
Cleaning Crowdsourced Labels Using Oracles For
Supervised Learning

Mohamad Dolatshah Mathew Teoh Jiannan Wang Jian Pei
Simon Fraser University

{mteoh, mdolatsh, jnwang, jpei}@sfu.ca

ABSTRACT
Nowadays, crowdsourcing is being widely used to collect training
data for supervised learning. However, crowdsourced labels are
often noisy, and there is a performance gap between learning with
noisy labels and learning with true labels. In this paper, we consider
how to apply oracle-based label cleaning to reduce the gap. We
propose TARS, a label-cleaning advisor that can provide two pieces
of valuable advice for data scientists when they need to train or/and
test a model using noisy labels. Firstly, in the model testing stage,
given a test dataset with noisy labels, and a classification model,
TARS can use the test data to estimate how well the model will
perform w.r.t. true labels. Secondly, in the model training stage,
given a training dataset with noisy labels, and a supervised-learning
algorithm, TARS can determine which label should be sent to an
oracle to clean such that the model can be improved the most. For the
first advice, we propose an effective estimation technique, and study
how to compute confidence intervals to bound its estimation error.
For the second advice, we propose a new cleaning strategy along
with two optimization techniques, and illustrate that it is superior
to the existing cleaning strategies. We evaluate the effectiveness of
TARS on both simulated and real-world datasets. The results show
that (1) TARS can use noisy test data to accurately estimate a model’s
true performance for various evaluation metrics (e.g., Accuracy, F-
Score); and (2) TARS can improve the model accuracy by a larger
margin than the existing cleaning strategies, for the same cleaning
budget.

1 INTRODUCTION
Supervised learning, which can solve a large variety of real-world
problems, such as spam detection, entity resolution, sentiment anal-
ysis, and image classification, has recently attracted significant at-
tention in both industry and academia. Its basic idea is to learn a
function from a collection of ⟨instance, label⟩ pairs such that the
function can predict the labels of unseen instances. The resulting
function is also known as a model or a classifier. Typically, the col-
lection of labeled pairs is split into two parts: training data and test
data, where the training data is for model training and the test data
is for model evaluation.

Despite the great success that supervised learning has achieved, a
fundamental limitation of using it in practice is the high cost of data
labeling. Crowdsourcing is a promising way to solve this problem.
Crowdsourcing platforms such as Amazon Mechinical Turk have
hundreds of thousands of crowd workers available. These workers
can be used to label data at low cost and fast speed. But at the same
time, crowd workers are not accurate. They often provide noisy
labels with certain probabilities to be wrong. Although this issue
can be mitigated by assigning an instance to multiple workers and
then infer the instance’s true label using a truth-inference algorithm
like Majority Vote, the state-of-the-art truth-inference algorithms are
still far from perfect [39].

Having noisy labels in training data will negatively affect the per-
formance of a supervised-learning algorithm because the algorithm

How accurate is
a model?

(1) Model
(2) Noisy Test Data

0.8±0.01

Which label should
be cleaned?

(1) Learning Algorithm
(2) Noisy Training Data

<instance3, label3>

Advice 1. Model Evaluation

Advice 2. Cleaning Strategy

Figure 1: TARS can provide two pieces of valuable advice for
data scientists when they need to train or/and test a model using
noisy labels

tries to predict noisy labels rather than true labels. In the Machine
Learning community, there has already been some work that studies
how to clean noisy labels to solve this problem [3]. However, the
noisy labels are cleaned by heuristic algorithms, which have no guar-
antee on cleaning accuracy and may even mess up a lot of correct
labels [12].

Unlike the existing work, our work draws some inspiration from
the recent progress in the data cleaning community [1, 11, 16], and
focuses on a different data-cleaning scenario. We consider that there
exists an oracle who can be queried to clean noisy labels. Each query
is to ask the oracle to verify whether a training example, ⟨instance,
label⟩, is correctly labeled or not. If not, replace its label with the
true label. This scenario more often than not holds in reality. Imagine
a data scientist needs to train a good model on noisy data. In this
situation, she can ask internal experts from her company to serve as
oracles to clean the noisy labels.

It is worth noting that the goal of this paper is not to develop yet
another supervised learning algorithm for noisy labels. Instead, we
aim to develop a label cleaning advisor, named as TARS1, that can
advise a data scientist on how to make the best use of oracle-based
cleaning for supervised learning. As shown in Figure 1, suppose a
data scientist has already trained a model on a noisy dataset. The
first piece of advice she may ask for is how accurate the model is. If
the current model is already good enough, there is no need to further
spend effort on label cleaning. However, if she finds that the model
does not meet her need, the next question she may ask is which label
should be cleaned such that the model can be improved the most.
TARS can provide the two pieces of advice:

• Advice 1. Model Evaluation. Given a model, and a test dataset
labeled by the crowd, TARS can tell a data scientist how well

1TARS is named after an intelligent robot in Interstellar who can provide insightful
advice for human beings.

1

Instance Noisy
Label

𝑥" (𝑤",+1)
𝑥) (𝑤",+1)
𝑥* (𝑤",+1)
𝑥+ (𝑤",−1)
𝑥- (𝑤),−1)

(a) Ground-truth Labels

Instance Predicted
Label

𝑥" +1
𝑥) +1
𝑥* -1
𝑥+ -1
𝑥- +1

Instance True
Label

𝑥" +1
𝑥) +1
𝑥* -1
𝑥+ -1
𝑥- -1

(b) Crowdsourced (noisy) labels (c) Model’s Prediction

Figure 2: Datasets with ground-truth labels, crowdsourced la-
bels, and a model’s predicted labels.

the model will perform w.r.t. true labels (rather than w.r.t. noisy
labels).

• Advice 2. Cleaning Strategy. Given a learning algorithm, and a
training dataset labeled by the crowd, TARS can tell a data scientist
which label in the training dataset should be cleaned such that the
new model, re-trained on the cleaned training dataset using the
learning algorithm, has the best performance.

There are some straightforward solutions to the above two problems.
In the following, we will use the simple example in Figure 2 to
illustrate the limitations of these solutions, and then demonstrate the
contributions made in this paper to overcome the limitations.

Let us first consider Advice 1. Figure 2(b) shows a test dataset
labeled by two crowd workers w1 and w2. For simplicity, we assume
that the workers w1 and w2 have the same noise rate = 0.2, which
means that each of them has a probability of 0.2 to give a different
label from the true label. We apply a given model to the test dataset
and obtain the predicted label of each instance (see Table (c)). Since
true labels are unknown, the model’s true accuracy cannot be directly
derived. One naive approach is to treat noisy labels as true labels
and then compute the accuracy based on the noisy labels. However,
this approach is biased because it ignores the workers’ noise rates.
In this example, the accuracies computed based on the noisy labels
and the true labels are 3

5 and 4
5 , respectively, and the difference is 1

5 .
To overcome the limitation, we present a new estimator that esti-

mates the model’s true performance (e.g., accuracy, precision, recall,
or F-score) by considering not only noisy labels but also noise rates.
We prove that our estimator is unbiased (i.e., in expectation the
estimator’s estimated value is equal to the true value). We further
study how to compute a confidence interval for the estimator in order
to bound its estimation error (i.e., bound the difference between
the estimated value and the true value). This turns to be a challeng-
ing problem because the estimator’s error comes from two sources:
sampling and labeling. We theoretically analyze how each source
contributes to the overall estimation error, and show that the contri-
bution of the first (second) source is controlled by test data size N (a
noise rate β). Interestingly, they will not be affected by each other: (i)
as N increases, the overall estimation error will decrease at a rate of
O(1√

N
), regardless of what β is, and (ii) as β decreases, the overall

estimation error will decrease at a rate of O
(1
|0.5−β |

)
, regardless of

what N is. In other words, the estimation error can be decreased
by either increasing test data size or improving worker quality; the
above theoretical results show the trade-off of each choice.

Next, let us consider Advice 2. Suppose Figure 2(b) represents
a training dataset, where w1’s noise rate is 0.4 and w2’s noise rate
is 0.01. There are five noisy labels in the dataset, and TARS needs
to decide which one should be sent to an oracle to clean. Please
note that this problem is different from active learning [29] because
active learning assumes that data is unlabeled but here data has been
labeled by crowd workers. We need to incorporate label noise into
our cleaning strategy otherwise an oracle may clean many instances

that have already been correctly labeled. For example, consider the
data in Figure 2(b), the first four instances have the label noise of 0.4
and the label noise of the last instance is only 0.01. A good cleaning
strategy should try to avoid sending the last instance to an oracle
because it has a probability of 0.99 to be correct. (In addition to
active learning, there are some other cleaning strategies proposed
in the literature. Please refer to Section 5.1 for a more detailed
discussion.)

To this end, we propose a new cleaning strategy, called expected
model improvement (EMI). EMI estimates the expected model im-
provement of cleaning each noisy label and then selects the noisy
label with the largest estimated value to clean. We illustrate the limi-
tations of the existing cleaning strategies and explain why EMI can
overcome the limitations. While the idea of EMI sounds promising
in theory, we need to address some practical issues. The first issue is
which data should be used to estimate the expected model improve-
ment. If we choose the data improperly, EMI may end up training a
model that performs well on the training data but not on the test data.
The second issue is how to break the tie when two noisy labels have
the same expected model improvement. We propose optimization
techniques to address the issues and demonstrate their effectiveness
experimentally.

Note that Figure 2 only shows a simplified version of our problem.
In the paper, we study a more general version of the problem, where
an instance can be labeled by multiple workers, a confusion matrix is
used to model worker quality, and various metrics such as accuracy,
precision, recall, and F-score can be chosen for model evaluation. In
summary, our paper makes the following contributions:

• To the best of our knowledge, we are the first to study how to use
an oracle to clean crowdsourced labels for supervised learning. We
identify two challenging problems (model evaluation and cleaning
strategy) in this study and present the formal problem definitions.

