

Automating Entity Matching Model Development

Jiannan Wang

Simon Fraser University

April 14, 2021, Thomson Reuters

Pei Wang, Weiling Zheng, Jiannan Wang, Jian Pei. Automating Entity Matching Model Development. ICDE 2021, Chania, Greece.

SFU in the cloud ③

SFU Data Science Research Group http://data.cs.sfu.ca

- Invented many famous data mining algorithms (e.g., FP-Growth, DBScan)
- Research Strengh: Cloud Databases, Data Preparation, Data Pricing, Data Security and Privacy, Recommender Systems
- Ranked 13th in databases and data mining in North America (source: csrankings.org)

Ke Wang (Joined in 2000)

Martin Ester Jian Pei (Joined in 2001) (Joined in 2004)

Jiannan Wang (Joined in 2016)

Tianzheng Wang (Joined Fall 2018)

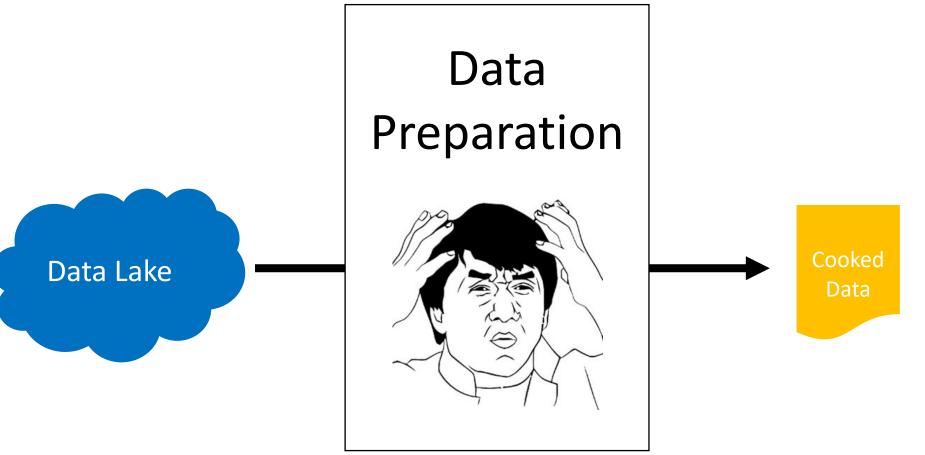
#	Institution	Count F	
1	Carnegie Mellon University O	17.7	33
2	Univ. of Illinois at Urbana-Champaign ()	14.9	11
3	Stanford University O	13.0	15
4	Georgia Institute of Technology Q	11.5	23
4	University of Michigan O	11.5	14
6	Massachusetts Institute of Technology ()	10.3	18
7	Cornell University O	10.2	24
8	Purdue University Q	8.8	13
9	Pennsylvania State University O	8.7	8
10	University of California - Los Angeles ()	8.6	10
10	University of Massachusetts Amherst O	8.6	16
12	University of Illinois at Chicago (2)	8.2	7
		0.2	
13	Simon Fraser University ()	8.1	7
13 13			7
	Simon Fraser University	8.1	
13	 Simon Fraser University University of Maryland - College Park 	8.1 8.1	11
13 15	 Simon Fraser University University of Maryland - College Park University of Waterloo 	8.1 8.1 7.9 7.6	11 20
13 15 16	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University 	8.1 8.1 7.9 7.6	11 20 8
13 15 16 16	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University University of California - Santa Barbara 	8.1 8.1 7.9 7.6 7.6	11 20 8 8
13 15 16 16 18	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University University of California - Santa Barbara University of California - Santa Cruz 	8.1 8.1 7.9 7.6 7.6 7.5	11 20 8 8 12
13 15 16 16 18 19	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University University of California - Santa Barbara University of California - Santa Cruz University of Wisconsin - Madison 	8.1 7.9 7.6 7.6 7.5 7.4	11 20 8 8 12 13
13 15 16 16 18 19 20	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University University of California - Santa Barbara University of California - Santa Cruz University of Wisconsin - Madison Ohio State University 	8.1 8.1 7.9 7.6 7.6 7.5 7.4 7.2	11 20 8 8 12 13 11
13 15 16 18 19 20 21	 Simon Fraser University University of Maryland - College Park University of Waterloo Duke University University of California - Santa Barbara University of California - Santa Cruz University of Wisconsin - Madison Ohio State University University of California - Riverside 	8.1 8.1 7.9 7.6 7.6 7.5 7.4 7.2 7.0	11 20 8 8 12 13 11 10

