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Part I: Introduction
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Collaborations in Machine Learning (ML) Pipeline

• The disruptive success of ML in many applications has led to an explosion in demand


• Many parties need to collaborate to build a powerful machine learning application


• Machine learning applications are indeed pipelines connecting many parties

Example: collaboration scenarios in ML pipelines
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Data and Model Exchange in ML Pipelines

• Data is critical for machine learning and penetrates the whole ML pipelines


• Obtaining data for machine learning is far from easy


• Data exchange becomes a fundamental interaction among different parties


• Share, exchange, and reuse data sets and ML models


• What is a principled mechanism to connect many parties in ML pipelines in 
scale?
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Data Products as Economic Goods
• Data products refer to data sets as 

products and information services derived 
from data sets 

• Advantages of data marketplaces


• Data owners can monetize their data 
and intelligent properties


• Data buyers can access data products 
of high quality and large quantities


• To enable tradings, data has to be priced
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Pricing of Data Products

• What is pricing?


• The practice that a business sets a price at which a product or a service can be sold


• 3c’s of pricing strategies: cost, consumer, and competitors


• Four challenges


• Data can be replicated at zero marginal cost


• The value of data is inherently combinatorial 


• The value of data varies widely among different buyers


• The usefulness of data lies in the value of information derived from it, which is difficult to verify a priori
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Four Major Data Pricing Tasks in ML Pipelines
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Pricing ML Models 

Version machine learning 
models and avoid arbitrage 

among multiple versions

Key Challenges in the Four Data Pricing Tasks
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Pricing Data Labels 
Motivate crowd-workers to 

invest high efforts and report 
accurate data labels 

Revenue Allocation in 
Collaborative ML 

Fairly reward data owners’ 
contributions

Pricing Raw Data Set 
Set the price reflecting the 
usefulness of a data set 



A Principle in Data Pricing

• Common core idea: linking prices of data products to their 
utilities to customers


• Two types of utility functions


• Absolute utility function


• Relative utility function
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Roadmap

• Introduction


• Essentials of pricing data and machine learning models


• Pricing in data collection - pricing raw data sets


• Pricing in data collection - pricing data labels


• Pricing in collaborative training of machine learning models


• Pricing machine learning models


• Summary and future directions
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Part II:  
Essentials of Pricing Data and 

Machine Learning Models
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What Is a Data Marketplace?
• A platform that allows people to buy and sell data products


• Seven categories of participants


• Data providers, analysts, application vendors, data processing algorithm developers, consultants, 
licensing and certification entities, and data market owners


• Four types of market structures


• Monopoly, oligopoly, strong competition markets, and monopsony


• Examples of data marketplaces


• Personal data marketplaces, crowd-sensing data marketplaces, and ML model marketplaces, etc.

12

Muschalle, Alexander, et al. "Pricing approaches for data markets." International workshop on business intelligence for the real-time enterprise. Springer, Berlin, Heidelberg, 2012. 

Fricker, Samuel A., and Yuliyan V. Maksimov. "Pricing of data products in data marketplaces." International Conference of Software Business. Springer, Cham, 2017. 

Fernandez, Raul Castro, Pranav Subramaniam, and Michael J. Franklin. "Data market platforms: trading data assets to solve data problems." Proceedings of the VLDB Endowment 
13.12 (2020): 1933-1947.



Data Marketplace Architectures
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(a) General data marketplace

(c) Buy-side marketplace(b) Sell-side marketplace



Major Data Pricing Strategies
• Three major data pricing strategies


• Cost-based pricing


• Customer value-based pricing


• Competition-based pricing


• Other pricing strategies


• Operation-oriented pricing, revenue-oriented pricing, and relationship-oriented 
pricing
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Desiderata of Data Pricing

• Truthfulness


• Revenue Maximization


• Fairness


• Arbitrage-free Pricing


• Privacy-preservation


• Computational Efficiency


• Effort Elicitation
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Truthfulness
• In a truthful market, all participants are selfish and only offer prices that maximize their utility values


• Offering the real values of products is a participant's best strategy


• Reverse auction is a common tool to implement truthful data markets


• Reverse auction: one buyer and many potential sellers (Forward auction: one seller and multiple competing 
buyers)


• Myerson’s lemma of truthful sealed-bid reverse auction


• The selection rule of auction winners is monotone


• If a seller  wins the auction by bidding , the seller also wins by bidding 


• Each selected seller  is paid the critical value   


• Critical value  : seller  would not win the auction if  bids higher than 

si bi b′ i ≤ bi

𝑠𝑖 𝑝𝑖

pi si si pi
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Revenue Maximization
• Increase a seller's customer base by 

having low prices


• Revenue maximization for physical goods 
is achieved when the marginal revenue is 
zero


• Data products can be re-produced at 
almost zero costs


• The revenue maximization techniques 
for data products are quite different
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Fairness
• A market is fair if a seller gets a fair allocation for the seller’s contribution in a coalition


• Shapley fairness


• Balance: the payment should be fully distributed to the sellers 

• Symmetry: the same contribution to the payment should be paid the same 

• Zero element: no contribution means no payments 

• Additivity: if the data sets can be used for two tasks  and  with payments  and , 
respectively, then the payment to solve both tasks  should be 

𝑡1 𝑡2 𝑣1 𝑣2
𝑡1 + 𝑡2 𝑣1 + 𝑣2
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Shapley Value
• Shapley value is the unique allocation solution that satisfies Shapley fairness


 

Equivalently,


 

• Exponential computational cost with respect to the number of sellers


• Can be estimated by sampling methods

𝜓(𝑠) =
1
𝑁 ∑

𝑆⊆𝐷∖{𝑠}

𝒰(𝑆 ∪ {𝑠}) − 𝒰(𝑆)

(𝑁 − 1
|𝑆 | )

𝜓(𝑠) =
1

𝑁! ∑
𝜋∈∏ (𝐷)

(𝒰(𝑃𝜋
𝑠 ∪ {𝑠} − 𝒰(𝑃𝜋

𝑠 )))
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Arbitrage-free Pricing
• Arbitrage is the activities that take advantage of price differences between 

multiple markets


• A data buyer may circumvent the advertised price of a product through 
buying a bundle of cheaper ones


• Example: an answer with a variance of 5 is sold at $5 and with a 
variance of 1 is sold at $50. A data buyer wants to obtain an answer of 
variance 1. The buyer can purchase the cheaper answer 5 times and 
compute their average. The total cost is only $25
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Privacy Preservation
• In data marketplaces, the privacy of 

buyers, sellers, and involved third parties 
are highly vulnerable


• Our tutorial focuses on compensations for 
the privacy disclosure of data owners 


• Data owners’ data sets are protected by 
differential privacy


• Data owners are paid according to how 
much their privacy is disclosed
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Computational Efficiency

• Prices should be computed in polynomial time with respect to the number 
of participants or the number of data products


• It takes exponential time to compute the pricing functions with some 
desirable properties, such as Shapley fairness, arbitrage-freeness, and 
revenue maximization
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Effort Elicitation
• A data buyer may purchase training data labels via crowdsourcing


• Control the quality of collected label is challenging


• Spammers may provide random labels without solving the tasks


• Design rigorous incentives to guide worker behaviors


• Motivate workers to invest efforts and report accurate labels
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Summary: Introduction and Essentials of Data 
Pricing