• We propose an estimator that can estimate a model’s true accuracy
based on noisy data. We prove that the estimator is unbiased and
we compute a confidence interval to bound its estimation error.
We also discuss how to extend our solution to other evaluation
metrics such as precision, recall, F-score.

• We develop a new cleaning strategy, called EMI, that can effec-
tively decide which label should be cleaned. We explain why EMI
is superior to the existing cleaning strategies to solve our problem.
We further improve the effectiveness of EMI by developing two
optimization techniques.

• We evaluate TARS on both simulated and real-world datasets. The
results show that (1) TARS can use noisy labels to accurately
estimate how well a model will perform w.r.t. true labels; and (2)
TARS can improve the model accuracy by a larger margin than
the existing cleaning strategies, for the same cleaning budget.

The remainder of this paper is organized as follows. Section 2
formally defines the model evaluation and cleaning strategy prob-
lems. Since each instance may be labeled by multiple workers, we
introduce how label consolidation works in Section 3. After that, we
discuss how to solve the model evaluation problem in Section 4 and
the cleaning strategy problem in Section 5. Experimental results are
presented in Section 6, followed by related work (Section 7) and
conclusion (Section 8).

2 BACKGROUND AND PROBLEM
FORMALIZATION

We first provide some background knowledge in Section 2.1, and
then formally define our problems in Sections 2.2 and 2.3.

2

2.1 Background
Learning With True Labels. Let G be the joint distribution on
(x ,y) ∈ X × Y , where x represents an input instance (typically a
vector) and y ∈ {−1,+1} represents the true label. Denote a sample
drawn i.i.d. from G as S = {(xi ,yi)}

N
i=1. A supervised learning

algorithm aims to train a predictive model (i.e., a classifier) f based
on S and then make predictions over the unseen instances inG, where
f can be thought of as a decision function that takes an instance
x as input and outputs a real value t = f (x). The instance will be
classified as +1 if t > 0, and -1 otherwise2.

Crowdsourced Data. Obtaining ground truth labels can be expen-
sive, but labeling instances with imprecise crowd workers can be
cheap. Let W = {w j }

K
j=1 denote a set of workers. We assume that

each instance xi is labeled by a subset of ki workers; let Li =
{(w j , li, j) | w j labels xi } denote the corresponding labels, where
li, j ∈ {−1,+1} represents the label given by worker w j . Let C =
{(xi ,L

i)}Ni=1, which we call the crowdsourced data.

Worker Model. Since crowd workers are not perfect, existing crowd-
sourcing work typically uses confusion matrix to model worker
quality. The confusion matrix of each worker w j is a 2 × 2 matrix,

q(j) =

[
q
(j)
−1,−1, q

(j)
−1,+1

q
(j)
+1,−1, q

(j)
+1,+1

]
,

where each row represents a true label, each column represents
a worker’s provided label, and q

(j)
y,l (y ∈ {±1}, l ∈ {±1}) means

that given an instance with true label y, worker w j provides label l

with probability of q(j)y,l . For example, the following illustrates the
confusion matrices of a perfect worker w1 and an imperfect worker
w2 (with the noise rates of 0.2 given y = −1 and 0.3 given y = +1):

q(1) =

[
1, 0
0, 1

]
, q(2) =

[
0.8, 0.2
0.3, 0.7

]
.

Prior Probability. Each cell in a confusion matrix is a conditional
probability, q(j)y,l = P(L = l | Y = y). To compute the joint probability
distribution P(L,Y), we also need to know a prior probability (or
simply called the prior), denoted by P(Y). Intuitively, the prior is the
probability of an instance having a label of +1 or -1.

Computing Confusion Matrices and Prior. An important prob-
lem is how to compute workers’ confusion matrices q(j) (for all
j ∈ [1,K]) and the prior P(Y) in practice. This problem has been
extensively studied in the crowdsourcing literature [18]. One sim-
ple idea is to manually label a small sample of instances upfront,
and then mix these instances with other unlabeled instances and
ask workers to label them all. Since workers do not know which
instances have been pre-labeled, these pre-labeled instances can be
used to compute workers’ confusion matrices as well as the prior.
Another common idea is to leverage label redundancy. To improve
quality, each instance is often labeled by multiple workers. If a
worker often provides inconsistent labels with the majority of other
workers, then the worker is very likely to be a low-quality worker.
Based on this idea, existing work treats confusion matrices and the
prior as unknown parameters and adopts an EM algorithm [8] to
iteratively estimate their values.

2For ease of presentation, we only consider binary classification in this paper, but the
proposed approaches can be extended to multiclass classification by thinking of the
problem of multiclass classification as multiple binary classification problems.

True Negative
(TN)

False Negative
(FN)

False Positive
(FP)

True Positive
(TP)

-1

+1

-1 +1

Tr
ue
La
be
l

Predicted Label

(a)

Accuracy = 	
TN+TP

TN+FN+FP+TP

Precision = 	
TP

𝑇𝑃 + 𝐹𝑁

Recall = 	
TP

𝑇𝑃 + 𝐹𝑃

F−Score = 	
2TP

2TP+FN+FP

(b)

Figure 3: An illustration of (a) model’s confusion matrix and (b)
four evaluation metrics derived from the confusion matrix.

Assumption. In this paper, we treat computing workers’ confusion
matrices and the prior as an orthogonal problem, and we assume that
they are given as input of our problems.
Learning With Noisy Labels. Let A denote a supervised learn-
ing algorithm that learns a model f on crowdsourced data C. This
problem has been well studied in the Machine Learning commu-
nity [12, 26]. Their basic ideas are either to develop a robust learning
algorithm to tolerate label noise or to adopt automatic cleaning al-
gorithms to filter/correct noisy labels. In this paper, we treat A as a
black box, which takes crowdsourced data C as input and outputs a
classifier

2.2 Advice 1: How Good is a Model?
The first piece of advice from TARS is focused on the model testing
stage. It considers the situation when a user has already trained a
model and wants to evaluate the model’s performance using crowd-
sourced data.
Evaluation Metrics. To evaluate a model’s performance, people
often compute a confusion matrix for the model and then derive
different types of evaluation metrics from the matrix. Figure 3(a)
illustrates a model’s confusion matrix. We can see that it is similar to
a worker’s confusion matrix, where each row also represents a true
label, but the difference is that each column represents a model’s
predicted label rather than a worker’s provided label. The matrix has
four cells:
• True Positive (TP): the number of positive instances that are cor-

rectly predicted by a model;
• False Positive (FP): the number of positive instances that are falsely

predicted by a model;
• True Negative (TN): the number of negative instances that are

correctly predicted by a model;
• False Negative (FN): the number of negative instances that are

falsely predicted by a model.
TARS aims to estimate the value of each cell. In this way, any

evaluation metric computed based on these cells can be derived in
a straightforward manner. Figure 3(b) shows the definitions of four
representative evaluation metrics.

Let eval denote a user-specified evaluation metric. The model’s
true performance is denoted by eval(G, f). For example, suppose
eval is accuracy, then eval(G, f) computes the f ’s accuracy on G.
Since we do not have access to G but only crowdsourced data C,
TARS aims to use C to estimate eval(G, f). Let ẽval(C, f) denote
an estimation of eval(G, f). We say ẽval(C, f) to be unbiased if
the expected value of the estimation is equal to the true value, i.e.,
E[ẽval(C, f)] = eval(G, f).

In addition, TARS computes a confidence interval to bound the es-
timation error of ẽval(C, f). Suppose the estimated value is ẽval(C, f) =
0.8. Given a confidence level (e.g., 95%), a confidence interval (e.g.,
0.8 ± 0.01) indicates that the difference between the estimated value

3

and the true value is within ±0.01 with 95% probability. The wider
the confidence interval, the larger the estimation error.

PROBLEM 1 (MODEL EVALUATION). Given crowdsourced data C,
a model f , and an evaluation metric eval, TARS aims to determine (1)
an unbiased estimator, ẽval(C, f), of the model’s true performance,
and (2) a confidence interval, [ẽval(C, f) − ϵ1, ẽval(C, f) + ϵ2], at a
given confidence level.

2.3 Advice 2: Which Label Should be Cleaned?
The second piece of advice that TARS can provide is focused on the
model training stage. It considers the situation when a user trains a
model using noisy data, but the model is not good enough. The user
wants to know which instance-label pair should be sent to an oracle
to clean such that the model’s true performance can be improved the
most.
Oracle Labeller. Cleaning, or ground truth labeling, can be thought
of as querying a perfect worker wΩ called an oracle. It follows that
the noise rates for wΩ are P(L = −1 | Y = +1) = P(L = +1 | Y =
−1) = 0. We assume that queries are expensive, and thus calls to the
oracle are constrained by a budget.
Cleaning Data. Suppose we query an oracle to clean an instance xi
and obtain ground truth label yi . One could update crowdsourced
data C with this new knowledge by replacing Li with {(wΩ,yi)}.
We say that we are cleaning instance xi , because we are substituting
a set of imprecise labels with the ground truth label provided by the
oracle.
Cleaning Strategy. Recall that a learning algorithm A takes crowd-
sourced data C as input and outputs a model f . By cleaning the
labels in C, we hope A can produce a better model. It is expensive
to query an oracle to get ground truth labels, thus the goal is to
strategically choose xi to clean. The best choice of xi would result
in a dataset which leads to a model more accurate than cleaning any
other label. Based on the notation above, we have a formal definition
of the problem below:

PROBLEM 2 (CLEANING STRATEGY). Given crowdsourced
data C, a learning algorithm A, and an evaluation metric eval,
let fi be the model resulting from cleaning instance xi , then training
on C with A. TARS aims to determine which instance should be
cleaned such that the model’s true performance can be improved the
most:

i∗ = argmax
i=1, ...,N

eval(G, fi).