Democratizing Al

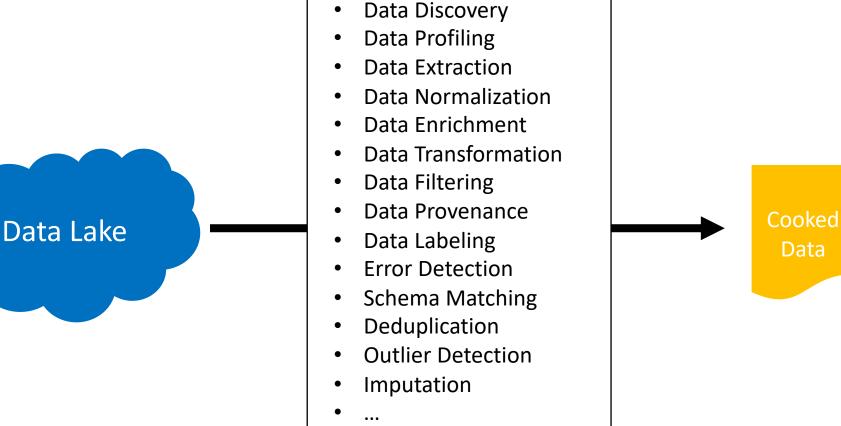
Computing

Algorithms

PYT⁶RCH



• Data


Data Prep is the bottleneck

What is Data Prep?

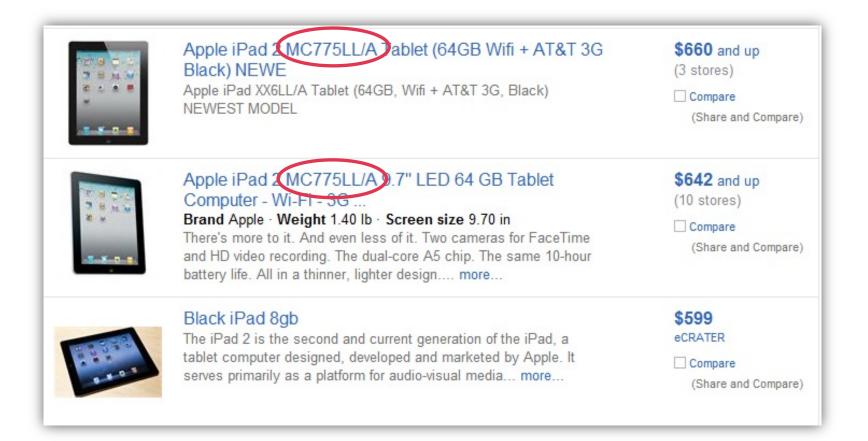
Why is Data Prep hard?

Two Promising Directions

- 1. Using advanced ML technologies
 - Automated Machine Learning (AutoML)
 - Active Learning and Self-training

- 2. Building open-source software
 - Ease of Use
 - Fast
 - All-in-one

mathematical states and sta


Next Wed's Talk

Talk Outline

- 1. Entity Matching (EM)
- 2. Automate Model Development
- 3. Automate Data Labeling
- 4. Future Direction

Entity Matching (EM)

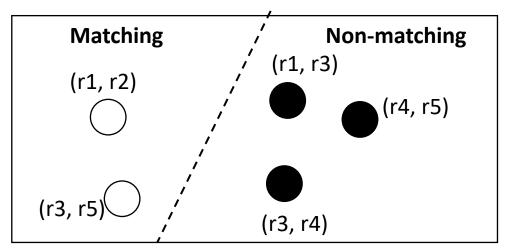
EM is central to data integration and cleaning