• Data and ML models as economic goods


• Four major pricing tasks in ML pipelines


• Architectures and players in data marketplaces


• Core idea and seven desiderata of data pricing
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Part III:  
Pricing Raw Data Sets
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Outline: Pricing Raw Data Sets
• Introduction


• Pricing General Data Sets


• Pricing Crowd-sensing Data


• Pricing Data Queries


• Compensating Privacy Loss


• Summary
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Pricing Raw Data Sets in Machine Learning Pipelines
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Model Training Step

Pricing in 
collaborative training 
of machine learning 

models

Training Data Collection Step

Data

Pricing raw data sets

Pricing data labels

Model Deployment Step

Pricing ML models
Model



Major Factors in  
Data Pricing Models of Raw Data Sets

• Intrinsic factors


• Data quality: accuracy, volume, freshness, completeness, …


• Consumption units: whole datasets and subsets


• Extrinsic factors


• Market supply and demand: participants’ competitions and customers’ valuations
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Typical Pricing Scenarios in Literature

29

1

2

4

3

Pricing Crowd-sensing Data 
Pricing indivisible data sets in a 
competitive market

Pricing Data Queries 
Data consumers can purchase 
just a subset of an entire data set

Pricing General Data Sets 
Pricing data sets as indivisible units 
in a monopoly market

Compensating Privacy Loss 
Pricing personal data by privacy 
compensation



Outline: Pricing Raw Data Sets
• Introduction


• Pricing General Data Sets


• Pricing Crowd-sensing Data


• Pricing Data Queries


• Compensating Privacy Loss


• Summary
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Pricing General Data Sets
• Linear model: 


• Two level optimization model for revenue maximization


• Different versions are constructed by different data quality factors


• Customers' demands for different versions are public


• Both the data seller and customers want to maximize their utility


• The problem is a bi-level programming model, which is NP-hard

price = Fixed cost + ∑
𝑖

𝑤𝑖 ⋅ factor𝑖

31
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Outline: Pricing Raw Data Sets
• Introduction


• Pricing General Data Sets


• Pricing Crowd-sensing Data


• Pricing Data Queries


• Compensating Privacy Loss


• Summary

32



Crowd-sensing Systems

Figure from [Yang, Dejun, et al., 2012]

Example: a crowd-sensing system

• A task requester initiates a data 
collection task and 
compensates participating 
workers according to their 
reported costs


• Workers may exaggerate their 
costs to manipulate the market


• A truthful market is assumed
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Truthful Crowd-sensing Marketplaces
• A buyer has a set  of sensing tasks, where a task  has a value 


• Each seller  chooses to perform a subset of tasks  and has a private cost 


• The task-bid pair  is submitted to the buyer, where  is ’s asking price for performing the tasks 


• The asking price  can be greater than the true cost 


• Design an auction that is truthful and all participants have non-negative utilities

Γ = {𝜏1, …, 𝜏𝑛} 𝜏𝑖 𝑣𝑖

𝑠𝑖 Γ𝑖 ⊆ Γ 𝑐𝑖

(Γi, bi) bi si Γi

bi ci

34

Yang, Dejun, et al. "Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing." 
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$4 $7 $10

Providers

Tasks

Bids

Value $6 $2 $3 $5

s1 s2 s3

τ1 τ2 τ3 τ4



Truthful Crowd-sensing Marketplaces
• Determine auction winners


• Select winners in a greedy way by iteratively choosing the seller that brings the 
largest non-negative net marginal profit to the buyer


• Determine payments to winners


• Each winner  is paid his/her critical value (seller  would not win the auction if  
bids higher than his/her critical value)


• Sellers achieve highest expected profits by bidding truthfully


• Truthful bidding: for each seller , 

𝑠𝑖 si si

si bi = ci
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Data Quality Aware Truthful Crowd-sensing 
Marketplaces

• Assume data quality  of each seller  is public and  is the same for all sensing tasks


• Each sensing task  has a data quality requirement , that is, 


• Select sellers to maximize total utility of all participants (social welfare) under data quality constraints


• A greedy algorithm with a guaranteed approximation ratio is proposed


• First, all sellers with positive social welfare contributions are selected


• Then, select sellers with negative social welfare contributions greedily to fulfill data quality 
constraints


• Critical payment is made to each winner

𝑞𝑖 𝑠𝑖 𝑞𝑖

𝑡𝑗 𝑄𝑗 ∑
𝑠𝑖∈𝑆, if 𝑠𝑖 performs 𝑡𝑗

𝑞𝑖 ≥ 𝑄𝑗
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Outline: Pricing Raw Data Sets
• Introduction


• Pricing General Data Sets


• Pricing Crowd-sensing Data


• Pricing Data Queries


• Compensating Privacy Loss


• Summary
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Charging Customers by Data Queries
• Customers can purchase their interested parts of a data set through data queries


• Arbitrage allows buyers to obtain a query result in a cost less than the advertised 
price

Name Gender Age

John M 25

Alice F 13

Bob M 45

Anna F 19

•  = SELECT count(*) FROM User WHERE Gender=‘F’


•  = SELECT Gender, count(*) FROM User


•  is sold for $7 and  is sold for $5

Q1

Q2

𝑄1 Q2
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Arbitrage-free Pricing of Data Queries

• Given a database , a multi-set of query bundles  is 
said to determine a query bundle , if the answer to  can be 
computed only from the answers to the query bundles in 


• A pricing function is arbitrage-free if the advertised price satisfies


 

𝐷 𝐒 = {𝐐1, …, 𝐐𝑚}
𝐐 𝐐

𝐒

𝜋(𝐐) ≤
𝑚

∑
𝑖=1

𝜋(𝐐𝐢)
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View-Based Pricing
• The seller determines the price of a few views  over a database, then the price of a query 

bundle  is decided algorithmically


• The query price  is the total price of the cheapest subset of  that determines 


• Computing the price function is NP-hard for general conjunctive queries


• Polynomial time algorithms for chain queries and cyclic queries are proposed


• Example chain query 


• Example cyclic query 

𝐕
𝐐

𝜋(𝐐) 𝐕 𝐐

Q(x, y) = R(x) ⋈ S(x, y) ⋈ T(y)

Q(x, y, z) = S(x, y) ⋈ B(y, z) ⋈ C(z, x)

40
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QueryMarket: Prototype of View-based Pricing

• Formulate the pricing model as an integer linear program (ILP) with the objective to minimize the total cost 
of purchased views 


• A large class of queries can be priced efficiently in practice


• Constraints of the ILP


• For a tuple 


• For each relation  in , at lease one view on  should be purchased


•  that can produce 

• For a tuple ,  that can indicate 

𝐕𝑝

𝑡 ∈ 𝑄(𝐷)

𝑅 𝑄 𝑅

∃𝑉′ ⊆ 𝑉𝑝 𝑡

𝑡 ∉ 𝑄(𝐷) ∃𝑉′ ⊆ 𝑉𝑝 𝑡 ∉ 𝑄(𝐷)
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• Objective: Minimize the total price of purchased views

• subject to

QueryMarket: An Example

A
𝑎1

A B
𝑎1
𝑎2

𝑏
𝑏

Table R Table S

(𝑎1, 𝑏) ∈ 𝑄

(𝑎2, 𝑏) ∉ 𝑄 ≥ 1
+ ≥ 1

≥ 1

x[R . A = a2]
x[S . A = a1] x[S . B = b]
x[R . A = a1]

Binary variable 
indicating whether a 
view is purchased

This view indicates 
(𝑎2, 𝑏) ∉ 𝑄

One view from 
each relation 

in 𝒬

42

Query:  𝑄(𝑥, 𝑦) = 𝑅(𝑥) ⋈ 𝑆(𝑥, 𝑦)

Koutris, Paraschos, et al. "Toward practical query pricing with querymarket." proceedings of the 2013 ACM SIGMOD international 
conference on management of data. 2013.