3 PRELIMINARY: LABEL CONSOLIDATION
Given crowdsourced data, if there are instances in the data having
multiple worker labels, TARS will first consolidate these label into a
single label. In other words, after this process, each instance in the
crowdsourced data will have a single consolidated label along with a
confusion matrix that quantifies the uncertainty of the consolidated
label. In this section, we will start by showing why there is a need
for this process, and then present how to get the consolidated label
as well as the consolidated confusion matrix.

3.1 The Need For Label Consolidation
Both Problems 1 and 2 require estimating the performance of some
model which is defined based on the true labels in G. Rather than
true labels, we only have worker labels, which are noisy. The trick
to bridging the gap between worker labels and true labels is noticing
that there are some relationships between them, which are captured
by the workers’ confusion matrices.

Therefore, we can use worker labels along with workers’ confu-
sion matrices to infer the most likely true label for each instance, and
then figure out how to quantify the uncertainty of each inferred label.
Specifically, given a crowdsourced dataset C = {(xi ,L

i)}Ni=1, we
aim to get a new dataset, denoted by D = {(xi ,y

′
i , r

(i))}Ni=1, where
y′i and r (i) represent the inferred label and the uncertainty of the
inferred label mentioned above. We will present how to compute y′i
and r (i) in Sections 3.2 and 3.3, respectively.

3.2 Computing Consolidated Labels
Given an instance xi with worker labels Li , the basic idea of getting
the xi ’s most likely label is to compare the values of two conditional
probabilities: P(Yi = +1 | Li) and P(Yi = −1 | Li), the probability
that instance xi has a true label of +1 (resp. -1), conditioned on the
labels that the workers provide. If the former (latter) is larger, it
means that the instance’s label is more likely to be +1 (resp. -1).

We use the work of Dawid and Skene [8] to compute the con-
ditional probabilities. Below is an explanation of their approach,
adapted to our notation. Assuming that workers provide labels inde-
pendently of one another, we have:

P(Yi = +1 | Li) =
P(Li | Yi = +1)P(Yi = +1)

P(Li)

∝ P(Li | Yi = +1)P(Yi = +1)

= P(Yi = +1)
∏

li, j ∈Li

P(Lj = li, j | Yi = +1)

= P(Y = +1)
∏

li, j ∈Li

q
(j)
+1,li, j

(1)

Similarly, we can compute P(Yi = −1 | Li). By comparing their
values, we obtain the consolidated label y′i (if there is a tie, we break
the tie randomly).

y′i = argmax
ȳ=−1,1

P(Y = ȳ)
∏

li, j ∈Li

q
(j)
ȳ,li, j

(2)

Thus, the chance of instance xi having a ground truth label of,
say, +1 is influenced by two main factors. If the instances for which
Y = +1 are extremely common (i.e. P(Y = +1) is very close to 1),
this increases our belief that Yi = +1. Likewise, if the labels that
workers provide are likely to happen provided that Y = +1 were true
(i.e., qk

+1,l is very close to +1), then this also increases our belief that
Yi = +1.

3.3 Quantifying Consolidated Label’s Uncertainty
Suppose an instance xi is labeled by a group of ki workers, denoted
by Wi . Let y′i denote the consolidated label inferred from worker
labels using the above method. Like the definition of a worker’s
confusion matrix, we define the consolidated confusion matrix asso-
ciated with a group of workers as a 2 × 2 matrix:

r (Wi) =


r
(Wi)
−1,−1, r

(Wi)
−1,+1

r
(Wi)
+1,−1, r

(Wi)
+1,+1

 ,
where each row represents a true label, each column represents a
consolidated label, and r

(Wi)
y,y′ (y ∈ {±1},y′ ∈ {±1}) means that

given an instance with true label y, the consolidated label is y′ with
probability of r (Wi)

y,y′ . In other words, each cell in the matrix is a

4

conditional probability r
(Wi)
y,y′ = P(Y ′

i = y′ | Y = y) (y′,y ∈ {±1}).
If the context is clear, r (Wi) will be abbreviated as r (i) or r .

We use the Law of Total Probability to compute the conditional
probability.

P(Y ′
i | Y) =

∑
n

P(Y ′
i | L̄i

n ,Y) P(L̄
i
n | Y), (3)

where {L̄i
n : n = 1, 2, · · · , 2ki } represents all combinations of the

labels that the group of ki workers from Wi can provide. For ex-
ample, suppose there are two workers, w1,w2. Then, there will
be four combinations of worker labels: L̄i

1 = {(w1,−1), (w2,−1)},
L̄i

2 = {(w1,−1), (w2,+1)}, L̄i
3 = {(w1,+1), (w2,−1)}, and L̄i

4 =

{(w1,+1), (w2,+1)}, where, e.g., L̄i
1 means that w1 provides -1 and

w2 provides -1.
The equation depends on two forms of conditional probabili-

ties: P(Y ′ | L̄i
n ,Y) and P(L̄i

n | Y). For the latter, we have already
discussed how to compute it in Equation 1.

P(L̄i
n | Y) =

∏
(w j ,l)∈L̄i

n

P(L̄i
n = (w j , l) | Y) =

∏
(w j ,l)∈L̄i

n

q
(j)
y,l (4)

For the former, since y′i depends only on L̄i
n (i.e., the workers

and the labels that they provide), we have that:

P(Y ′ = y′ | L̄i
n ,Y) =

{
1 if y′ = ȳ
0 otherwise

(5)

where ȳ represents the consolidated label inferred from L̄i
n .

4 MODEL EVALUATION
Now we have a noisy dataset D = {(xi ,y

′
i , r

(i))}Ni=1, where each
instance is associated with a single noisy label y′i along with a noise
rate r (i). There are a number of challenging problems that need to
be addressed: (1) how to develop a unified estimation framework
that works for different evaluation metrics (Section 4.1); (2) how to
bound the difference between the estimated value and the true value
under the new framework (Section 4.2); (3) how to give a quantitative
analysis on how each factor (e.g., sample vs. population, noisy labels
vs. true labels) contributes to the bound (Section 4.2.1). In this
section, we propose novel solutions to these non-trivial problems.

4.1 Estimating Model’s True Performance
We first present our unified estimation framework. Recall that a
model’s performance (e.g., accuracy, F-score) is determined by its

confusion matrix:
[
TN FN
FP TP

]
. To estimate a model’s performance,

the key is to figure out how to estimate the values of the four cells in
the confusion matrix. We will use TP as an example to illustrate this
estimation process.

Overview. The estimation framework consists of two steps. The first
step is to write TP in a form of the sum of loss, and the second step
is to use an existing approach [23] to estimate the loss.

Step 1. A loss function, denoted by Loss(t ,y), measures the differ-
ence between a model’s prediction t and a true label y. When true
labels are accessible, we can represent TP as follows:

TP =
N∑
i=1

Loss(ti ,yi), (6)

where Loss(ti ,yi) = 1 if ti and yi are both positive; 0, otherwise.

Step 2. In reality, however, we do not have access to true labels but
only noisy labels. Thus, we need to use a noisy labely′ along with its
noise rate r to estimate the true loss Loss(t ,y). Natarajan et al. [23]
proposed an unbiased estimator:

L̃oss(t ,y′) =
(1 − r−y′,y′) · Loss(t ,y′) − ry′,−y′ · Loss(t ,−y′)

1 − r+1,−1 − r−1,+1
.

(7)
Please note that this estimator works for any bounded loss function.
It is defined based on a noisy label y′, thus does not require knowing
the true label y.

Unbiased Estimator of TP. By plugging L̃oss(t ,y′) into Equation 6,
we obtain an estimator of TP:

T̃P =
N∑
i=1

L̃oss(ti ,y
′
i). (8)

Since L̃oss(t ,y′) is unbiased, due to the linearity of expectation, we
can easily prove that T̃P is unbiased, i.e., E[T̃P] = TP.

Unbiased Estimator of TN, FN, FP. Using a similar approach, we
can get an unbiased estimator for TN, FN, and FP. The only differ-
ence from TP is that they need to choose a different loss function. For
example, suppose we want to estimate TN. Then, the loss function
w.r.t. TN should be defined as Loss(ti ,yi) = 1 if ti and yi are both
negative; 0, otherwise.
Estimating Accuracy, Precision, Recall, F-Score. Now we have
known how to estimate each value in the model’s confusion matrix.
These estimated values can be composed to get the model’s perfor-
mance w.r.t. each evaluation metric that is defined in Figure 3. For
example, by plugging the estimated values of TP and TN into the
accuracy’s definition, we can get the estimated value of accuracy:
T̃P+T̃N

N . Similarly, we can get the estimated values for precision:
T̃P

T̃P+F̃P
, recall: T̃P

T̃P+F̃N
, and F-score: 2T̃P

2T̃P+F̃P+F̃N
.

For accuracy, we can prove that the estimation is unbiased, i.e.,

E
[T̃P + T̃N

N

]
=
E[T̃P] + E[T̃N]

N
] =

TP + TN
N

.

However, for the other three evaluation metrics, their estimators
are not unbiased. This is because that when both numerator X and
denominator Y are random variables, we do not have E[XY] =

E[X]

E[Y] .
This type of estimator is often called conditionally unbiased given
Y . Despite that they are not unbiased in theory, we validate their
effectiveness in the experiments, and find that they perform very
well on both synthetic and real-world datasets.

4.2 Bounding Estimation Error
In this section, we study how to compute confidence intervals for
these estimators. This problem is challenging because there are two
sources of error involved and a confidence interval has to take both
of them into consideration.

Sample vs. Population. The first source of error comes from sam-
pling. Since the entire population is not accessible, our estimator
can only look at a sample of data and use it to estimate how well a
model will perform over the entire population.

Noisy Labels vs. True Labels. The other source of error comes
from noisy labels. Since true labels are not accessible, our estimator
can only look at noisy labels and use them to estimate how well a
model will perform w.r.t. true labels.