SFU

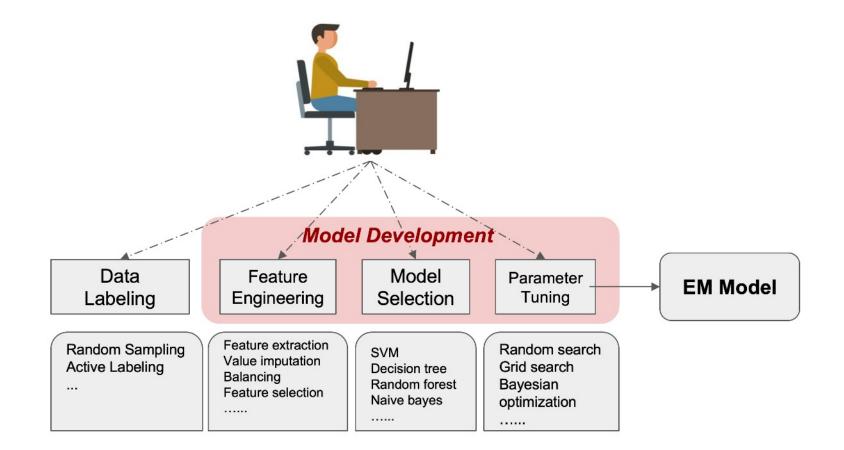
Entity Matching (EM)

ID	Product Name	Price
r ₁	iPad Eight 128GB WiFi White	\$490
r ₂	iPad 8th generation 128GB WiFi White	\$469
r ₃	iPhone 10th generation White 256GB	\$545
r ₄	Apple iPhone 11th generation Black 256GB	\$375
r ₅	Apple iPhone 10 256GB White	\$520

Matching Pairs: (r_1, r_2) , (r_3, r_5)

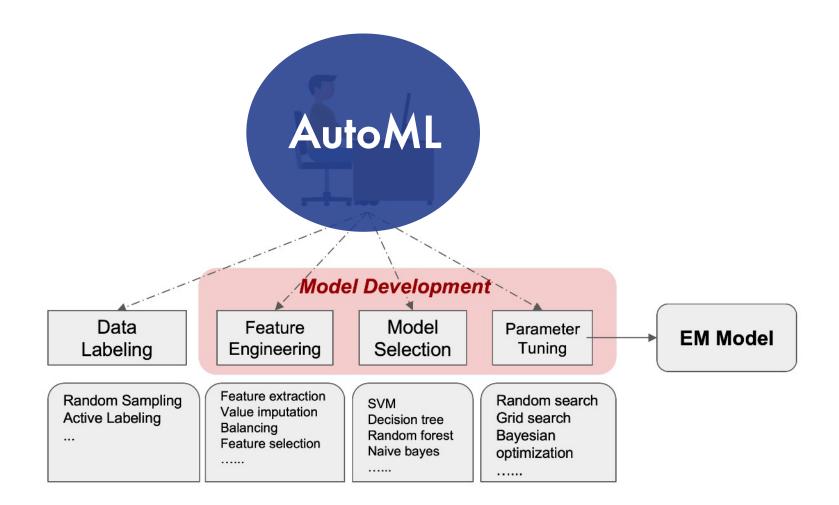


Entity Matching Techniques

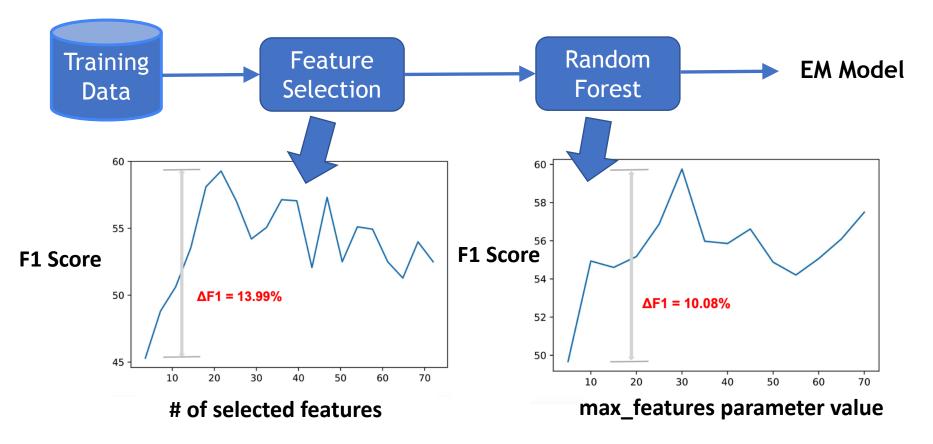

- 1. Similarity-based
 - Similarity function (e.g., Jaccard)
 - Threshold (e.g., 0.8)