Arbitrage-free Pricing of Linear Aggregate Queries

• A linear query over real-valued data set  is a real-valued vector 
, and the answer is 


• Unbiased estimator of  is traded and priced based on variance 


•  trades off between data accuracy and query price

• Arbitrage example


•  and  are sold for $5 and $20, respectively


•

𝐱 = ⟨𝑥1, …, 𝑥𝑛⟩
𝐪 = ⟨𝑤1, …, 𝑤𝑛⟩ 𝐪(𝐱) = ∑

𝑖=1

𝑤𝑖𝑥𝑖

𝐪(𝐱) 𝑣

𝑣

Q1 Q2

Q1 = (q, v), Q1 = (q, v) → Q2 = (q, v/2)
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Arbitrage-free Pricing of Linear Aggregate Queries 

• An arbitrage-free pricing function must satisfy 


• Basic arbitrage-free function: , where the function  is semi-norm


• E.g. 


• Composition  of arbitrage-free functions  is still 
arbitrage-free if  is subadditive and nondecreasing


• E.g. 

𝜋(𝐪, 𝑣) = Ω(
1
𝑣

)

𝜋(𝐪, 𝑣) =
𝑓2(𝐪)

𝑣
𝑓( ⋅ )

𝜋(𝐪, 𝑣) =
|𝐪 |2

∞

𝑣
=

𝑚𝑎𝑥𝑖𝑞2
𝑖

𝑣

𝜋(𝐪, 𝑣) = 𝑓(𝜋1(𝐪, 𝑣), …, 𝜋𝑘(𝐪, 𝑣)) 𝜋1, …, 𝜋𝑘
𝑓( ⋅ )

𝑓(𝜋1, 𝜋2) = 𝜋1 ∗ 𝜋2

44
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Arbitrage-free Pricing for General Queries

• Three types of pricing models for query bundles


• Instance-independent pricing: the price depends only on the query


• Answer-dependent pricing: the price depends on the query and the 
query output


• Data-dependent pricing: the price depends on the query and the 
database instance

45

Lin, Bing-Rong, and Daniel Kifer. "On arbitrage-free pricing for general data queries." Proceedings of the VLDB Endowment 7.9 
(2014): 757-768.



Five Types of Arbitrage for General Queries  (1)

• Price-based arbitrage: if prices are quoted by queries, a buyer may deduce 
answers to queries from prices along


               = SELECT a, T.b, c FROM T, R WHERE T.b=R.b AND a=1 AND b=2 AND c=3


• Let  and  be the price of the whole tables  and , respectively


• In view-based pricing,  if and only if the answer to  is not empty


• Customer can infer that the tuple  is in the join of  and  by checking the price

Q

π(T) π(R) T R

π(Q) = π(T) + π(R) Q

(1,2,3) T R

46

Lin, Bing-Rong, and Daniel Kifer. "On arbitrage-free pricing for general data queries." Proceedings of the VLDB Endowment 7.9 (2014): 
757-768.



Five Types of Arbitrage for General Queries (2)

• Separate-account arbitrage: a buyer may use multiple accounts to derive answers to a query 
bundle


• Recall the arbitrage example in linear aggregate query


• Almost-certain arbitrage: two queries have almost identical answers but their prices are 
dramatically different


• Consider a query asking the population of Canada


• (an answer of a variance 1)=$10,000


• (an answer of a variance 1.1)=$1

π

π

47

Lin, Bing-Rong, and Daniel Kifer. "On arbitrage-free pricing for general data queries." Proceedings of the VLDB Endowment 7.9 (2014): 
757-768.



Five Types of Arbitrage for General Queries (3)

• Post-processing arbitrage: if the answers to a query bundle  can always be deduced from 
the answers to another query bundle , the price of  should be no cheaper than that of 


•  = SELECT * FROM T WHERE g=“F”  = SELECT count(*) FROM T WHERE g=“F”


• Serendipitous arbitrage: for a specific database instance, the answers to  may be derived 
from the answers to 


• Assume that table  does not have any records with g=“F”


•

𝐐
𝐐′ 𝐐′ 𝐐

Q1 → Q2

𝐐
𝐐′ 

T

Q2 → Q1

48
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Qirana: Efficient and Scalable Pricing 

• Compute the price of a query bundle  from the view of uncertainty reduction


• Denote by  a set of all possible database instances with the same schema as 
the true database instance  


• The buyer can rule out database instances  that cannot be  by checking 
whether 


• Arbitrage-free pricing function should be monotone and subadditive with respect 
to how much  shrinks

𝐐

𝑆
𝐷

𝐷𝑖 ∈ 𝑆 𝐷
𝐐(𝐷𝑖) = 𝐸

𝑆

49

Deep, Shaleen, and Paraschos Koutris. "QIRANA: A framework for scalable query pricing." Proceedings of the 2017 ACM 
International Conference on Management of Data. 2017.



Qirana: Efficient and Scalable Pricing 
• Denote by  the set of ruled out database instance


, where  is the weight of 


• The weights could be manually set by the buyer or learned from exemplar queries and their prices


• SELECT count(*) FROM User WHERE Gender = “F”


• Table 1 and Table 2 are ruled out, thus 

𝐶𝐐 = {𝐷𝑖 ∈ 𝑆 |𝐐(𝐷) ≠ 𝐐(𝐷𝑖)}

𝜋(𝐐) = ∑
𝐷𝑖∈𝐶𝐐

𝑤𝑖 𝑤𝑖 𝐷𝑖

𝐐  =

𝜋(𝐐) = 𝑤1 + 𝑤2

50

Name Gender
John M
Alice F
Bob M
Anna F

True Table

Name Gender
John F
Alice F
Bob M
Anna F

Table 1

Name Gender
John M
Alice M
Bob M
Anna F

Table 2

Name Gender
John M
Alice F

James M
Anna F

Table 3

Deep, Shaleen, and Paraschos Koutris. "QIRANA: A framework for scalable query pricing." Proceedings of the 2017 ACM International Conference on Management of Data. 2017.
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Z

Query Pricing based on Query Lineage 

• Price selection-projection-natural join queries over incomplete databases


• The lineage tuples  is the set of tuples in the database  that contribute to 


• Each tuple in  has a price, which is proportional to the completeness of the tuple


•Query price  is the total price of the tuples in 

𝑀(𝐐, 𝐷) 𝐷 𝐐(𝐷)

𝐷

𝜋(𝐐) 𝑀(𝐐, 𝐷)

51
Miao, Xiaoye, et al. "Towards Query Pricing on Incomplete Data." IEEE Transactions on Knowledge and Data Engineering (2020).