5

To address this challenge, we develop an analytical confidence
interval based on the central limit theorem (CLT). From the ana-
lytical confidence interval, we can easily see how each source of
error contributes to the overall estimation error (i.e., half the width
of the confidence interval). However, the analytical confidence in-
terval only works for accuracy. For the other evaluation metrics,
we show how to compute their empirical confidence intervals using
bootstrapping and conduct experiments to explore the impact of
the two sources of error on the overall estimation error in various
situations.

4.2.1 Analytical Confidence Interval. We first introduce some
background knowledge about CLT, then present an analytical con-
fidence interval for accuracy, and finally dive into the confidence
interval to gain more insights.

Central Limit Theorem (CLT). Consider a population with mean
µ and variance σ 2. Given a random sample of size N from the
population, {X1,X2, · · · ,XN }, CLT states that the sample mean µ̃ =
1
N

∑N
i=1 Xi follows a normal distribution with mean µ and variance

σ 2

N . Note that CLT does not require that the original population has
to follow a normal distribution.

Suppose that we treat the sample mean as an estimator of the
population mean. Based on CLT, the confidence interval for the
estimator is

µ ± λ

√
σ 2

N
, (9)

where λ is a parameter determined by a confidence level (e.g., λ =
1.96 for 95% confidence interval, λ = 2.58 for 99% confidence
interval). Since the population mean µ and variance σ 2 are unknown,
they can be replaced by the estimated mean µ̃ and variance σ̃ 2 based
on a sample.

Analytical Confidence Interval. The estimator of accuracy can be
represented as follows:

accuracy ≈
T̃P + T̃N

N
=

1
N

N∑
i=1

Loss0/1(ti ,y
′
i),

where L̃oss0/1(ti ,y
′
i) is an unbiased estimator of Loss0/1(ti ,yi), and

Loss0/1(ti ,yi) = 1 if ti and yi have the same sign (i.e., either both
positive or both negative); Loss0/1(ti ,yi) = 0, otherwise. We can see
that the estimator is in the form of mean. Let Xi = L̃oss0/1(ti ,y

′
i)

for each i ∈ [1,N]. The confidence interval for the estimator can be
directly derived from Equation 10.

E[X] ± λ

√
var(X)

N
(10)

In-Depth Analysis. We now provide an in-depth analysis of the
confidence interval. As mentioned in the beginning of this section,
there are two sources of error. Our analysis aims to answer two
questions: (1) how does sample size affect the confidence interval?
(2) how does label noise affect the confidence interval?.

For simplicity, we assume that each instance has the same label
noise of r−1,+1 = r+1,−1 = β . Based on Equation 7, we find that
L̃oss0/1(t ,y

′) can only take two possible values:

L̃oss0/1(t ,y
′) =


1−β
1−2β if t and y′ have the same sign
−β

1−2β otherwise
(11)

�

���

���

���

���

���

�� ���� ���� ���� ���� �����

��
���
��
��
��
��
��
�

�������������������

�����
�������
�������
�������
�������

�

���

���

���

���

���

��� ��� ��� ��� ��� �

����

��
���
��
��
��
��
��
�

�������������������

��������
�������
�������
�������
�������

Figure 4: The relationships between sample size (N), label noise
(β), and estimation error (half the width of the 95% confidence
interval), for model accuracy θ = 0.8. (For simplicity, we do
not show the estimation error for β ∈ (0.5, 1] because based on
Equation 15, it will be the same as 1 − β).

Suppose that L̃oss0/1(t ,y
′) has a probability of p being a =

1−β
1−2β

and 1 − p being b =
−β

1−2β . It is easy to see that a + b = 1. The

expected value of L̃oss0/1(t ,y
′) is:

E[X] = pa + (1 − p)b (12)

The variance of L̃oss0/1(t ,y
′) is:

Var[X] = E[X 2] − E[X]2

= pa2 + (1 − p)b2 − E[X]2

= pa2 + (1 − p)b2 −
(
pa + (1 − p)b − E[X]

)
− E[X]2

= −ab + E[X] − E[X]2 (13)

Let θ denote a model’s true accuracy. Since 1
N

∑
L̃oss0/1(t ,y

′) is
an unbiased estimator of the true accuracy, then we have E[X] = θ .

Var[X] = −ab + θ − θ2 (14)

By plugging Equation 14 into Equation 10, we obtain a closed form
confidence interval of our estimator:

θ ± λ

√
−ab + θ − θ2

N
(15)

where ab = −β (1−β)
(1−2β)2 , β is label noise, θ is a model’s true accuracy,

N is sample size, and λ is constant determined by a confidence level.
From this equation, we can analyze how each source of error

contributes to the overall estimation error.

Insight 1. The first source of error (sample vs. population) is con-
trolled by sample size N . It only affects the denominator of the
confidence interval. Figure 4(a) shows the relationship between sam-
ple size and estimation error, for different label noise β . We can see
that as sample size N increases, regardless of what β is, estimation

error will decrease at a rate of O
(

1√
N

)
. For example, when sam-

ple size is increased from N = 100 to 1000, estimation error will

decrease by about O
(√

1000
100

)
= 3 times.

Insight 2. The second source of error (noisy label vs. true label) is
controlled by label noise β . It only affects the numerator of the con-
fidence interval. Figure 4(b) demonstrates the relationship between
label noise and estimation error, for different sample size N . We
can see that as noise decreases, regardless of what N is, estimation

6

𝐷(#)

𝐷

𝐷(%)

.

.

.

eval* (𝐷 # , 𝑓)

eval* (𝐷 - , 𝑓)

eval* (𝐷 % , 𝑓)

2.5% 2.5%95%
confidence
Interval

Figure 5: An illustration of using bootstrap to compute empiri-
cal confidence intervals for complex estimators.

error will decrease at a rate of O
(

1
|0.5−β |

)
. For example, when β is

decreased from β = 0.4 to β = 0.1, estimation error will decrease by

about O
(
|0.5−·0.1 |
|0.5−·0.4 |

)
= 4 times.

4.2.2 Empirical Confidence Interval. We first introduce some
background knowledge about bootstrapping, and then present our
approach to compute empirical confidence intervals for other esti-
mators than accuracy.

Bootstrapping. Consider a population P and a random sample of the
population S . Given an estimator est, suppose the estimator can use
the sample to estimate a complex parameter of the population. Once
the estimate est(S) is derived, we want to compute its confidence
interval. If we could create multiple samples from the population,
S1, S2, · · · , Sn , then we would get a distribution of the estimates,
est(S1),est(S2), · · · ,est(Sn). Based on the distribution, we can find
an interval that covers 95% of the estimates and use it as a 95% confi-
dence interval of the estimation. In practice, however, the population
is not available, thus it is impossible to draw another sample from P .
The basic idea of bootstrapping is to simulate this procedure by con-
structing a number of resamples of S . Specifically, to get a resample,
it samples the data from S with replacement. Let S(1), S(2), · · · , S(n)
denote n resamples. Then, it can get a distribution of the estimates
based on resamples, est(S(1)),est(S(2)), · · · ,est(S(n)), from which
we can compute a 95% confidence interval.

Empirical Confidence Interval. Now we present how to use the
bootstrap to compute empirical confidence intervals for our estima-
tors. Consider a crowdsourced dataset D. We can think of D as a
random sample of a population. While it is feasible to get multiple
crowdsourced datasets from the population, the monetary cost and
the time for doing so can be quite high. For example, suppose each
instance needs 0.5 dollar and 5 seconds to label on average. Getting
one crowdsourced dataset of size |D | = 1000 will cost us $500 dol-
lars and 1.4 hours. Repeat this for 1000 times will cost us as high as
0.5 million dollars and 58 days.

We use boostrapping to avoid the need to repeatedly draw samples
from the population. Figure 5 illustrates the procedure. Given D and
an estimator ẽval(D, f), the first step is to construct n resamples of
D, denoted by D(1), D(2), · · · , D(n). Then, we apply the estimator to
each resample to get n estimates,

ẽval(D(1), f), ẽval(D(2), f), · · · , ẽval(D(n), f).

Given a confidence level (e.g., 95%), let ẽval2.5% and ẽval97.5% de-
note the 2.5th and 97.5th percentile of the distribution, respectively.
Then, the 95% confidence interval is denoted by [ẽval2.5%, ẽval97.5%].

This approach works for all the estimators developed in Sec-
tion 4.1 including precision, recall, F-score. Like accuracy, the es-
timation error of other estimators also come from two sources. We
empirically study its relationship with sample size and label noise
for these estimators in the experiments.

5 CLEANING STRATEGY
Now we present how TARS provides the second piece of advice:
which label should be cleaned? Please note that, unlike the previous
section, here we turn our focus to the model training stage.

Typically, in supervised learning, we are given S = {(xi ,yi)}
N
i=1

drawn from G, and aim to make predictions on the dataset Stest =
{(x j ,yj)}

M
j=1, also drawn from G. We could train a model f on S ,

predict labels on instances x j from Stest, and compare the predicted
labels with each yj . Ideally, the predicted labels should be “fairly
close” to the actual labels Stest. One reason why this procedure works
is because both S and Stest are drawn from G; in other words, the
data we train on is an acceptable representation of the data we are
expected to make predictions on.

Labels in noisy dataset D = {(xi ,y
′
i , r

(i))}Ni=1 are not guaranteed
to be correct, so D might not adequately represent the data we
ultimately have to make predictions on. This means if we train
directly on the pairs {(xi ,y′i)}

N
i=1 and are asked to predict the labels

from a testing set Stest, there could be unacceptably many errors.
Therefore, we study the cleaning strategy problem, aiming to choose
the “best” instance to clean that would bring the greatest benefit to
the resulting model.

In the following, we first explain why the existing cleaning strate-
gies do not work in Section 5.1, and then present the main idea of
our cleaning strategy in Section 5.2. We find that the naive imple-
mentation of this idea did not work very well in the experiments. We
discuss the issues and propose effective solutions in Section 5.3.