Jaccard(r1, r2) = $0.9 \ge 0.8$ V Jaccard(r3, r4) = $0.4 < 0.8 \times$

2. Learning-based

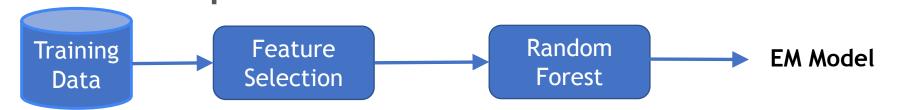


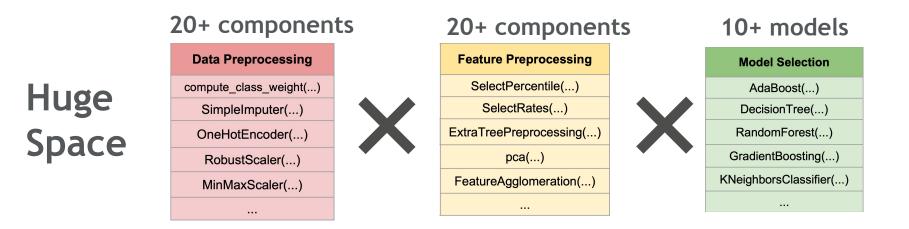
Manual Model Development



Our Goal

Why AutoML? Reason 1: Tuning Matters





SFU

Why AutoML? Reason 2: Huge Tuning Space

Abt-buy Dataset (70 features) Space Size: 70 x 70 = 490

SFU

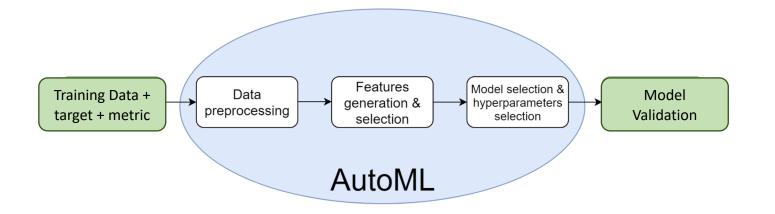
Talk Outline

1. Entity Matching (EM)

2. Automate Model Development

3. Automate Data Labeling

4. Future Direction


What is AutoML?

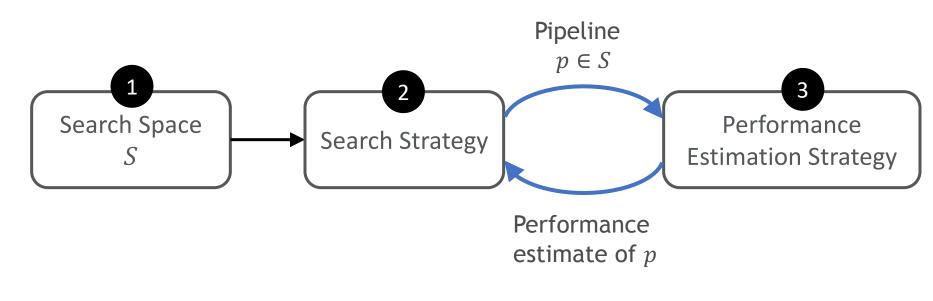
Vision

 AutoML allows non-experts to make use of machine learning models and techniques

Scope

Automate Data Preprocessing → Feature Engineering → Model
 Selection/Hyperparameter Tuning for Supervised Learning

Will AutoML replace data scientists?



NO! AutoML lacks domain knowledge

How does AutoML work?