Query result  𝑄(𝐷)
𝑀(𝐐, 𝐷) = {𝑋,  𝑌}Tuple processing

$5
$4
$5



Revenue Maximization in Query-based Pricing

• A buyer is single-minded if the buyer wants to purchase the answer to a single set of queries


• A buyer purchases  if the advertised price  is smaller than or equal to the buyer’s valuation


• Follow the idea in Qirana, which prices  as a bundle of items


• Uniform bundle pricing: set the same price for all queries


• The additive/item pricing: set a weight for each item and  is the total weights of the items in the 
bundle


• XOS pricing: set  weights  for each item 


• The price of  is 

𝐐 𝜋(𝐐)

𝐐

𝜋(𝐐)

𝑘 𝑤1
𝑖 , …, 𝑤𝑘

𝑖 𝐷𝑖

𝐐 𝜋(𝐐) = max𝑘
𝑗=1 ∑

𝐷𝑖∈𝑆,𝐐(𝐷)≠𝐐(𝐷𝑖)

𝑤𝑗
𝑖
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Bounds on 
Revenue 
Maximization

•Cheung, Maurice, and Chaitanya 
Swamy. "Approximation algorithms 
for single-minded envy-free profit-
maximization problems with limited 
supply." 2008 49th Annual IEEE 
Symposium on Foundations of 
Computer Science. IEEE, 2008. 

•Chawla, Shuchi, et al. "Revenue 
maximization for query pricing." 
Proceedings of the VLDB 
Endowment 13.1 (2019): 1-14.
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 is the 
number of 
bundles

𝑚 is the maximum 
number of bundles 

an item can 
involve 

𝐵

Maximum 
Revenue

Figure from [Chawia, Shuchi, et al., 2018]



History Aware Pricing
• A history-aware pricing function does not charge the customer twice for already purchased information


• QueryMarket tracks the purchased views of a customer and avoids charging those views when pricing 
future queries of the customer


• Allow buyers to ask for refunds of already purchased data


• An identifier (coupon) for each tuple in the query answer , which records the identity information 
of a tuple


• If the buyer receives the same tuple  from two queries, the buyer can ask for a refund of  by presenting 
the two coupons associated with  in the two corresponding queries


• No arbitrage-free guarantee

𝐐(𝐷)

𝑡 𝑡
𝑡
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Differential Privacy
• Differential privacy provides privacy protection by injecting controlled random 

noise into a data set


• Two data sets  and  are neighboring datasets if they differ in one element


•  is an algorithm that returns noisy query answers over a data set

•  is -differential private if and only if for any two neighbouring data sets  and 

 


• An adversary cannot distinguish between  and  only from the query 
answers

𝐷 𝐷′ 

A

A 𝜖 𝐷
𝐷′ 

exp(−ϵ) ≤ Pr(
A(D) = y
A(D′ ) = y

) ≤ exp(ϵ)

𝐷 𝐷′ 
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Figure from [Jiang, Honglu, et al., 2020]



Privacy Compensation in Data Market

• Private data has values


• A unique user values $4 to Facebook and $24 to Google


• Differential privacy plays an essential role in personal data pricing 


• The magnitude of injected random noise impacts data providers' privacy 
loss , data set usability, and the data priceϵ

57
Li, Chao, et al. "A theory of pricing private data." ACM Transactions on Database Systems (TODS) 39.4 (2014): 1-28.



A Truthful and Privacy Preserving Marketplace 

• Only need to purchase data from  individuals and use them in an -differential privacy manner, where  and  only depend 
on the accuracy goal


• Transform the problem into variants of multi-unit procurement auction. The classic Vickrey auction minimizes the buyer's 
payment and guarantees the accuracy goal 


• Vickrey auction (second-price sealed-bid auction): every bidder submits a bid without knowing others’ bids. The bidder 
making the highest bid wins and pays only the second highest bid 


• Negative result: may not work well if the value of personal data and privacy valuation may be correlated

𝑚 𝜖 𝑚 𝜖

58
Ghosh, Arpita, and Aaron Roth. "Selling privacy at auction." Proceedings of the 12th ACM conference on Electronic commerce. 2011.

$1 $2 $3 $4

Pay $3 * ϵ

Top-  smallest bids 
win the auction and the 
winners are paid by the 

 smallest bid

m

m + 1

Buyer



Pricing Linear Aggregate Queries by Auction

• A data buyer wants to purchase an estimator of a linear aggregate queries  
over real-valued personal data


• Minimize the expected squared error of the returned estimator with respect to the buyer’s 
budget


• Need to maximize , where  indicates whether provider  is used


• Transform to a variant of knapsack reverse auction


• Budget, compensation to a provider , and  are regarded as knapsack capacity, item 
value, and item weight, respectively

𝐪 = ⟨𝑤1, …, 𝑤𝑛⟩

∑ |𝑤𝑖 |𝑥𝑖 𝑥𝑖 ∈ {0,1} 𝑖

𝑝𝑖 𝑤𝑖
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Dandekar, Pranav, Nadia Fawaz, and Stratis Ioannidis. "Privacy auctions for recommender systems." ACM Transactions on Economics 
and Computation (TEAC) 2.3 (2014): 1-22.



Pricing Under the Maximal Privacy Loss Constraint

• Estimators of linear aggregate queries over real-valued personal data are traded


• Each data provider  can specify the personal maximum tolerable privacy loss 


• Assume that the distribution of privacy cost of each provider is public

• Transform to Bayesian optimal knapsack procurement


• The data of each selected provider  is used in -differential privacy manner

𝑖 𝜖𝑖

𝑖 𝜖𝑖
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Zhang, Mengxiao, Fernando Beltran, and Jiamou Liu. "Selling Data at an Auction under Privacy Constraints." Conference on Uncertainty in Artificial 
Intelligence. PMLR, 2020.

A take-it-or-leave-it 
price  is 
computed for each 
provider 

𝜃𝑖

𝑖

 =4𝜃1  =1.5𝜃2  =2𝜃3  =1𝜃4

$3, ϵ1 = 4 $5, ϵ2 = 3 $1, ϵ3 = 7 $5, ϵ4 = 1
Buyer



Privacy Compensation in Arbitrage-free Pricing

• A linear aggregate query  is traded under differential privacy, where  is defined by the 
buyer


• Laplace noise with variance  is added for privacy protection


• The privacy loss of an individual  is upper-bounded by 


• Provider  receives a compensation , where  is the unit privacy cost of 


• The price of a query is the sum of the privacy compensations, which is arbitrage-free

𝐐 = (𝐪, 𝑣) v

𝑣
2

𝑠𝑖 𝜖 =
max𝑖𝐪𝑖

𝑣
2

𝑠𝑖 𝑝𝑖(𝜖) = 𝑐𝑖𝜖 𝑐𝑖 𝑠𝑖
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Compensating Correlated Private Data
• Two individuals' data may be correlated, the privacy of a not-involved individual may be leaked due to the revelation 

of the other individual's data


• The privacy loss of a data provider  caused by a query is upper-bounded by , where  is the 

dependent sensitivity of the query at provider 's data


• Propose bottom-up mechanism and a top-down mechanism to determine privacy compensations and query prices

𝑠𝑖 𝜖𝑖 =
𝑑𝑠𝑖

𝑣
2

𝑑𝑠𝑖

i
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Niu, Chaoyue, et al. "Unlocking the value of privacy: Trading aggregate statistics over private correlated data." Proceedings of the 24th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.