5.1 Limitations of Existing Cleaning Strategies
Below are three classes of existing cleaning strategies, and explana-
tions as to why they are not the perfect solution to our problem.
Active Learning. Typical active learning settings start with a small
pool of (cleanly) labeled data, and a large pool of unlabeled data.
Similar to our problem setting, an oracle is available to obtain ground
truth labels, and the goal is to choose the most informative instances
to label under a budget [29]. Active learning literature refers to ap-
proaches to this problem as query strategies. There are many query
strategies proposed in the literature, such as uncertain sampling [17],
expected error reduction [28]. However, since active learning in-
volves labeling unlabeled rather than noisy data, we believe that an
effective cleaning strategy in our problem setting should leverage y′i
and r (i), rather than treat instances as unlabeled.

Consider an example in Figure 6, where black (white) points
represent positive (negative) instances and the red line represents
the model. Since labels are noisy, there is a number associated with
each point representing its label’s noise rate. If we ignore noise rates
and simply apply an active-learning query strategy (e.g., uncertain
sampling), xi will be selected because it is closest to the model’s
decision boundary. However, xi ’s label only has a noise rate of 0.01,
which is very unlikely to flip after cleaning. As shown in Figure 6 (b),
if xi ’s label did not flip, the model would keep unchanged, thus it
is a waste of cleaning budget. In comparison, x j has a much higher
noisy rate, and cleaning it would be more likely to flip the label,
leading to a big change of the model. Thus, x j should have a higher
priority than xi to be selected, for this example.

7

0.01

𝒙𝒊
0.01

0.01

0.01

0.01

0.4

0.01

0.01

0.01

(a) Before cleaning (b) After cleaning 𝑥$

0.01

𝒙𝒊
0

0.01

0.01

0.01

0.4

0.01

0.01

0.01

𝒙𝒋𝒙𝒋

Figure 6: An illustration of the limitation of uncertain sampling.

Sorting by Noise Rate. To overcome the limitation, one possible
strategy could involve cleaning instances whose labels are most
likely to be wrong: sort the instances by noise rates, then choose the
instance with the greatest noise. This minimizes the chance of not
flipping an instance’s label after cleaning, but it totally ignores the
impact to the model. If the model does not have much change, it will
not be necessary to clean an instance’s label even if the instance’s
label is flipped.

Consider an example in Figure 7. The above cleaning strategy
will select xi for cleaning because it has the greatest noise. As shown
in Figure 7(b), even if x1’s label was flipped, the model would still
keep unchanged. In comparison, x j ’s label has a slightly smaller
noise rate, but if its label was flipped, the model’s decision boundary
would move from the left side of x j to its right side, leading to a big
change of the model. Therefore, x j should have a higher priority to
be selected, for this example.
ActiveClean. As we can see, a good cleaning strategy should be
aware of both noise rate as well as model changes. A recent pa-
per takes these two factors into consideration and proposes a new
cleaning strategy, called ActiveClean [16]. ActiveClean predicts the
true label of each instance, and then estimates how cleaning each
instance would change the model based on predicated true labels,
and finally selects the instance that would lead to the biggest change.
However, ActiveClean has two limitations to solve our problem.
First, it does not leverage the given noise rates to predict the true
label of each instance. Second, it uses stochastic gradient descent
to update the model after cleaning each batch of instances, thus the
model’s performance may not be very stable for our oracle-based
cleaning scenario, where only a small number of instances (e.g.,
hundreds of instances) can be cleaned.

5.2 Main Idea: Expected Model Improvement
To inform our decision of which instance to clean, we wish to un-
derstand how cleaning an instance could improve the current model.
Let f be the model trained without cleaning any data. Let fi be
the model trained after cleaning instance xi . There are two possible
cases about fi .

Case 1: If the label is not flipped (i.e., yi = y′i), the model will stay
the same, i.e., fi = f .
Case 2: If the label is flipped (i.e., yi = −y′i), the model’s perfor-
mance will change by eval(G, fi) − eval(G, f).

Please note that cleaning an instance is not always guaranteed
to improve the model. For example, in Case 2, if eval(G, fi) <
eval(G, fi), the model’s performance will get worse. Since we do
not know whether the label would be flipped or not until cleaning
the instance, the model’s true improvement cannot be obtained.
Nevertheless, it could be possible to compute the model’s expected
improvement based on the probabilities that each case may happen.

𝒙𝒊
0.4

(a) Before cleaning (b) After cleaning 𝑥$

0.39 0.01 0.01 0.010.010.010.01

𝒙𝒋 𝒙𝒊
0.4 0.39 0.01 0.01 0.010.010.010.01

𝒙𝒋

Figure 7: An illustration of the limitation of sorting by noise
rate.

Let P(case1) and P(case2) denote the probabilities that Case 1
and Case 2 happen, respectively. Then, the expected model improve-
ment (EMI) is defined as:

EMI(i) = P(case1) · 0 + P(case2) ·
(
eval(G, fi) − eval(G, f)

)
= P(case2) ·

(
eval(G, fi) − eval(G, f)

)
(16)

Our cleaning strategy computes EMI(i) for each instance xi , and
then selects the instance xi∗ with the largest value and sends it to an
oracle to clean.

i∗ = argmax
i

EMI(i) (17)

Next, we discuss how to compute EMI(i), which consists of three
parts:

Computing P(case2). P(case2) represents the probability that the
noisy label is flipped after cleaning. Note that we have already known
that the noisy label is y′i . Thus, P(case2) represents the conditional
probability of the true label being −y′i given the noisy label y′i , i.e.,
P(case2) = P(Yi = −y′i |Y

′
i = y′i), where y′i ∈ {−1,+1} is constant.

Based on the Bayes’ rule, we can easily derive that

P(case2) =
P(Y ′

i = y
′
i |Yi = −y′i) · P(Yi = −y′i)

P(Y ′
i = y

′
i)

∝ P(Y ′
i = y

′
i |Yi = −y′i) · P(Yi = −y′i) (18)

P(Y ′
i = y′i |Yi = −y′i) is equal to the noise rate r

(i)
−y′

i ,y
′
i

and P(Yi =

−y′i) is equal to the prior P(Y = −y′i). Therefore, we obtain

P(case2) ∝ r
(i)
−y′

i ,y
′
i
· P(Y = −y′i) (19)

Similarly, we can obtain

P(case1) ∝ r
(i)
y′
i ,y

′
i
· P(Y = y′i) (20)

Since P(case1) + P(case2) = 1, we have

P(case2) =
r
(i)
−y′

i ,y
′
i
· P(Y = −y′i)

r
(i)
−y′

i ,y
′
i
· P(Y = −y′i) + r

(i)
y′
i ,y

′
i
· P(Y = y′i)

(21)

Computing eval(G, f). Since G is not available, we cannot compute
eval(G, f) directly. Fortunately, in Section 4.1, we have discussed a
way to estimate it based on noisy data D, which is accessible. Thus,
we can use ẽval(D, f) to approximate eval(G, f).

Computing eval(G, fi). If we knew fi , eval(G, fi) could be esti-
mated similarly as above. Recall that fi denotes the resulting model
from training on D after cleaning instance xi . If xi ’s label is not
flipped, we do not need to consider this case because the model stays
the same as f ; if xi ’s label is flipped, we can retrain a model fi on
the new dataset Di , where Di represents the dataset resulting from
flipping the label of instance xi of D.

Remarks. EMI incorporates both noise rates and model changes,
thus overcomes the limitations of the existing cleaning strategies.
For example, consider xi in Figure 6. Since it has a small noise

8

rate, leading to a small value of P(case2), EMI tends to not select
xi . Consider xi in Figure 7. Since the model would not change
after flipping the label of xi , leading to a zero value of eval(G, fi) −
eval(G, f), EMI will not select xi .

However, the cost of having this effective cleaning strategy is
that it needs to retrain N models, f1, f2, · · · , fN , for each iteration,
which could be highly inefficient when D is large. Fortunately, EMI
is similar in spirit to an active learning query strategy called expected
error reduction [28], which also needs to retrains N models. Many
techniques have been proposed to reduce the retraining time, such as
incremental training and subsampling techniques. In this paper, we
treat this as an orthogonal problem and defer additional exploration
to future work.

5.3 Further Optimization
We find that the naive implementation of EMI did not perform very
well in the experiments. We discuss the reasons that cause the prob-
lem and propose effective techniques to optimize EMI.

Splitting the noisy data The first reason is related to which noisy
dataset should be used to estimate eval(G, fi) and eval(G, f). One
natural idea is to use Di for eval(G, fi) and D for eval(G, f) because
fi is trained on Di and f is trained on D:

eval(G, fi) ≈ ẽval(Di , fi), eval(G, f) ≈ ẽval(D, f).

However, there are two issues about this idea.
First, as shown in Equation 16, the goal is to estimate the differ-

ence between eval(G, fi) and eval(G, f) as more accurate as possible.
Let X and Y denote the estimators of eval(G, fi) and eval(G, f), re-
spectively. That is, we aim to minimize var(X − Y) = var(X) +
var(Y) − cov(X ,Y). In order to minimize var(X − Y), we need to
increase cov(X ,Y) as more as possible, i.e., making X and Y as
more correlated as possible. If X and Y are estimated based on the
same noisy data, it will make them much more correlated than be
estimated on two different ones. Another issue is about overfitting.
If we train a model on a dataset and then use the same dataset to
evaluate it, the model may suffer from overfitting. In other words,
the model may perform well on the current dataset, but not learn to
generalize to unseen data.

To address these issues, we split D into a training dataset Dtrain
and a validation dataset Dvdn. Only the instances in Dtrain can be
cleaned and be used to train a model; the instances in Dvdn cannot
be cleaned or train a model, and their job is to estimate eval(G, fi)
and eval(G, f):

eval(G, fi) ≈ ẽval(Dvdn, fi), eval(G, f) ≈ ẽval(Dvdn, f).

