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ABSTRACT

A software system interacts with third-party libraries through var-
ious APIs. Using these library APIs often needs to follow certain
usage patterns. Furthermore, ordering rules (specifications) exist
between APIs, and these rules govern the secure and robust op-
eration of the system using these APIs. But these patterns and
rules may not be well documented by the API developers. Pre-
vious approaches mine frequent association rules, itemsets, or sub-
sequences that capture API call patterns shared by API client code.
However, these frequent API patterns cannot completely capture
some useful orderings shared by APIs, especially when multiple
APIs are involved across different procedures. In this paper, we
present a framework to automatically extract usage scenarios among
user-specified APIs as partial orders, directly from the source code
(API client code). We adapt a model checker to generate interpro-
cedural control-flow-sensitive static traces related to the APIs of
interest. Different API usage scenarios are extracted from the static
traces by our scenario extraction algorithm and fed to a miner. The
miner summarizes different usage scenarios as compact partial or-
ders. Specifications are extracted from the frequent partial orders
using our specification extraction algorithm. Our experience of ap-
plying the framework on 72 X11 clients with 200K LOC in total
has shown that the extracted API partial orders are useful in assist-
ing effective API reuse and checking.

Categories and Subject Descriptors: F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Specification techniqes

General Terms: Verification.

Keywords: Mining, Specificaiton, Usage Scenarios, Partial Or-
ders, API Patterns

1. INTRODUCTION
A software system interacts with third-party libraries through

various APIs. Using these library APIs often needs to follow cer-
tain usage patterns. Furthermore, ordering rules (specifications)
exist between APIs, and these rules govern the secure and robust
operation of the system using these APIs. But these patterns and
rules may not be well documented by the API developers. Then
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it is difficult for system developers to effectively or correctly reuse
these APIs during system development or verify the correct usage
of these APIs after the system has been built. To address the prob-
lem, previous approaches have mined likely API usage patterns
from software systems that reuse APIs. Some approaches [15–18,
23, 25] exploit the static program information extracted from sys-
tem source code, whereas other approaches [4, 5, 27] exploit the
dynamic program information extracted from system executions,
which require setup of runtime environments and availability of
sufficient system tests.

API usage patterns recovered by most of these previous approaches
are in the form of frequent association rules, itemsets, or subse-
quences. Association rules [2,17,18] characterize pairs of API calls
that are often used together without considering their orders. Fre-
quent itemsets [10, 15] characterize sets of API calls that are often
used together without considering their orders. Frequent subse-
quences [22, 26] characterize sequences of API calls that are often
used together while considering their orders. Although these mined
API usage patterns have been shown to be useful to some extent,
they cannot completely capture some useful orderings shared by
APIs, especially when multiple APIs are involved across different
procedures.

To address the issues faced by previous approaches in mining
API usage patterns, we develop a framework to automatically ex-
tract frequent partial orders among user-specified APIs, directly
from the source code (API client code). Frequent partial orders
summarize important ordering information from sequential patterns
(common API usage scenarios). Frequent partial orders provide
more information about the ordering than the sequential patterns
while providing more general and more concise API ordering infor-
mation. The mined partial orders among APIs can assist the correct
and effective API reuse by the programmers. The partial orders can
also assist in inferring API ordering rules (specifications) that gov-
ern the secure and robust operation of the system using these APIs.

This paper makes the following main contributions.
Static API Trace Generation: We adapt a model checker to

generate interprocedural control-flow-sensitive static traces related
to the APIs of interest. Our techniques allow mining of open source
systems that reuse the APIs of interest without requiring environ-
ment setup for system executions or availability of sufficient system
tests.

Scenario Extraction: A single static trace from the model checker
might involve several API usage scenarios, being often interspersed.
We present an algorithm to separate different usage scenarios from
a given trace, so that each scenario can be fed separately to the
miner.

API Partial Order Mining: We present novel applications of a
miner in mining partial orders among APIs from static API traces.



#include <abcdef.h>

void p ( ) { b ( ); c ( ); }

void q ( ) { c ( ); b ( ); }

void r ( ) { e (  ); f ( ); }

void s ( ) { f ( ); e ( ); }

int main ( )

{

int i, j, k;

a ( );

if ( i == 1)

{

f ( ); e ( ); c ( );

exit ( );

}

else

{

if ( j == 1 ) 

p ( );

else

q ( );

d ( );

if ( k == 1 )

r ( );

else

s ( );

}

}
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2  a b c d e f
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(b) Static program traces

(c) Frequent sequential patterns

(d) Frequent partial order R(a) Example code

Figure 1: A simple example illustrating our framework

The mined partial orders provide important, useful API ordering
information that is not provided by patterns mined by previous ap-
proaches.