Three Steps

Domain Knowledge

How to adopt AutoML in EM?

Key Idea: Ingest domain knowledge through a careful search space design

Feature Generation:

Magellan Features [1] vs. AutoML-EM Features

Model Selection: All Models vs. Random Forest

[1] Konda, Pradap, et al. "Magellan: Toward building entity matching management systems." Proceedings of the VLDB Endowment 9.12 (2016): 1197-1208.

SFU

Feature Generation

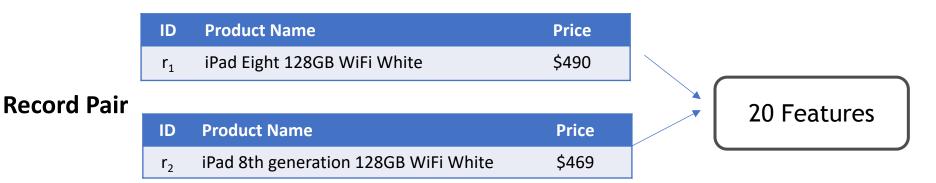
Magellan Features [1]

ID	Data Type	Similarity Function
1		(Levenshtein Distance, N/A)
2		(Levenshtein Similarity, N/A)
3	Single-Word String	(Jaro Distance, N/A)
4		(Exact Match, N/A)
5		(Jaro-Winkler Distance, N/A)
6		(Jaccard Similarity, 3-gram)
7		(Levenshtein Distance, N/A)
8		(Levenshtein Similarity, N/A)
9		(Needleman-Wunsch Algorithm, N/A)
10	1-to-5-Word String	(Smith-Waterman Algorithm, N/A)
11	1-to-5- word String	(Monge-Elkan Algorithm, N/A)
12		(Cosine Similarity, Space)
13		(Jaccard Similarity, Space)
14		(Jaccard Similarity, 3-gram)
15		(Levenshtein Distance, N/A)
16		(Levenshtein Similarity, N/A)
17	5-to-10-Word String	(Monge-Elkan Algorithm, N/A)
18		(Cosine Similarity, Space)
19		(Jaccard Similarity, 3-gram)
20 21	Long String (>10 words)	(Cosine Similarity, Space)
21	Long String (>10 words)	(Jaccard Similarity, 3-gram)
22		(Levenshtein Distance, N/A)
23	Numeric	(Levenshtein Similarity, N/A)
24	rumene	(Exact Match, N/A)
25		(Absolute Norm, N/A)
26	Boolean	(ExactMatch, N/A)

AutoML-EM Features

ID	Data Type	Similarity Function
1		(Levenshtein Distance, N/A)
2		(Levenshtein Similarity, N/A)
2 3 4 5 6 7 8		(Jaro Distance, N/A)
4		(Exact Match, N/A)
5		(Jaro-Winkler Distance, N/A)
6		(Needleman-Wunsch Algorithm, N/A)
7		(Smith-Waterman Algorithm, N/A)
8	String	(Monge-Elkan Algorithm, N/A)
9	Sumg	(Overlap Coefficient, Space)
10		(Dice Similarity, Space)
11		(Cosine Similarity, Space)
12		(Jaccard Similarity, Space)
13		(Overlap Coefficient, 3-gram)
14		(Dice Similarity, 3-gram)
15		(Cosine Similarity, 3-gram)
16		(Jaccard Similarity, 3-gram)
17		(Levenshtein Distance, N/A)
18		(Levenshtein Similarity, N/A)
19	Number	(Exact Match, N/A)
20		(Absolute Norm, N/A)
21	Bool	(ExactMatch, N/A)

[1] Konda, Pradap, et al. "Magellan: Toward building entity matching management systems." Proceedings of the VLDB Endowment 9.12 (2016): 1197-1208.


V.S.