It is worth mentioning that this idea has been widely adopted in ma-
chine learning, where a validation set is often used for hyperparame-
ter tuning and has shown to be very effective to avoid overfitting.

Weighing with Model Uncertainty Even after splitting noisy data
into validation and training sets, another challenge that remains
is that the values for EMI(i) for different instances i can be very
similar. To see why this is the case, consider a simple situation where
eval(G, f) measures the percent of instances classified correctly by
f , and the data is labeled by a single worker. Then, the r (i) constant
across all instances i, as is P(case2).

This means if we have two instances i1 and i2, for which eval(G, fi1)−
eval(G, f) and eval(G, fi2)−eval(G, f) are very similar, the resulting
values EMI(i1) and EMI(i2) will be very similar. In the worst case,
EMI(i1) = EMI(i2), which makes impossible to distinguish which
instance would be a better candidate for cleaning.

Table 1: Dataset statistics (SS: synthetic data with simulated
noisy labels; RS: real-world data with simulated noisy labels;
RR: real-world data with real-world crowdsourced noisy labels

Dataset #Positive #Negative #Dimension Type
Gaussian 500 500 2 SS

Heart 120 150 13 RS
German 300 700 20 RS
Cancer 77 168 9 RS

Restaurant 102 1902 8 RR

To address this issue, we combine EMI with the uncertainty of
model f . More specifically, let u(xi) = 1 − P(f (xi) | xi) measure
the uncertainty of f ’s prediction on xi . For example, we can in-
terpret small P(f (xi) | xi) as a “less confident” prediction, which
corresponds to large u(xi).

Intuitively, if we have two instances whose EMI values are similar,
we would like to defer the decision of “which is better” (i.e. which
instance is better to clean) to the model’s uncertainty. In this case,
the instance for which f more uncertain (i.e. larger u(xi)) should be
considered a better candidate for cleaning.

At first glance, it might be tempting to compare instances using
u(xi) ·EMI(i). Suppose xi∗ is the best instance to clean. Since EMI(i∗)
is computed using estimators, it’s possible that EMI(i∗) < 0. Further-
more, if u(xi∗) is large, then the product u(xi∗) · EMI(i∗) could be
very negative, which would rank xi∗ below other instances.

Before multiplying by u(xi), we need to transform EMI(i) into
a positive value, using some function σ : R → R+. In order to
preserve the relative ordering of EMI(i), σ needs to be monotonically
increasing. A convenient choice is the sigmoid function σ (t) =

1
1+e−t . To weigh EMI with model uncertainty, we compute:

MU(i) = u(xi) · σ (EMI(i)), (22)

Thus, with this optimization, we choose instance i∗ to clean by
computing:

i∗ = argmax
i

MU(i) (23)

6 EXPERIMENTS
We conduct extensive experiments to evaluate the effectiveness of
TARS on synthetic and real-world datasets with simulated noisy la-
bels and crowdsourced noisy labels. The experiments aim to answer
four questions. (1) Can we accurately estimate a model’s true perfor-
mance from noisy labels? (2) How does the estimation error change
by varying different parameters (e.g., sample size, noise rates)? (3)
Are the proposed optimization techniques effective for EMI? (4) How
does the optimized EMI perform compared to the existing cleaning
strategies?

6.1 Experimental Settings
Datasets. We used a synthetic dataset and four real-world datasets
to evaluate our method. (1) Gaussian contains instances randomly
drawn from two different 2D Gaussian distributions with the param-
eters of (x1,y1) = (0, 0) and σx1 = σy1 = 1, and (x2,y2) = (1, 0) and
σx2 = σy2 = 1. (2) Heart, German, and Cancer are three real-world
datasets downloaded from the UCI Machine Learning Repository3.
They are widely used to evaluate classification algorithms in the
Machine Learning community. (3) Restaurant is a real-world dataset
widely used to evaluate entity resolution. We got the dataset from the
authors in [33]. Table 1 illustrates the detailed statistical information
of the five data sets.

3http://archive.ics.uci.edu/ml/index.php

9

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Sample Size

0.00

0.05

0.10

0.15

0.20

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Sample Size

0.00

0.05

0.10

0.15

0.20

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Sample Size

0.00

0.05

0.10

0.15

0.20

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Sample Size

0.00

0.05

0.10

0.15

0.20

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

(a) accuracy (b) precision (c) recall (d) F-score
Figure 8: Comparison of the estimation error between TARS and DirtyEval by varying sample size (Gaussian).

0.5 0.4 0.3 0.2 0.1
Noise Rate

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0.5 0.4 0.3 0.2 0.1
Noise Rate

0.0

0.1

0.2

0.3

0.4

0.5

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0.5 0.4 0.3 0.2 0.1
Noise Rate

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0.5 0.4 0.3 0.2 0.1
Noise Rate

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

(a) accuracy (b) precision (c) recall (d) F-score
Figure 9: Comparison of the estimation error between TARS and DirtyEval by varying noise rates (Gaussian).

DirtyEval TARS True Accuracy
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Heart

DirtyEval TARS True Accuracy
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(b) German

DirtyEval TARS True Accuracy
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Cancer

DirtyEval TARS True F-score
0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

(d) Restaurant

Figure 10: Comparison of the estimation error of TARS and DirtyEval on real-world datasets.

Noisy Labels. The noisy labels for the Gaussian, Heart, German,
and Cancer datasets were randomly generated, controlled by two
parameters, r−1,+1 and r+1,−1. For example, given r−1,+1 = 0.2 and
r+1,−1 = 0.1, to generate the noisy labels for a dataset, we do the
following for each instance. If the instance’s true label is -1, then it
will be flipped with a probability of 0.2; if its true label is +1, then it
will be flipped with a probability of 0.1. When an instance needs to
be labeled by multiple workers, we will apply this process to generate
multiple noisy labels for the instance and get its consolidated label
using the method described in Section 3.

The noisy labels for the Restaurant dataset were collected from
the real-world crowd workers in Amazon Mechanical Turk (AMT).
Each instance was labeled by a single worker, and the entire dataset
was labeled by 24 different workers in total. The noise rates of the
workers were in the ranges of r−1,+1 ∈ [0, 0.4] and r+1,−1 ∈ [0, 0.2].
Cleaning Strategies. We compared TARS with three existing clean-
ing strategies. SortNoise cleans the instance whose noisy label is
most likely to be wrong, without considering the impact of cleaning
the instance to the current model. ActiveClean cleans the instance
which, if the instance was cleaned, would impart the greatest change
to the current model. Expected Error Reduction (ExpectError) [28]
cleans the instance such that the current model’s error can be reduced
the most, where the error is computed on noisy labels rather than es-
timated w.r.t. true labels. We chose ExpectError because it is similar
(in spirit) to our strategy and has been shown to outperform other
active-learning query strategies such as uncertain sampling [28].

All the code was written in Python 2.7. We trained logistic re-
gression models on all datasets using scikit-learn4. Each dataset was
randomly divided into a training set and a test set with the ratio of
2 to 1. We ran each experiment ten times and reported the average
performance.

6.2 Evaluation of Advice 1
In this section, we first conduct sensitivity analysis on the Advice 1
provided by TARS in order to gain a deep understanding of its per-
formance, and then examine its performance on real-world datasets.

6.2.1 Sensitivity Analysis. We evaluate the estimation error of
TARS on the Gaussian dataset by varying the sample size, the noise
rate, the number of votes, and the percentage of good workers, for
accuracy, precision, recall, and F-score. When varying one parameter,
we set the other parameters with their default values. By default, the
sample size is 1000, the noise rate is 0.2, the number of votes is 1,
and the percentage of good workers is 0%. We define the estimation
error of TARS as half the width of the 95% confidence interval of
its estimated value. We compared TARS with DirtyEval, which is a
naive estimator presented in the Introduction section. It simply treats
the noisy labels as the true labels without considering noise rates,
thus leading to biased estimated results.

4http://scikit-learn.org/

10

0 50 100 150 200
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

EMI
EMI + op1
EMI + op1 + op2

(a) Noise Rates: (0.4, 0)

0 50 100 150 200
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

EMI
EMI + op1
EMI + op1 + op2

(b) Noise Rates: (0.2, 0.2)

0 50 100 150 200
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

EMI
EMI + op1
EMI + op1 + op2

(c) 50%:(0.4, 0), 50%:(0.2, 0.2)

0 50 100 150 200
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

EMI
EMI + op1
EMI + op1 + op2

(d) 90%: (0.4, 0), 10%: (0.2, 0.2)
Figure 11: Evaluating the effectiveness of the proposed optimization techniques of the TARS’s cleaning strategy (Gaussian).

Sample Size. Figure 8 compares the estimation error of TARS and
DirtyEval by varying the dataset size from 100 to 1000, w.r.t. different
evaluation metrics. We can see that as the sample size was increased
by 10 times, the estimation error of TARS was reduced by about 3
times, but DirtyEval did not change so much. The reason is that TARS
takes into account noise rates, leading to larger variance. Increasing
the sample size can reduce the estimator’s variance at the rate of
O(1√

N
). In comparison, DirtyEval has a much larger bias but with a

smaller variance. While the variance can still be decreased, since the
overall estimation error is dominated by the bias, the improvement
is marginal.
Noise Rate. Figure 9 compares the estimation error of TARS and
DirtyEval by varying the noise rate from 0.45 to 0.1, w.r.t. different
evaluation metrics. We can see that TARS follows a similar trend
for all the figures: as the decrease of the noise rate, the estimation
error will first decrease dramatically, quickly reaching an estimation
error of less than 0.1 at the noise rate of about 0.35. After that,
the decreasing speed tends to get slower. Our theoretical analysis
in Section 4.2.1 has shown that for accuracy, the estimation error
decreases at a rate of O

(1
|0.5−β |

)
. This experiment validated that it

holds for the other evaluation metrics empirically.
Number of Votes and Percentage of Good Workers. We evaluated
the performance of TARS by varying the number of votes and the
percentage of good workers, respectively. The results can be found
in Appendix A

6.2.2 Performance on Real-world Datasets. We evaluate
TARS on the four real-world datasets. We used the noise rate of
0.8 for Heart, German, and Cancer, and used the real-world crowd
workers to label Restaurant. We aim to answer two questions in this
experiment: (i) can TARS get an accurate estimate of the model’s
true performance on real-world datasets? and (ii) can TARS bound
the difference between the estimated value and the true value?