Query Price

Bob’s 
compensation

Alice’s 
compensation

David’s 
compensation

Query Price

Bob’s 
compensation

Alice’s 
compensation

David’s 
compensation
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Summary: Pricing Raw Data Sets

• The price of a data set is determined by both intrinsic and extrinsic factors


• Four typical pricing scenarios in existing studies


• Pricing models with different desiderata, namely revenue maximization, 
truthfulness, arbitrage-free, and privacy preservation


• Limitation: price of a data set is determined without considering the 
down-stream applications of the data set

64
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Pricing Data Labels in Machine Learning Pipelines

67

Model Training Step

Pricing in 
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of machine learning 

models

Training Data Collection Step

Data

Pricing raw data sets

Pricing data labels

Model Deployment Step

Pricing ML models
Model



Crowdsourcing Data Labeling Tasks
• Crowdsourcing is a popular way for label collection


• Tasks solved by workers recruited through the internet


• Quality control methods for collected labels


• Filter, reputation, incentives, etc


• Incentives: encourage participation and effort of good data providers by rigorously 
designed rewards


• How do we pay workers in proportion to their efforts?
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Model of Workers

• Workers can have different behaviors


• Heuristic behaviors: report a random label or a constant label


• Truthful behaviors: perform accurate measurement and report truthfully


• Assume rational workers choose behaviors with the highest payoff


• Motivate workers to behave truthfully through payments

69
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Principle of Pricing Data Labels

• Reward workers based on consistency with a reference


• Gold task-based methods: some tasks with ground-truth answers are 
used as reference


• Peer prediction-based methods: the answers from peer workers are 
used as reference
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Pricing Binary Labels
•A worker has a private belief  about how likely the true label 

 of a task  is 


•Motivate workers to skip questions for which his/her confidence is 
lower than  


•No free lunch axiom


• If all the answers attempted by the worker in the gold standard are 
wrong, then the payment is zero

Pr(𝑦𝑡 = 𝑙)
𝑦𝑡 𝑡 𝑙

𝑇
Figure from [Shah, Nihar Bhadresh, et al., 2015]

𝜋(𝑢) = 𝛽 ⋅
1
𝑇𝑐

⋅ 1(𝑟 = 0)

Number of wrong answersNumber of correct answers
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Pricing Multiple Labels
• Workers can select multiple answers  to a question


• Assume a worker’s beliefs for any label being the true label for a task lie in the set  for 
some (fixed and known) 


• Motivate workers to report all labels with positive confidences


• A worker  receives  for his answers  to a question 


                                  


• Total payment to a worker is , where  is the set of gold tasks

̂Y

{0} ∪ (𝑝, 1]
p

𝑢 𝜋(𝑢, 𝑡) ̂Y 𝑡

π(u, t) = (1 − p)| ̂Y| ⋅ 1(r = 0)

∏
𝑡∈𝐺

𝜋(𝑢, 𝑡) 𝐺

73
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Figure from [Shah, Nihar, et al., 2015]



Reduce the Number of Gold Tasks
• Gold task-based methods require a sufficient 

number of tasks to achieve good performance


• Gold tasks are expensive to obtain


• Arrange the workers in a hierarchy


• Every worker shares one common task with 
each of its children


• The answers from workers are used as pseudo 
gold tasks for workers in the next layer

Figure from [de Alfaro, Luca, et al, 2016]
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Reduce the Number of Gold Tasks
• A worker  needs to exert  efforts if  wants to achieve error rate 


• Motivate each worker  to exert enough efforts, such that 


• Worker  receives a penalty if  does not agree with the parent  on their shared task


• Worker  chooses error rates  to minimize his/her expected loss 


• If , the optimization problem has a unique solution 


• All Nash equilibria guarantee that all workers exert enough efforts


𝑢 𝑓(𝑒𝑢) 𝑢 𝑒𝑢

𝑢 𝑒𝑢 ≤ 𝜖

𝑢 𝑢 w

𝑢 e*u 𝑒∗
𝑢 = argmin 𝐿(𝑒𝑢, 𝑒𝑤)

ew ≤ ϵ e*u ≤ ϵ
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Task
1 0

Disagree! Punish u

Worker u Worker w



Fair Performance Evaluation
• Fair evaluation: expected reward of a worker is directly proportional to the worker’s proficiency


• Proficiency matrix of a worker : 


• Gold tasks are used to estimate the proficiency of a small group  of workers


• The answers by the small group of workers to non-gold tasks are used as contributed gold tasks, 
which are used to estimate the proficiency of more workers


• Payment is based on a worker’s proficiency: 


• Workers reporting random labels get zero payments in expectation

𝑇𝑝 ∈ 𝑅𝐾×𝐾  𝑝 𝑇𝑝[𝑙𝑘, 𝑙𝑗] = 𝑃(𝑝 report 𝑙𝑗 |  ground−truth is 𝑙𝑘)

𝐺

𝜋(𝑝) = 𝛽 ∗ ( ∑
𝑔∈[𝐾]

𝑇𝑝[𝑔, 𝑔] − 1)
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When No Ground-Truth Labels Are Available

• Peer prediction: evaluate consistency with peer reports


• Formulate a game among workers: reward of a worker 
depends on the reports of the worker and other workers


• Design the game such that


• Exerting effort in solving the tasks can achieve high 
expected rewards


• Spammers providing random answers on average 
receive no payments

Figure from [Faltings, Boi, et al, 2017]
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Pricing Binary Labels (1)

• Each task is labeled by multiple workers and 
each worker labels multiple tasks


• A worker ’s behaviors


• Invest no effort and thus provide a random 
label


• Invest full effort with a cost and provide a 
true label with probability 

𝑢𝑖

𝑝𝑖 > 1/2

79

Dasgupta, Anirban, and Arpita Ghosh. "Crowdsourced judgement elicitation with endogenous proficiency." Proceedings of the 22nd 
international conference on World Wide Web. 2013.

Task 2

Worker u Worker p

Task 1

Task 3

1 1

0

1



Pricing Binary Labels (2)

• Each task is labeled by multiple workers and 
each worker labels multiple tasks


• A worker ’s behaviors


• Invest no effort and thus provide a random 
label


• Invest full effort with a cost and provide a 
true label with probability 

𝑢𝑖

𝑝𝑖 > 1/2
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Dasgupta, Anirban, and Arpita Ghosh. "Crowdsourced judgement elicitation with endogenous proficiency." Proceedings of the 22nd 
international conference on World Wide Web. 2013.

Task 2

Worker u Worker p

Task 1

Task 3

1 1

0

1

1 1
Likely to match



Pricing Binary Labels (3)

• Each task is labeled by multiple workers and 
each worker labels multiple tasks


• A worker ’s behaviors


• Invest no effort and thus provide a random 
label


• Invest full effort with a cost and provide a 
true label with probability 

𝑢𝑖

𝑝𝑖 > 1/2
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Task 2

Worker u Worker p

Task 1

Task 3

1 1

0

1 Less likely to match

0

1



Pricing Binary Labels (4)

• Reward a worker  on a task  based on how surprisingly 's report is 
consistent with that of the peer worker 


 


• All workers exerting full efforts and reporting truthfully is an equilibrium


• Exists non-informative equilibrium, that is, all workers report constant labels


• Workers receive zero rewards in expectation

𝑢𝑖 𝑡 𝑢𝑖
𝑢𝑝

π(ui, t) = β ⋅ (1( ̂y = ̂y p) − Pr(ui, up))
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Dasgupta, Anirban, and Arpita Ghosh. "Crowdsourced judgement elicitation with endogenous proficiency." Proceedings of the 22nd 
international conference on World Wide Web. 2013.