Magellan Features

14		(Jaccard Similarity, 3-gram)
15 16 17 18		(Levenshtein Distance, N/A)
16		(Levenshtein Similarity, N/A)
17	5-to-10-Word String	(Monge-Elkan Algorithm, N/A) > 5 features for Product Name
18		(Cosine Similarity, Space)
19		(Jaccard Similarity, 3-gram)
22		(Levenshtein Distance, N/A)
23	Numeric	(Levenshtein Similarity, N/A) \rightarrow 4 features for Price
22 23 24 25	rumene	(LAdet Materi, WA)
25		(Absolute Norm, N/A)

AutoML-EM Features

ID	Data Type	Similarity Function	
1		(Levenshtein Distance, N/A)	
2		(Levenshtein Similarity, N/A)	
3		(Jaro Distance, N/A)	
4		(Exact Match, N/A)	
5		(Jaro-Winkler Distance, N/A)	
6		(Needleman-Wunsch Algorithm, N/A)	
7		(Smith-Waterman Algorithm, N/A)	
8	String	(Monge-Elkan Algorithm, N/A)	
9	String	(Overlap Coefficient, Space) > 16 features for Product Nam	າຍ
10		(Dice Similarity, Space)	
11		(Cosine Similarity, Space)	
12		(Jaccard Similarity, Space)	
13		(Overlap Coefficient, 3-gram)	
14		(Dice Similarity, 3-gram)	
15		(Cosine Similarity, 3-gram)	
16		(Jaccard Similarity, 3-gram)	
17		(Levenshtein Distance, N/A)	
18		(Levenshtein Similarity, N/A) > 4 features for Price	
19	Number	(Exact Match N/A)	C
20		(Absolute Norm, N/A) 23	3

Experiments – setup & datasets

• AutoML-EM

Built on Auto-sklearn

Methods for comparison

- Magellan [1]:state-of-the-art library for EM model development
- DeepMatcher [2]: state-of-the-art deep learning models for EM

Datasets

• Eight benchmark datasets

Туре	Dataset	Training Size	Test Size	# Attr.
	BeerAdvo-RateBeer	359	91	4
Easy & Small	Fodors-Zagats	757	189	6
	iTunes-Amazon	430	109	8
Easy & Large	DBLP-ACM	9890	2473	4
Lasy & Large	DBLP-Scholar	22965	5742	4
	Amazon-Google	9167	2293	3
Hard & Large	Walmart-Amazon	8193	2049	5
	Abt-Buy	7659	1916	3

[1]. Konda, Pradap, et al. "Magellan: Toward building entity matching management systems." VLDB 2016.[2]. Mudgal, Sidharth, et al. "Deep learning for entity matching: A design space exploration." SIMGOD 2018.

SFU

Feature Generation

• Magellan Features vs. AutoML-EM Features

Detect	Mage	llan	AutoML-EM		ΔF1
Dataset	# Feature	Fscore	#Feature	Fscore	Score
BeerAdvo-RateBeer	36	81.3	87	82.3	+1.0
Fodors-Zagats	37	100	123	100	+0
iTunes-Amazon	30	88.1	155	96.3	+8.2
DBLP-ACM	18	98.3	89	98.4	+0.1
DBLP-Scholar	18	92.6	89	94.6	+2.0
Amazon-Google	21	62.9	72	66.4	+3.5
Walmart-Amazon	32	66.2	106	78.5	+2.3
Abt-Buy	15	48.1	72	59.2	+11.1

AutoML-EM features outperform Magellan Features by up to 11.1 %

SFU

Can AutoML-EM Beat Human?

• Human vs. AutoML-EM

Dataset	Human	AutoML-EM	Δ F1 Score
BeerAdvo-RateBeer	78.8	82.3	+3.5
Fodors-Zagats	100	100	+0
iTunes-Amazon	91.2	96.3	+5.1
DBLP-ACM	98.4	98.4	+0
DBLP-Scholar	92.3	94.6	+2.3
Amazon-Google	49.1	66.4	+17.3
Walmart-Amazon	71.9	78.5	+6.6
Abt-Buy	43.6	59.2	+5.3
Average	78.1	83.9	+5.8

AutoML-EM beats human by an average of 5.8 % in F1 Score

Deep Learning Based EM

Deep learning for entity matching: A design space exploration

..., <u>AH Doan</u>, <u>Y Park</u>, <u>G Krishnan</u>, R **Deep**... - Proceedings of the ..., 2018 - dl.acm.org Entity matching (EM) finds data instances that refer to the same real-world entity. In this paper we examine applying deep learning (DL) to EM, to understand DL's benefits and limitations. We review many DL solutions that have been developed for related matching ...