We used TARS and DirtyEval to estimate the model’s true accuracy
on the Heart, German, and Cancer datasets. We estimated F-score for
the Restaurant dataset because the class labels of the dataset is highly
imbalanced. As a comparison, we computed the true accuracy (f-
score) using the ground-truth labels. Note that since the entire clean
population G is not available, we can only compute the true accuracy
(F-score) based on the clean sample S (i.e., the labeled datasets).
Figure 10 shows the result. We can see that on the German and
Cancer datasets, TARS returned almost the same accuracy as the true
accuracy. On the Heart dataset, although the TARS’s performance
was not as good as the one on the German and Cancer datasets, it was
still better than DirtyEval. On the Restaurant dataset, TARS returned
an estimated value of F-score with the error more than 2× smaller
than DirtyEval. More importantly, on all the datasets, TARS was able
to bound the estimation error. Being able to do so is essential for
enabling reliable decisions in the real world.

6.3 Evaluation of Advice 2
In this section, we first examine how the proposed optimization tech-
niques can improve the effectiveness of the naive implementation of
EMI, and then compared TARS (i.e., EMI with all the optimization
techniques) with the state-of-the-art cleaning strategies, ActiveClean,
ExpectError, and SortNoise.

6.3.1 Optimization Techniques. In Section 5.3, we identified
the possible issues when applying EMI in practice, and proposed
two optimization techniques, denote by op1 and op2, to address
them, where op1 represents the optimization of splitting the noisy
data and op1 represents the optimization of weighing with model
uncertainty. Figure 11 compares the three variants of EMI on the
Gaussian dataset in four settings of noise rates.

In Figure 11(a), we set the noise rates to r−1,+1 = 0.4 and r+1,−1 =
0.2. We can see that the noisy labels had a significant negative
impact on the model. After cleaning 100 instances (10% of the data),
EMI +op1+op2 improved the model’s accuracy from 0.77 to 0.94.
However, the other two cleaning strategies did not help to improve
the model so much.

In Figure 11(b), we set the noise rates to r−1,+1 = 0.2 and
r+1,−1 = 0.2. In this setting, we can see that the model’s accuracy
was (almost) not affected by the noisy labels. Therefore, all three
cleaning strategies started with a very accurate model. After sending
some instances to an oracle to clean, EMI and EMI +op1 sometimes
led to a much worse model, but EMI +op1+op2 avoided this kind of
situation happen.

In Figure 11(c) and (d), we evaluated the optimization techniques
on a mix of noise rates, where the former has 50% of the instances
with (0.4, 0) and 50% with (0.2, 0.2); the latter has 90% with (0.4,
0) and 10% with (0.2, 0.2). We can see that in both settings, EMI
+op1+op2 outperformed the other two variants, further validating
the effectiveness of the proposed optimization techniques.

Since EMI +op1+op2 achieved the best performance, we will only
use it in TARS and compare it with the existing cleaning strategies.

6.3.2 Cleaning Strategies. Like the previous experiments,
we first set the noise rates to (0.4, 0), leading to a big gap between
learning with noisy labels and with true labels. We trained a model
on the data and then asked an oracle to clean the data. Figure 12
compares the model’s accuracy w.r.t. different cleaning strategies
on the Gaussian, Heart, German, and Cancer datasets for a cleaning
budget of 100 instances.

We have two observations from the results. First, TARS outper-
formed SortNoise and ExpectError on all four datasets. The reason
is that TARS considers both label noise and model changes in its
cleaning strategy while SortNoise and ExpectError only considers
one of them. Second, we find that the performance of ActiveClean
may not be very stable for our problem setting (see Figure 12(b)
and Figure 12(c)). This is because that ActiveClean is focused on
a different cleaning scenario, where there is a large dirty dataset

11

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

TARS
SortNoise
ActiveClean
ExpectError

(a) Gaussian

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(b) Heart

0 20 40 60 80 100
Number of cleaned instances

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(c) German

0 20 40 60 80 100
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(d) Cancer

Figure 12: Comparing the cleaning strategy of TARS with the existing cleaning strategies (Noise Rates: (0.4, 0)).

0 20 40 60 80 100
Number of cleaned instances

0.90
0.92
0.94
0.96
0.98
1.00
1.02

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(a) Gaussian

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

TARS
SortNoise
ActiveClean
ExpectError

(b) Heart

0 20 40 60 80 100
Number of cleaned instances

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(c) German

0 20 40 60 80 100
Number of cleaned instances

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(d) Cancer

Figure 13: Comparing the cleaning strategy of TARS with the existing cleaning strategies (Noise Rates: (0.2, 0.2)).

(both features and labels are dirty), and an oracle cleans the data in
batches. It is common that each batch contains at least 100 instances,
but in this experiment, the entire cleaning budget was only 100.

The above experiment demonstrated that when the initial model’s
accuracy was much lower than the final model’s accuracy, the clean-
ing strategies were able to keep improving the model’s accuracy
through cleaning. A natural question is that when the initial model
is already good enough, will the cleaning strategies hurt the model’s
performance? To answer this question, we set the noise rates to (0.2,
0.2) such that the noisy labels did not impose a significant negative
impact on the model’s performance. Figure 13 shows the result. We
can see that TARS did a good job for keeping the model’s accuracy
as the good as the initial model’s accuracy.
Mix of Noise Rates. We also compared TARS with the existing
cleaning strategies on the datasets with a mix of noise rates. The
results can be found in Figures 16 and 17 in the Appendix. They
further validated the observations described above.

7 RELATED WORK
Crowdsourcing. There are three research topics in crowdsourcing
related to our work: task assignment [2, 4, 10, 21, 25, 40], truth
inference [9, 13, 15, 27, 39], and active learning (from crowds) [14,
19, 22, 37]. Task assignment studies how to determine which task
should be assigned to an incoming crowd worker. A number of task
assignment algorithms have been proposed [2, 21, 40], but their
objectives are not to maximize the performance of a supervised-
learning model. Truth inference studies the problem of inferring the
ground-truth label of each instance based on (inconsistent) labels
from different workers. There are many interesting ideas proposed to
solve this problem [13, 15, 27]. However, the goal of truth inference
is to improve label quality rather than model quality. As discussed
in Section 5.1, a good cleaning strategy should not only consider
noise rates but also model changes. Active learning (from crowds)
determines which unlabeled instance should be sent to a crowd
worker to label. Since a crowd worker may make mistakes, there
are some studies on the trade-off between asking another crowd
worker to relabel an instance or label a new instance [19, 30]. In our
problem, we consider that all the instances have been labeled by the
crowd and an oracle can be used to clean the instances.

Data Cleaning. Algorithmic data cleaning approaches have been
improving in quality, but still far from perfect [5]. In view of the
challenge, human-guided data cleaning has recently attracted a lot
of attention [1, 6, 7, 11, 16, 24, 33–36, 38]. The existing studies can
be broadly divided into two categories. One category is to leverage
humans (either crowd workers or experts) to solve a particular data-
cleaning problem, such as entity resolution [7, 11, 33, 35], missing
value imputation [24], and data repairing [6, 36]. The other category
is to clean data for a particular data analysis task, such as building
a machine-learning model [16] and answering SQL queries [1, 34].
Our work belongs to this category. In particular, we are focused on
cleaning crowdsourced labels for supervised learning, which is a
problem that has not been explored before.
Learning with Noisy Labels. There is a large body of work in
the Machine Learning community on learning with noisy labels
(see [12] for a survey). Some existing approaches aim to develop a
robust algorithm to tolerate label noise [20, 31]. Liu et al. [20] use
importance reweighting to ensure that any surrogate loss function
can be used for classification, proving that the label noise involved in
training will not affect the search for an optimal classifier. Sukhbaatar
et al. [31] train neural networks on images with noisy labels directly,
but add an extra layer designed to model the label noise. There
are also some works [3, 32] that seek to leverage data cleaning for
model training. Brodley and Friedl [3] use ensembles of classifiers of
identify mislabeled instances and then remove them from the training
data. Veit et al. [32] use a small sample of clean data to reduce the
severity of label noise on the (much larger) noisy dataset. In contrast
to these works, this paper is focused on a different data-cleaning
scenario, i.e., oracle-based label cleaning.

8 CONCLUSION
In this paper, we have studied the problem of cleaning crowdsourced
labels using oracles for supervised learning. We developed TARS,
a label-cleaning advisor that can provide data scientists with two
pieces of advice when they need to train or/and test a model us-
ing noisy labels. We formally defined the corresponding problems:
model evaluation and cleaning strategy. For the first problem, we
described effective techniques to estimate the model’s true perfor-
mance as well as bound the estimation error, for different evaluation

12

metrics (accuracy, precision, recall, F-score). For the second prob-
lem, we devised a new cleaning strategy, called EMI, to overcome
the limitations of the existing cleaning strategies, and developed two
techniques to further optimize its effectiveness. The experimental
results show that (1) TARS can accurately estimate the model’s true
performance, with the estimation error up to 3× smaller than DirtyE-
val; (2) TARS can improve the model accuracy by a larger margin
than ActiveClean, SortNoise, and ExpectError, for the same cleaning
budget.