The probability that  
and  agree on a 

random task

𝑢𝑖
𝑢𝑝



Correlated Agreement (CA) Mechanism

• Consider pricing multi-labels tasks, where two labels  and  may 
be positive correlated


• Workers can misreport  by  to receive more rewards


• CA mechanism rewards worker  if ’s report is positively correlated 
with that of peer 


•  if the two labels are positively correlated and -1 
otherwise

𝑙𝑖 𝑙𝑗

𝑙𝑗 𝑙𝑖

u u
p

S(li, lj) = 1
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Task
1 0

Agree if labels 1 and 0 
are positively correlated

Worker u Worker p
π(u, t) = β ⋅ (S( ̂y , ̂y p) − S( ̂y a, ̂y b))



Correlated Agreement (CA) Mechanism
• Expected payment of exerting efforts and truthful reporting


•  is label correlation matrix Δ

E[pay] = 𝛽 ∗ ∑
𝑙𝑖,𝑙𝑗

Δ[𝑙𝑖, 𝑙𝑗]𝑆(𝑙𝑖, 𝑙𝑗) = 𝛽 ∗ ∑
𝑙𝑖,𝑙𝑗,Δ[𝑙𝑖,𝑙𝑗]>0

Δ[𝑙𝑖, 𝑙𝑗]

• Reporting random labels could bring negative elements in  into the expected 
payments


• CA mechanism fails if two labels  and  are not distinguishable with respect to 

Δ

𝑙1 𝑙2 𝑆( ⋅ )
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Machine Learning Models as Peer Workers

• Each task must be completed by at least two workers, which leads to duplicate 
answers 


• Learn a classifier  from workers’ reports, and use the classifier’s predictions as 
peer reports


• Assume workers’ proficiency is better than random guess

ℳ
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Liu, Yang, and Yiling Chen. "Machine-learning aided peer prediction." Proceedings of the 2017 ACM Conference on Economics and 
Computation. 2017.

Task
1 0

Worker u Model  ℳ

Disagree! Punish u



Machine Learning Models as Peer Workers

• Learn  with an error rate calibrated loss function 


•  The model is as if evaluated using the ground-truth labels in expectation


• Error calibrated loss function as a payment function


 


• Since label noises are removed by the calibrated loss function, reporting true 
labels can minimize loss


• Exerting efforts and truthful reporting is the most profitable Bayesian Nash 
Equilibrium

ℳ 𝜑( ⋅ )

π( ̂yi) = − β * φ(ℳ(t), ̂y )
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Scale Payments by Reputation (1)

• Scale payments such that:


• Avoid negative payments


• Increase the difference between the 
payments to good workers and the 
payments to spammers Figure from [Radanovic, Goran, et al., 2016]


Payments of honest workers and 
spammers

87
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Scale Payments by Reputation (2)
•Publish tasks to workers in multiple rounds 


•Reputation score for each worker is updated based on the worker’s report in each round


•Quality of a report  is evaluated by comparing  with the estimated true label 


•Update reputation  of worker  by


                            


•Final payment = payment * 


•Average payment of a spammer converges to 0 as  

    approaches infinity

𝑇

̂y ̂y ̂yt

𝑟𝑖 𝑢𝑖

𝑟𝑖 = 𝑟𝑖 ∗ (1 + constant ∗ score(𝑖, 𝑡))

𝑟𝑖

T
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Human Computation and Crowdsourcing. 2016.

Figure from [Radanovic, Goran, et al., 2016]
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Summary: Pricing Data Labels
Gold Task Peer Prediction

Idea

Uniformly mix gold tasks at 
random within the tasks for 

workers to evaluate workers' 
performance

Form a game among workers 
such that exerting efforts is the 

most profitable equilibrium

Pro Exerting effort is worker’s 
dominant strategy

Do not rely on ground-truth 
tasks

Con Gold tasks may be hard to 
collect

Existence of non-informative 
equilibria
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Pricing in Collaborative Training of Machine Learning 
Models

93
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Introduction 

• Collaborative Machine Learning


• Multiple data owners collaboratively build high quality machine learning models by 
contributing their data


• Revenue allocation measures


• Cost-based measure: 


• privacy cost, energy cost, etc.


• Performance-based measure


• Make sure data owners who contribute more 

       valuable data achieve more rewards


• Our tutorial focuses on this measure
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Ohrimenko, Olga, Shru1 Tople, and Sebas1an Tschiatschek. "Collabora1ve machine learning markets 
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Figure from [Ohrimenko et al., 2019]

Example:  Collaborative marketplace setup



Desirable Properties of Revenue Allocation

• Balance


• Symmetry


• Zero Element


• Additivity


• Adversarial Robustness


• Collaboration Stability


• Efficiency

95
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Shapley Value
• Defintion 


• Example: 


• 123, 132, 213, 231, 312, 321


• Assume the utility function  is non-decreasing


•  is the unique allocation method that possesses Shapley fairness


• Flexibility to support different utility function


• E.g., performance of trained model in collaborative machine learning


• Challenge: exponential computational cost

ψ(s) =
1

N! ∑
π∈∏ (D)

(𝒰(Pπ
s ∪ {s} − 𝒰(Pπ

s )))

𝒰

ψ( ⋅ )
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Permutation Sampling Algorithm for Bounded 
Utility Function

• Core idea: get an unbiased estimator of Shapley value via uniform sampling


• Approximate Shapley value by sample mean


• Simple random sampling


• How to bound estimate error:


• Chebyshev’s inequality


• 


• Hoeffding’s inequality


• 


• Cons: 


• Evaluating the utility function is computationally expensive, as it requires training a machine learning model

Pr( | ̂ϕ − ϕ | > = ϵ) < =
σ2

mϵ2
< = δ

Pr( | ̂ϕ − ϕ | > = ϵ) < = 2 exp(−
2m2ϵ2

mr2
) < = δ
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Truncate-based and Gradient-based 
Approximation Methods

• Truncated Monte Carlo Shapley


• Reduce the number of utility evaluations


• In a sampled permutation, set the marginal contribution to be zero for some  
whenever  predefined threshold


• Gradient-based method


• Speed up the evaluation of utility functions by reducing training time


• In a sampled permutation, update the model by performing gradient descent on 
one data point at a time


• The marginal contribution is the change in model’s performance

S
V(D) − V(S) < a
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Truncate-based and Gradient-based 
Approximation Methods

• Pros


• Empirically speed up computation


• Cons


• Introduce estimation bias into the approximated Shapley values


• Have no guarantee on the approximation error

100
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Reduce the Number of Utility Evaluations with 
Provable Error Bounds

• Two approximation algorithms to reduce the number of utility evaluations


• Algorithm 1: group testing-based approximation algorithm


• Group testing



• O( ) utility evaluations

ψ(i) − ψ( j) =
1

N − 1 ∑
S⊆D∖{i,j}

𝒰(S ∪ {i} − 𝒰(S ∪ {j})

(N − 2
|S | )

= E[(βi − βj)𝒰(β1, . . . , βN)]

N(logN)2
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Reduce the Number of Utility Evaluations with 
Provable Error Bounds

• Algorithm 2: sparse signal recovering-based approximation algorithm


• Based on observation that Shapley values are approximately sparse


• Most of values are concentrated around its mean and only a few data have 
significant values


