Answer: base case: foo(1)=1, foo(2)=2, foo(3)=3,
Recursion:
foo(4)=3*foo(3)+2*foo(2)+1*foo(1)=3*3+2*2+1*1=14
foo(5)=3*foo(4)+2*foo(3)+1*foo(2)=3*14+2*3+1*2=50

b) [8 points] Rewrite the function foo() with the same functionality so that on input n,
it returns the answer in time O(n). Explain your answer.

int foo(unsigned int n) {
if (n<=3)
return n;

int* a =

( +1) *sizeof (int)) ;
al0]=0, a

int*)malloc ((n
[1] =2; al[3]=3;

11=1; al2]

for (int i=4; i<=n; i++)

aln] = 3*a[n-1] + 2*a[n-2] + a[n-31;
int ret = al[n];
free(a);

return ret;




¢) [12 points ] Consider the following definition of a Linked List.
struct LL node {
int data;
struct LL node* next;
bi
typedef struct LL node LL node t;

typedef struct {
LL node t* head;
} LL t;

Write a function that gets a Linked List and prints it in reverse order in time O(n),
where n is the length of the list.

void print reverse(LL t* list) ({

if (list==NULL)
return;
else
print reverse helper (LL t* list->head) {

// helper function that takes a head of the list as an argument
void print reverse helper (LL node t* head) ({
if (head==NULL) // base case
return;
else {
print reverse helper (head->next) {
printf ("$d", head->data);




Extra page

10



Empty page

11



	Problem 1 [25 points] 
	Problem 2 [25 points] 
	Problem 3 [25 points] 
	Problem 4 [25 points] 
	Extra page 
	Empty page 

