Speeding Up Data Science: From a Data Management Perspective

JIANNAN WANG
SFU-DSL
Who Am I?

Assistant Professor at SFU (2016 -)

Postdoc at UC Berkeley AMPLab (2013 - 2016)

Ph.D. at Tsinghua University (2008 - 2013)

10 Years’ Research Experience on Data Management and Database Systems
Our Lab’s Mission

Speeding Up Data Science
Computer Science vs. Data Science

<table>
<thead>
<tr>
<th>What</th>
<th>When</th>
<th>Who</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>1950-</td>
<td>Software Engineer</td>
<td>Write software to make computers work</td>
</tr>
</tbody>
</table>

Plan → Design → Develop → Test → Deploy → Maintain

<table>
<thead>
<tr>
<th>What</th>
<th>When</th>
<th>Who</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>2010-</td>
<td>Data Scientist</td>
<td>Extract insights from data to answer questions</td>
</tr>
</tbody>
</table>

Collect → Clean → Integrate → Analyze → Visualize → Communicate
Lab Members

Collect → Clean → Integrate → Analyze → Visualize → Communicate
Today’s Talk

DeepER

Collect → Clean → Integrate → Analyze → Visualize → Communicate

AQP++
Where is the bottleneck?

Data scientists spend 60% of their time on cleaning and organizing data.

(Source: Cloudera)
DeepER’s Key Idea

Leveraging Deep Web To Speed Up Data Cleaning and Data Enrichment
Deep Web

Hidden Database

Invaluable External Resource

- **Big**: Consisting of a substantial number of entities
- **Rich**: Having rich Information about each entity
- **High-quality**: Being trustful and up-to-date
A real-world example

1. Data Enrichment

<table>
<thead>
<tr>
<th>User ID</th>
<th>Location</th>
<th>Zip Code</th>
<th>Frequency</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>U12345</td>
<td>Lotus of Siam</td>
<td>891004</td>
<td>20 visits</td>
<td>Thai, Wine Bars</td>
</tr>
</tbody>
</table>

2. Data Cleaning

<table>
<thead>
<tr>
<th>User ID</th>
<th>Location</th>
<th>Zip Code</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>U12345</td>
<td>Lotus of Siam</td>
<td>89104</td>
<td>20 visits</td>
</tr>
</tbody>
</table>
Entity Resolution

Local Database (D)

- Thai Noodle House
- Thai Pot
- Thai House
- BBQ Noodle House

Hidden Database (H)

- Restaurant
 - Thai Noodle House
 - Thai Pot
 - Thai House
 - BBQ Noodle House
 - Monta Ramen
 - Steak House
 - Yard House
 - Ramen Bar
 - Ramen House
Deep Entity Resolution

Local Database (D)

Restaurant
Thai Noodle House
Thai Pot
Thai House
BBQ Noodle House

Hidden Database (H)

Restaurant
Thai Noodle House
Thai Pot
Thai House
BBQ Noodle House
Monta Ramen
Steak House
Yard House
Ramen Bar
Ramen House

Keyword Search
1. Conjunctive Query
2. Top-k Constraint
3. Deterministic Query Processing

Local and Hidden DBs
1. D has no duplicate record
2. H has no duplicate record
New Challenges

Limited Query Budget

- Yelp API is restricted to 25,000 free requests per day
- Google Maps API only allows 2,500 free requests per day

Top-k Constraint

- Return top-k results based on an unknown ranking function
NaiveCrawl

Enumerate each record in D and then generate a query to cover it

Limitation
- Cover one record at a time

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Keyword Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Noodle House</td>
<td>$q_1 = “Thai Noodle House”</td>
</tr>
<tr>
<td>Thai Pot</td>
<td>$q_2 = “Thai Pot”</td>
</tr>
<tr>
<td>Thai House</td>
<td>$q_3 = “Thai House”</td>
</tr>
<tr>
<td>BBQ Noodle House</td>
<td>$q_4 = “BBQ Noodle House”</td>
</tr>
</tbody>
</table>
FullCrawl

1. Try to crawl the entire hidden database $H_{crawled}$
2. Perform entity resolution between D and $H_{crawled}$

Limitation
- Not aware of the existence of a local database
Insight 1. Query Sharing

Keyword Queries

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Noodle House</td>
<td>q_1 = “Thai Noodle House”</td>
</tr>
<tr>
<td>Thai Pot</td>
<td>q_2 = “Thai Pot”</td>
</tr>
<tr>
<td>Thai House</td>
<td>q_3 = “Thai House”</td>
</tr>
<tr>
<td>BBQ Noodle House</td>
<td>q_4 = “BBQ Noodle House”</td>
</tr>
<tr>
<td></td>
<td>q_5 = “Noodle House”</td>
</tr>
<tr>
<td></td>
<td>q_6 = “House”</td>
</tr>
<tr>
<td></td>
<td>q_7 = “Thai”</td>
</tr>
</tbody>
</table>

Cover **multiple** records at a time
Insight 2. Local-database-aware crawling

$q_5 = "Noodle House"