 $\cancel{3}$ 99 Cited by 197 Related articles All 6 versions

Distributed representations of tuples for entity resolution

..., <u>S Joty</u>, <u>M Ouzzani</u>, <u>N Tang</u> - Proceedings of the ..., 2018 - dl.acm.org Despite the efforts in 70+ years in all aspects of entity resolution (ER), there is still a high demand for democratizing ER-by reducing the heavy human involvement in labeling data, performing feature engineering, tuning parameters, and defining blocking functions. With the ...

 $\cancel{2}$ 99 Cited by 107 Related articles All 5 versions

Deep entity matching with pre-trained language models

Y Li, J Li, Y Suhara, AH Doan, WC Tan - arXiv preprint arXiv:2004.00584, 2020 - arxiv.org

... Even though we can also train **deep learning** EM solutions to **learn** such knowledge, we ... Types of Important Spans Publications, Movies, Music Persons (eg, Authors), Year, Publisher Organizations, Employers Last 4-digit of phone, Street number Products ...

☆ 99 Cited by 19 Related articles All 7 versions \gg

Can AutoML-EM beat deep learning?

AutoML-EM wins on structured data by up to 13%

Dataset	DeepMatcher	AutoML-EM	△ F1 Score
BeerAdvo-RateBee	72.7	80.9	+8.2
DBLP-ACM	98.4	98.1	-0.3
DBLP-Scholar	94.7	94.6	-0.1
Fodors-Zaqats	100.0	100.0	+ 0
Walmart-Amazon	66.9	79.9	+13
iTunes-Amazon	88.0	95.7	+7.7

Deep learning wins on textual data but NOT by a large margin

Dataset	DeepMatcher	AutoML-EM	△ F1 Score
Amazon-Google	69.3	63.8	-5.5
Abt-Buy	62.8	58.1	-4.7

Deep Learning vs. AutoML-EM

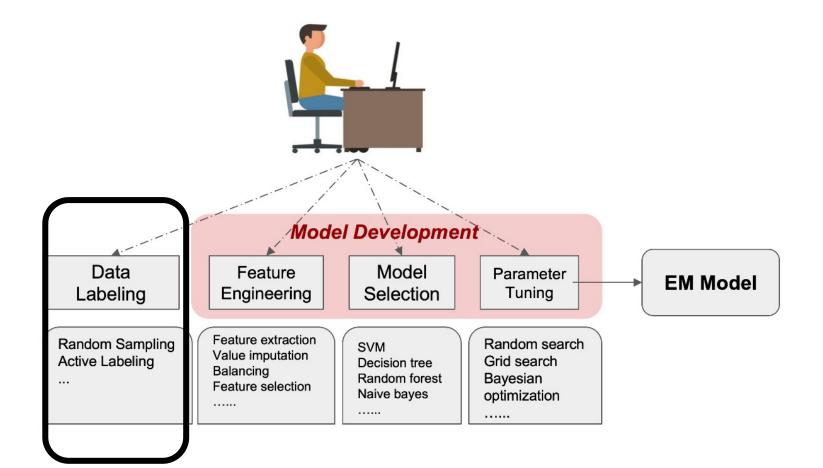
	Deep Learning	AutoML-EM
Interpretability		
Time efficiency		
Performance on structured data		

Takeaways

Innovation

• The **first** work to apply AutoML to EM

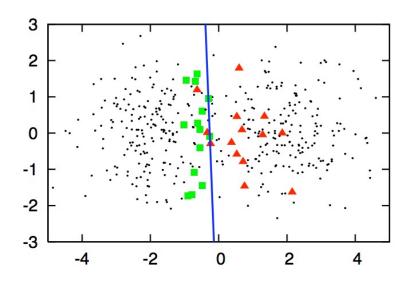
Key Findings

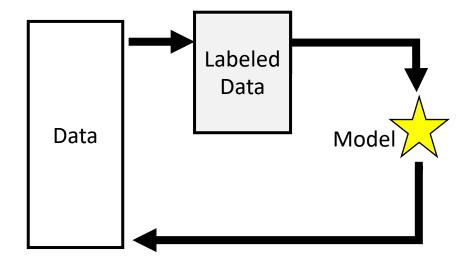

- 1. AutoML-EM beats human by a large margin
- 2. AutoML-EM outperforms deep learning on structured data
- 3. AutoML-EM is competitive to deep learning on textual data