• Sparse signal recovering idea


•  utility evaluationsO(Nlog(logN))
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Shapley Value in Unweighted KNN Classifiers
• Define a special utility function to enable efficient computation of Shapley differences between two data 

points


• For a single testing point, define the utility of KNN classifiers by the likelihood of the right label


• Based on above utility function, the Shapley value of each training points can be calculated recursively 
as


• Generalize above utility function to the case with multiple testing points


• The Shapley value computation cost complexity is O(NlogNNtest)
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Shapley Value in Unweighted KNN Classifiers

• Develop an algorithm to only compute Shapley values for the retrieved k 
nearest neighbours


• Reduce the computational cost to  time


• The idea can be adapted to any “local” models


• Models which only use a subset of the entire data set for data prediction

O(NlogN)
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Information Gain based Algorithm
• This algorithm considers the situation where no validation data sets are available


• Use information gain on model parameters as the utility function


 


• Three additional incentive conditions are proposed


• Individual rationality


• Stability of the grand coalition


• Group welfare


• Machine learning models as rewards over money incentives

IG(θ) = H(θ) − H(θ |D)
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Federated Learning
• Federated Learning


• Collaborative machine learning without centralized training data
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Example: Federated Learning



Federated Shapley Value
• Definition:


• Federated Shapley value of participant  at round  is defined as 


•



• Federated Shapley value of participant :


• 


• Advantages


• Satisfy the balance and additivity axioms of Shapley fairness


• Symmetry and zero element are satisfied in each round


• Extend the permutation sampling and group testing approximation methods to compute federated Shapley value

i t

ϕt(si) =
1

| It | ∑
S⊆It∖{i}

1

( | It | − 1
|S | )

[𝒰(I1:t−1 + (S ∪ {i})) − 𝒰(I1:t−1 + S)]

i

ϕ(si) =
T

∑
t=1

ϕt(si)
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Replication-robust Shapley Value
• Shapley value is vulnerable to data-replication attacks


• Replication-robust Shapley value


• Robust to data replication-attacks by penalizing similar data sets to 
disincentive replication


• No longer satisfies the balance axiom in Shapley fairness
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Outline: Pricing in Collaborative Training of 
Machine Learning Models 

• Introduction


• Revenue Allocation by Shapley value


• Revenue Allocation by Other Fairness Models


• Leave-one-out


• Core Based Algorithms


• Reinforcement Learning Based Algorithm


• Summary
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Leave-one-out Methods
• To formalize the impact of a training point on a prediction 


• Evaluating data importance by comparing the performance of a model trained 
on the full data set with that trained on the full set minus one point


• Challenge


• Perturbing the data and retraining the model can be expensive


• We have influence functions!!!


• A classic technique from robust statistics that tells us how the model 
parameters change as we upweight a training point by an infinitesimal amount
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Influence Function When Upweighting Training 
Point

• How do we know the change in model parameters due to removing a 
training point ?


• There exists a close-form influence function to approximate parameter 
change when upweighting 


• Removing a training point z is the same as up-weighting it to a degree


• How do we know the change in model’s predictions due to removing a 
training point ?


• Similar to above!

z

z

z
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Influence Function for Federated Learning

• Reward participants in federated learning for their contributed data points


• Two improvements compared to the previous influence function when 
upweighting training points


• Batch processing to handle sequential data


• Resolve the issue that mean influence is zero
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Leave-one-out vs Shapley Value
• Leave-one-out vs Shapley value


• Leave-one-out models are more efficient as they do not require model 
retraining


• Leave-one-out models may not accurately assess the values of data 
points


• E.g., it may assign a low value to one the two exactly equivalent data 
points, as high performance may still be achieved by including the 
other datum
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Core Based Data Pricing Model
• Core


• Revenue allocation solutions that satisfy the following


• Constraint: the total reward of each coalition should be at least equal to its utility


• E.g. an cooperative game including three players A, B, C


• 


• Two solutions belong to core


• 


• 


• Choose the solution with the smallest -norm 


• Pros: achieve maximum stability of how participants team up with each other


• Cons: only satisfies the balance, symmetry, and zero element axioms of Shapley fairness

u(A, B, C) = 1000, u(A, B) = 500, u(B, C) = 500, u(A, C) = 500

φ(A) = 0, φ(B) = 500, φ(C) = 500

φ(A) = 100, φ(B) = 400, φ(C) = 500

l2
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Core Based Data Pricing Model
• Least Core


• Relax the constraint by allowing a minimum difference between the 
utility and the total reward for a given coalition


• The number of constraints grows exponentially with the number of 
participants!


• Monte Carlo algorithm


• Reduce computational cost by allowing a relaxed version of the least 
core 
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Reinforcement Learning Algorithm
• Intuition: integrate data valuation into the training procedure of the 

predictor model


• Mechanism


• Pros


• Scalable to large datasets


• Integrate data valuation into the training procedure of the predictor 
model, allowing the predictor and data value estimator to improve each 
other’s performance.
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Outline: Pricing in Collaborative Training of 
Machine Learning Models 

• Introduction


• Revenue Allocation by Shapley value


• Revenue Allocation by Other Fairness Models


• Leave-one-out


• Core Based Algorithms


• Reinforcement Learning Based Algorithm


• Summary
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Summary: Pricing in Collaborative Training of 
Machine Learning Models 

118

Types Limitations

Shapley value based 

Shapley value equation Exponential computational cost
Non-decreasing utility function

Sampling based method Achieve partial Shapley fairness

Utilize properties of machine learning model 
to reduce computational cost Limited application

Non-Shapley-value 
based

Estimate data importance by comparing 
model performance with and without a 

training point
Achieve partial Shapley fairness

Revenue allocation by resolving 
mathematical equations with predefined 

constraints
Achieve partial Shapley fairness

Estimate importance of training examples via 
reinforcement learning process Achieve partial Shapley fairness



Part VI:  
Pricing Machine Learning Models
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Pricing ML Models in Machine Learning Pipelines

Model Training Step

Pricing in 
collaborative training 
of machine learning 

models

Training Data Collection Step

Data

Pricing raw data sets

Pricing data labels

Model Deployment Step

Pricing ML models
Model
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Machine Learning Model as a Service
• Machine learning as a service (MLaaS) is a rapidly growing industry


• Customers may purchase well-trained machine learning models or build models on 
top of those well-trained rather than building models from scratch by themselves


• Example: one may use Google prediction API to classify an image for only $0.0015

Chen, Lingjiao, et al. “FrugalML: How to Use ML Prediction APIs More Accurately and Cheaply.” Advances in Neural Information 
Processing Systems, vol. 33, 2020, pp. 10685–10696.