REFERENCES
[1] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented data cleaning

with oracles. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 1199–1214, 2015.

[2] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W. C. Tan.
Asking the right questions in crowd data sourcing. In IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, pages 1261–1264, 2012.

[3] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. J. Artif.
Intell. Res., 11:131–167, 1999.

[4] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task assignment on multi-skill
oriented spatial crowdsourcing. IEEE Trans. Knowl. Data Eng., 28(8):2201–2215,
2016.

[5] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning: Overview and
emerging challenges. In SIGMOD, pages 2201–2206, 2016.

[6] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. KATARA:
A data cleaning system powered by knowledge bases and crowdsourcing. In ACM
SIGMOD, pages 1247–1261, 2015.

[7] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep, E. Arcaute,
V. Raghavendra, and Y. Park. Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services. In ACM SIGMOD, pages 1431–1446, 2017.

[8] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Applied statistics, pages 20–28, 1979.

[9] X. L. Dong and F. Naumann. Data fusion - resolving data conflicts for integration.
PVLDB, 2(2):1654–1655, 2009.

[10] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive crowdsourcing
framework. In ACM SIGMOD, pages 1015–1030, 2015.

[11] D. Firmani, B. Saha, and D. Srivastava. Online entity resolution using an oracle.
PVLDB, 9(5):384–395, 2016.

[12] B. Frénay and M. Verleysen. Classification in the presence of label noise: A survey.
IEEE Trans. Neural Netw. Learning Syst., 25(5):845–869, 2014.

[13] J. Gao, Q. Li, B. Zhao, W. Fan, and J. Han. Truth discovery and crowdsourcing
aggregation: A unified perspective. PVLDB, 8(12):2048–2049, 2015.

[14] D. Haas, J. Wang, E. Wu, and M. J. Franklin. Clamshell: Speeding up crowds for
low-latency data labeling. PVLDB, 9(4):372–383, 2015.

[15] N. Q. V. Hung, D. C. Thang, M. Weidlich, and K. Aberer. Minimizing efforts in
validating crowd answers. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pages 999–1014, 2015.

[16] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. Activeclean:
Interactive data cleaning for statistical modeling. PVLDB, 9(12):948–959, 2016.

[17] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In
Proceedings of the 17th Annual International ACM-SIGIR Conference on Research
and Development in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special
Issue of the SIGIR Forum), pages 3–12, 1994.

[18] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data management: A
survey. IEEE Trans. Knowl. Data Eng., 28(9):2296–2319, 2016.

[19] C. H. Lin, Mausam, and D. S. Weld. Re-active learning: Active learning with rela-
beling. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 1845–1852, 2016.

[20] T. Liu and D. Tao. Classification with noisy labels by importance reweighting.
IEEE Transactions on pattern analysis and machine intelligence, 38(3):447–461,
2016.

[21] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: A crowdsourcing
data analytics system. PVLDB, 5(10):1040–1051, 2012.

[22] B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden. Scaling
up crowd-sourcing to very large datasets: A case for active learning. PVLDB,
8(2):125–136, 2014.

[23] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with
noisy labels. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 1196–1204. Curran Associates, Inc., 2013.

[24] H. Park and J. Widom. Crowdfill: collecting structured data from the crowd. In
ACM SIGMOD, pages 577–588, 2014.

[25] J. Pilourdault, S. Amer-Yahia, D. Lee, and S. B. Roy. Motivation-aware task
assignment in crowdsourcing. In EDBT, pages 246–257, 2017.

[26] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy.
Learning from crowds. Journal of Machine Learning Research, 11:1297–1322,
2010.

[27] T. Rekatsinas, M. Joglekar, H. Garcia-Molina, A. G. Parameswaran, and C. Ré.
Slimfast: Guaranteed results for data fusion and source reliability. In SIGMOD,
pages 1399–1414, 2017.

[28] N. Roy and A. McCallum. Toward optimal active learning through sampling
estimation of error reduction. In Proceedings of the Eighteenth International
Conference on Machine Learning (ICML 2001), Williams College, Williamstown,
MA, USA, June 28 - July 1, 2001, pages 441–448, 2001.

[29] B. Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66):11, 2010.

[30] V. S. Sheng, F. J. Provost, and P. G. Ipeirotis. Get another label? improving data
quality and data mining using multiple, noisy labelers. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages 614–622, 2008.

[31] S. Sukhbaatar and R. Fergus. Learning from noisy labels with deep neural
networks. arXiv preprint arXiv:1406.2080, 2(3):4, 2014.

[32] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie. Learn-
ing from noisy large-scale datasets with minimal supervision. arXiv preprint
arXiv:1701.01619, 2017.

[33] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. PVLDB, 5(11):1483–1494, 2012.

[34] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A
sample-and-clean framework for fast and accurate query processing on dirty data.
In ACM SIGMOD, pages 469–480, 2014.

[35] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd
entity resolution. PVLDB, 6(6):349–360, 2013.

[36] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided
data repair. PVLDB, 4(5):279–289, 2011.

[37] Y. Yan, R. Rosales, G. Fung, and J. G. Dy. Active learning from crowds. In
Proceedings of the 28th International Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 1161–1168, 2011.

[38] C. J. Zhang, L. Chen, Y. Tong, and Z. Liu. Cleaning uncertain data with a noisy
crowd. In ICDE, pages 6–17, 2015.

[39] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in crowdsourcing:
is the problem solved? Proceedings of the VLDB Endowment, 10(5):541–552,
2017.

[40] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A quality-aware task
assignment system for crowdsourcing applications. In ACM SIGMOD, pages
1031–1046, 2015.

APPENDIX
A ADDITIONAL EXPERIMENTS
Number of Votes. In Section 6.2.1, we assume that each instance
has a single vote (i.e., labeled by a single worker). Next, we relax
the assumption and investigate how adding the number of votes will
affect the estimation error. We varied the number of votes from 1
to 15. Figure 14 reports the comparison results between TARS and
DirtyEval w.r.t. different evaluation metrics. We can see that increas-
ing the number of votes reduced the estimation error exponentially.
This is because that as the increase of the number of votes, the noise
rate of a consolidated label will decrease exponentially. We also see
that TARS outperformed DirtyEval for not only a single-vote situation
but also multiple-vote situations. Eventually, their estimation error
will both converge to zero.
Percentage of Good Workers. In a real-world crowdsourcing set-
ting, there could be a mix of high-quality and low-quality workers.
We designed an experiment aiming to examine whether TARS can
still achieve good performance in this situation. We consider that a
“good" worker has the noise rate of 0.9, and a “bad" worker has the
noise rate of 0.4. We varied the percentage of the instances labeled
by good workers. Figure 15 reports the result. We can see that TARS
achieved much smaller estimation error than DirtyEval for all situa-
tions. For example, when 50% of the instances were labeled by good
workers, TARS got an estimation error of about 0.1 (w.r.t. accuracy
and F-score), while the estimation error of DirtyEval was more than
2× larger.

13

1 3 5 7 9 11 13 15
Number of Votes

0.00

0.05

0.10

0.15

0.20

0.25

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

1 3 5 7 9 11 13 15
Number of Votes

0.00

0.05

0.10

0.15

0.20

0.25

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

1 3 5 7 9 11 13 15
Number of Votes

0.00

0.05

0.10

0.15

0.20

0.25

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

1 3 5 7 9 11 13 15
Number of Votes

0.00

0.05

0.10

0.15

0.20

0.25

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

(a) accuracy (b) precision (c) recall (d) F-score
Figure 14: Comparison of the estimation error between TARS and DirtyEval by varying the number of votes per instance (Gaussian).

0 20 40 60 80 100
Percentage of good workers (%)

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0 20 40 60 80 100
Percentage of good workers (%)

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0 20 40 60 80 100
Percentage of good workers (%)

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

0 20 40 60 80 100
Percentage of good workers (%)

0.0

0.1

0.2

0.3

0.4

Es
ti

m
at

io
n

Er
ro

r

DirtyEval
TARS

(a) accuracy (b) precision (c) recall (d) F-score
Figure 15: Comparison of the estimation error between TARS and DirtyEval by varying the percentage of good workers (Gaussian).

0 20 40 60 80 100
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(a) Gaussian

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(b) Heart

0 20 40 60 80 100
Number of cleaned instances

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(c) German

0 20 40 60 80 100
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(d) Cancer

Figure 16: Comparing the cleaning strategy of TARS with the existing cleaning strategies (Noise Rates: 50% of (0.4, 0) and 50% of
(0.2, 0.2)).

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(a) Gaussian

0 20 40 60 80 100
Number of cleaned instances

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(b) Heart

0 20 40 60 80 100
Number of cleaned instances

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(c) German

0 20 40 60 80 100
Number of cleaned instances

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

TARS
SortNoise
ActiveClean
ExpectError

(d) Cancer

Figure 17: Comparing the cleaning strategy of TARS with the existing cleaning strategies (Noise Rates: 90% of (0.4, 0) and 10% of
(0.2, 0.2)).

14

	Abstract
	1 Introduction
	2 Background and Problem Formalization
	2.1 Background
	2.2 Advice 1: How Good is a Model?
	2.3 Advice 2: Which Label Should be Cleaned?

	3 Preliminary: Label Consolidation
	3.1 The Need For Label Consolidation
	3.2 Computing Consolidated Labels
	3.3 Quantifying Consolidated Label's Uncertainty

	4 Model Evaluation
	4.1 Estimating Model's True Performance
	4.2 Bounding Estimation Error

	5 Cleaning Strategy
	5.1 Limitations of Existing Cleaning Strategies
	5.2 Main Idea: Expected Model Improvement
	5.3 Further Optimization

	6 Experiments
	6.1 Experimental Settings
	6.2 Evaluation of Advice 1
	6.3 Evaluation of Advice 2

	7 Related Work
	8 Conclusion
	References
	A Additional Experiments