Talk Outline

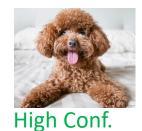
- 1. Entity Matching (EM)
- 2. Automate Model Development
- 3. Automate Data Labeling
- 4. Future Direction

Data Labeling




Active Learning

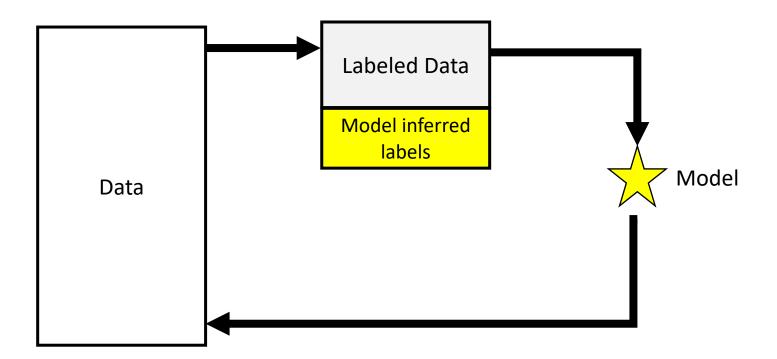
Illustration



Self-training

- 1. Train model on labeled data
- 2. Use model to predict unlabeled data
- S. Add predicted unlabeled with high confidence to training set

New labeled data


Low Conf.

Labeled data

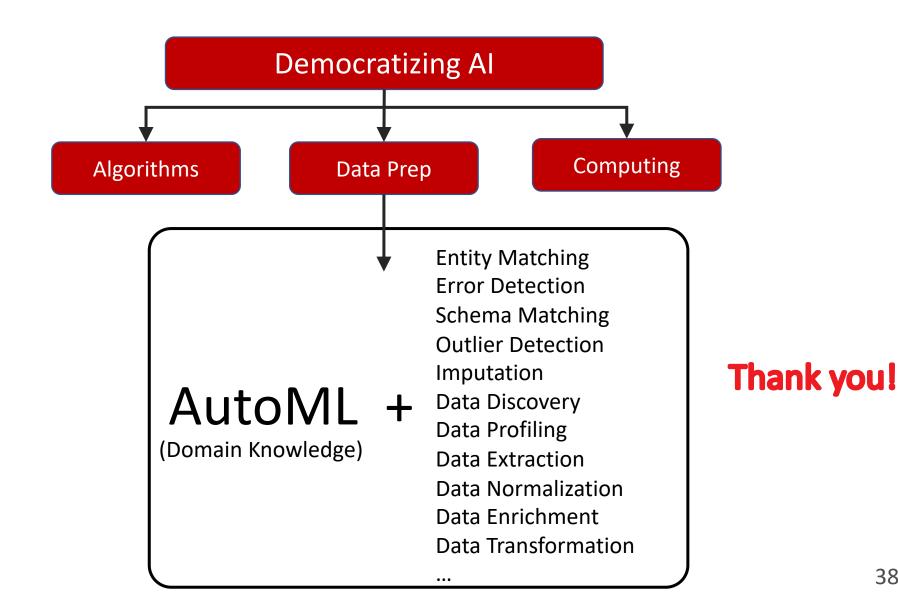
Active Learning + Self-training

Takeaways

Innovation

• The **first** work to combine active learning and selftraining for EM

Key Findings


- 1. Our combined solution beats active learning only solution
- 2. Our combined solution beats self-training only solution

Talk Outline

- 1. Entity Matching (EM)
- 2. Automate Model Development
- 3. Automate Data Labeling
- 4. Future Direction

The journey has just begun