Two Challenges in Pricing ML Models

• Model versioning


• Perturb model parameters


• Perturb training data


• Model pricing


• Arbitrage-free


• Revenue maximization
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Model Versioning and Arbitrage-free Pricing

• Produce model instances with different performances to target customers with different demands


• Assume ML models are trained by strictly convex loss functions


• Train an optimal classifier  on training data


• Add Gaussian random noise  to the parameters of 


• The expected error  is monotonic with respective to 


• Arbitrage-free pricing function 


• A buyer cannot derive a high performance model 

      by paying less


• If and only if  is sub-additive and monotone over 

ℳ

𝑤 ∼ 𝒩(0,𝛿 ∗ 𝐼𝑑) ℳ

𝔼[𝜖(ℳ + 𝐰, 𝐷)] 𝛿

𝜋

𝜋
1
𝛿
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Revenue Maximization in Model Pricing
• Set prices to different versions to maximize the revenue of model sellers


• A customer purchases a model if the price is lower than his valuation


• Customers demands are public information


• Total revenue: 


• Constraint:  is arbitrage-free

∑
𝑖

𝜋(
1
𝜖

) ∗ purchase(𝜋(
1
𝜖

))

𝜋( ⋅ )
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Figure from [Chen, Lingjiao, 2019]

Example pricing functions
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Revenue Maximization in Model Pricing

• Determining the revenue maximization price is co-NP hard


• Relax the subadditive constraints  by , where 


• Bounded approximation error 


• Price  can be computed by dynamic programming in 

𝜋(𝑥 + 𝑦) ≤ 𝜋(𝑥) + 𝜋(𝑦)
̂π (x)
x

≤
̂π (y)
y

𝑦 ≥ 𝑥 ≥ 0

π(x)/2 ≤ ̂π(x) ≤ π(x)

̂π(x) 𝑂(𝑛2)
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Model Market with Differential Privacy 
• ML models with different differential privacy levels  are traded


• Constructed by objective perturbation


• A model may have multiple data contributors and the revenue should be distributed to contributors


• Cost for using data owner ’s data in -differential privacy manner:


• Fairness: A data owner contributing to a model receives a reward promotional to 


• Each model has multiple survey prices

𝜖

𝑠𝑖 𝜖

𝜋(𝑠𝑖, 𝜖) = 𝑏𝑖 ⋅ 𝑐𝑖(𝜖)

𝜋(𝑠𝑖, 𝜖)

Data quality Privacy cost

126
Liu, Jinfei, et al. "Dealer: an end-to-end model marketplace with differential privacy." Proceedings of the VLDB Endowment 14.6 (2021): 957-969.



Model Market with Differential Privacy 
• Properties of pricing function 


• Arbitrage-free with respect to : sub-additive and monotone over 


• Maximizing revenue: co-NP hard to optimize


• Cover data owners’ costs: NP hard


• Two optimization problems


• Determine revenue maximization price  with respect to customer’s demands and valuations


• Given manufacturing cost , select a subset of data providers, such that the total data 
quality is maximized

𝑝(𝜖)

𝜖 𝜖

𝑝(𝜖)

𝑝(𝜖)
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Online Auction for ML Models (1)

• Online auction: different customers bid at different times


• The broker sets the asking price to maximize cumulative revenue by learning from historical transactions


• Noisy models are generated for the buyer by adding calibrated noise  into training data


  


• The model’s performance  is inversely proportional to 

w

w ∼ (pi − bi) * 𝒩(0,σ2)

G( ̂Yi, Yi) 𝑝𝑖 − 𝑏𝑖

Broker

1. Asking price  for unit performance𝑝𝑖

Buyer 𝑖

2. Bid price , validation data 𝑏𝑖 𝑌𝑖

3. Sell price  𝑅𝐹(𝑝𝑖, 𝑏𝑖, 𝑌𝑖)
4. Payment

5. Noisy prediction
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Online Auction for ML Models (2)
• Buyers are selfish and wants to maximize their utility by choosing 


 


 

• The seller determines asking price  by multiplicative weights algorithm


• Price  is sampled from a list of pre-defined prices


• Prices that bring larger historical revenues are more likely to be sampled


• Average regret goes to zero as 

bi

𝒰(bi) = μi ⋅ G( ̂Yi, Yi) − RF(pi, bi, Yi)

𝑝𝑖

𝑝𝑖

𝑖 → ∞
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Determined following 
Myerson’s payment function 
to motivate truthful bids

 Buyer 's valuation 
on unit performance

𝑖



Pricing Raw Data Products Versus Machine 
Learning Models

• The pricing units of machine learning models are often well defined and 
fixed


• Versioning ML models is harder than versioning raw data sets


• The value of raw data sets to customers is generally harder to measure 
than that of machine learning models


• Preventing arbitrage is usually harder in model market than in raw data 
market
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Summary: Pricing Machine Learning Models

• Versioning techniques for ML models


• Arbitrage-free and revenue maximization pricing models of ML models


• Major differences between machine learning model products and raw data 
set products, including pricing units, versioning, arbitrage prevention, and 
customer valuation
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Part VII: Conclusion
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What Did We Discuss?

133

What is data pricing  • Machine learning pipeline

• Data and ML models as economic goods

Essentials of pricing 
data and ML models

• Data markets

• Pricing strategies

• Data and model pricing desiderata

•

Pricing raw data sets
• Pricing general data sets

• Pricing crowdsensing data

• Pricing data queries

• Compensating privacy loss

Pricing data labels • Gold task-based methods

• Peer prediction-based methods

Pricing in collaborative 
training of ML models

• Revenue allocation by Shapley Value

• Pricing by other fairness models

Pricing in ML models • Pricing ML models

• Pricing raw data products versus ML models



The Principle and Seven Desiderata of Data Pricing

Link prices of 
data products to 
their utilities to 

customers 

1

2

3

4

5

6

7

1- Truthfulness 

• Adapt well-developed truthful 
auction mechanisms to develop 
truthful marketplaces

2 - Revenue maximization 

• Determine revenue maximization 
prices by solving an optimization 
problem with respect to public 
demands and valuations of 
customers

3 - Fairness 

• Adapt revenue allocation solutions 
developed in cooperative game 
theory to reward participants

Arbitrage-free - 4 

• In general, the pricing function is 
subadditive and monotone with 
respect to the utility of a data 
product

Privacy preservation - 5 

• Protect data owners’ privacy by 
differential privacy and compensate 
data owners by their privacy loss

Computational efficiency - 6 

• Develop approximation algorithms 
by leveraging properties of ML tasks

Effort elicitation - 7 

• Reward workers based on 
consistency with a reference



Future Directions (1)

Task 
Complexity

• Price data products in more complicated and realistic environments


• E.g., studying fine-grained data procurement in competitive markets


• Data sellers need to assign prices to different parts of their data sets 
based on supply and demand


• Data buyers need to explore how to distribute their budgets among 
data sellers to maximize the utility of purchased data sets 

Model 
Axioms

• Understand the necessary axioms for data pricing in different scenarios


• E.g., Shapley value vs non-Shapley value based methods


• Some axioms of revenue allocation methods


• Balance, symmetry, zero element, additivity, adversarial 
robustness, collaboration stability, and computational efficiency


• Shapley value can only satisfy the first four axioms



Future Directions (2)

End-to-End 
Pricing 
Models

• Systematic study of an end-to-end pricing model in ML pipelines


• Develop a mechanism that can measure and compare the 
contributions of different parties in different stages 


• Develop a system that can dynamically adjust the budget allocations 
in response to the changes in supply and demand

Model 
Evaluation

• Rigorous evaluation methods for data pricing models


• Develop a platform that can simulate complicated behaviors of 
market participants


• Test the robustness of designed data markets against adversarial 
participants

Fernandez, Raul Castro, Pranav Subramaniam, and Michael J. Franklin. "Data market platforms: trading data assets to solve data 
problems." Proceedings of the VLDB Endowment 13.12 (2020): 1933-1947.



Thank You!
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