$q_6 = "House"
SmartCrawl Framework

1. Generate a query pool \(Q \)

2. Select at most \(b \) queries from \(Q \) such that \(|H_{crawled} \cap D|\) is maximized

3. Perform entity resolution between \(H_{crawled} \) and \(D \)
Query Pool Generation

Basic Idea

- Only need to consider the queries in D

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Keyword Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Noodle House</td>
<td>$q_1 = \text{“Thai Noodle House”}$</td>
</tr>
<tr>
<td>Thai Pot</td>
<td>$q_2 = \text{“Thai Pot”}$</td>
</tr>
<tr>
<td>Thai House</td>
<td>$q_3 = \text{“Thai House”}$</td>
</tr>
<tr>
<td>BBQ Noodle House</td>
<td>$q_4 = \text{“BBQ Noodle House”}$</td>
</tr>
<tr>
<td></td>
<td>$q_5 = \text{“Noodle House”}$</td>
</tr>
<tr>
<td></td>
<td>$q_6 = \text{“House”}$</td>
</tr>
<tr>
<td></td>
<td>$q_7 = \text{“Thai”}$</td>
</tr>
</tbody>
</table>

$q = \text{“Sushi”}$
SmartCrawl Framework

1. Generate a query pool Q

2. Select at most b queries from Q such that \(|H_{crawled} \cap D|\) is maximized

3. Perform entity resolution between $H_{crawled}$ and D
Query Selection

NP-Hard Problem
- Can be proved by a reduction from the maximum coverage problem

Greedy Algorithm
- Suffers from a chicken-and-egg problem
Sampling and Estimation

Deep Web Sampling [Zhang et al. SIGMOD 2011]

- H_S is a random sample of H
- θ is the sampling ratio

Two classes of queries

- Solid Query
- Overflowing Query

IF \[\frac{|q(H_S)|}{\theta} \leq k \] THEN

q is a solid query

ELSE

q is an overflowing query

END
Solid Query

How to estimate \(|q(D) \cap q(H)|?\)

Unbiased Estimator: \(\frac{|q(D) \cap q(H_s)|}{\theta}\)

Key Observation: \(|q(D) - q(H)| \text{ is small}\)

Biased Estimator: \(|q(D)|\)
Overflowing Query

How to estimate $|q(D) \cap q(H)_k|$?

Basic Idea

\[
\begin{array}{ccccccccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

An unknown ranking function

How to estimate $\frac{k}{|q(H)|} \times |q(D) \cap q(H)|$?
A Summary of Estimators

<table>
<thead>
<tr>
<th></th>
<th>Unbiased</th>
<th>Biased (w/ small biases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>$\frac{</td>
<td>q(D) \cap q(H_s)</td>
</tr>
<tr>
<td>Overflowing</td>
<td>$</td>
<td>q(D) \cap q(H_s)</td>
</tr>
</tbody>
</table>
Other Contributions

1. Theoretical Analysis
2. Efficient Implementations
3. Inadequate Sample Size
4. Fuzzy Matching
Experimental Settings

Simulation

- Hidden Database: DBLP
- Local Database: Database Researchers’ publications

Real-world

- Hidden Database: Yelp
- Local Database: 3000 restaurants in AZ
- Ground-Truth: Manually Labeled
|D| = 10,000, |H| = 100,000, K = 100, \(\theta = 0.2\% \)

1. SmartCrawl performed very well with a small sampling ratio

2. SmartCrawl outperforms straightforward solutions
|D| = 3,000, |H| ≈ 250,000, K = 50, \theta = 0.2%

1. SmartCrawl outperformed straightforward solutions

2. SmartCrawl was more robust to the fuzzy-matching situation than NaiveCrawl
DeepER Conclusion

We are the first to study the DeepER problem.

SmartCrawl outperforms NaiveCrawl and FullCrawl by a factor of $2 - 7 \times$

SmartCrawl is more robust to the fuzzy-matching situation than NaiveCrawl.
Today’s Talk

DeepER

Collect → Clean → Integrate → Analyze → Visualize → Communicate

AQP++
Interactive Analytics

Tableau

Power BI

Jupyter

Databricks

Apache Zeppelin
Two Separate Ideas

Approximate Query Processing (AQP)
- Trade answer quality for interactive response time

Aggregate Precomputation (AggPre)
- Trade preprocessing cost for interactive response time
AQP++: Connecting AQP with AggPre
Experimental Result

TPCD-Skew (10GB, z = 2, 0.3% sample)

<table>
<thead>
<tr>
<th>Preprocessing Cost</th>
<th>Response Time</th>
<th>Answer Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP</td>
<td>30.72 MB</td>
<td>1.71 min</td>
</tr>
<tr>
<td>AggPre</td>
<td>10.91 TB</td>
<td>> 1 day</td>
</tr>
<tr>
<td>AQP++</td>
<td>30.74 MB</td>
<td>2.97 min</td>
</tr>
</tbody>
</table>
On-going Projects

Students	Stages	Projects
--------------------	----------------------	
Pei & Yongjun	Clean & Integrate	DeepER: Deep Entity Resolution
Jinglin Peng	Analyze & Visualize	AQP++: Connecting AQP with AggPre
Mathew & Mohamad	Clean & Analyze	Data Cleaning Advisor for ML
Changbo & Ruochen	Collect & Clean	Live Video Highlight Detection using Crowdsourced User Comments
Nathan Yan	Clean	Data Cleaning with Statistical Constraints
Young Woo	Analyze	ML Explanation and Debugging
Two Take-away Messages

Data scientists waste a lot of time on data processing

Collect → Clean → Integrate → Analyze → Visualize → Communicate

Database researchers play a central role to speed up data science