Specification Extraction: We present an algorithm to effec-
tively extract real specifications from mined partial orders. Our
approach separates real specifications (that are universally true for
a given set of APIs) from frequent partial orders that are only spe-
cific to the clients used for mining, thereby reducing the number of
reported false specifications.

Implementation and Experience: We describe an implemen-
tation of the framework by adapting a publicly available model
checker called MOPS [7] and adopting a miner called FRECPO [19].
We apply our framework on 72 X11 clients with 200K LOC in to-
tal and compare our approach with an existing specification miner.
Our results highlight the unique benefits of our approach and show
that the extracted API partial orders are useful in assisting effective
API reuse and checking.

The remainder of this paper is structured as follows. Section 2
starts with an example that motivates our framework. Section 3 in-
troduces the formal framework for mining API partial orders, and
describes the various components in our framework in detail. Sec-
tion 4 presents the implementation details. Section 5 reports our
evaluation experience. Section 6 discusses related work. Section 7
discusses limitations of our framework and future work. Finally,
Section 8 concludes.

2. EXAMPLE
This section illustrates a partial order that our framework extracts

for a given set of related APIs, directly from the source code. Fig-
ure 1(a) shows a simple code snippet in C that uses APIs from a
header file <abcdef.h>, namely, a, b, c, d, e, and f. Suppose that
a programmer wants to investigate whether there are some usage
orders among the APIs from <abcdef.h>.

Figure 1(b) shows five program traces involving these APIs along
different possible control paths in the program. Given a support
threshold min_sup, a sequential pattern is a sequence s that ap-
pears as subsequences of at least min_sup sequences. For exam-
ple, let min_sup be 4. The four sequences shown in Figure 1(c)
are sequential patterns since they are subsequences of Sequences 2,

3, 4, and 5 (all except a → f → e → c). Sequential patterns cap-
ture the frequent call patterns shared by program traces. However,
the four sequential patterns cannot completely capture the ordering
shared by APIs a, b, c, d, e, and f. It is easy to see that the par-
tial order R shown in Figure 1(d) is shared by the four program
traces. We can make the following interesting observations from
the partial order R:

• The partial order R summarizes the four sequential patterns:
the four sequential patterns are paths in the partial order R.
Note that the only sequences with a support greater than 4
are a→ f, a→ e, and a→ c, each with a support of 5.

• The partial order R provides more information about the or-
dering than the sequential patterns. For example, R indi-
cates that b and c are called in any order, but often before d.
Hence the mined partial order R effectively summarizes the
sequential patterns among APIs and provides more general
and more concise API ordering information to the program-
mers.

• If the min_sup is sufficiently high, the partial order pro-
vides strong hints on likely specifications that should be true
for the correct operation of the program. For example, if the
partial order R was mined from traces with a very high sup-
port, then with high confidence, “d should always follow a

along any path” is a specification that should be satisfied by
all programs using the APIs a and d.

This example motivates the idea of using frequent partial orders
to effectively summarize sequential patterns among APIs and pro-
vide more general and more concise ordering information to the
programmers. However, there are many issues not obvious in the
motivating example, and these issues shall be addressed throughout
the paper. (1) In general, if T is the set of all traces along all execu-
tion paths in the program, then T is an uncomputable set. Further-
more, the length of a trace can be infinite. (2) Some of the generated
traces might be infeasible in the program. (3) Along some program
paths, APIs might not be used correctly. (4) A given trace might
have more than one scenario involving APIs from <abcdef.h>,
being all jumbled up (for example, a → a → b → c could be two
separate scenarios, a → b and a → c, instead of one). Each sce-
nario has to be extracted separately before being fed to the miner.
(5) Partial orders with high support might just be a frequent us-
age pattern specific to the client code, and not a specification. We
have to separate real specifications from false ones. We address
these issues in the next section, where we present our framework
for mining partial orders from static program traces.

3. FRAMEWORK
In this section, we formalize the notions introduced in the pre-

vious section. We define partial order, total order, and frequent
closed partial order (FCPO) [19], and formalize the problem of
mining frequent closed partial orders from program traces. After
the necessary foundations have been laid, we present the various
components of our framework: trace generator, scenario extractor,
and specification extractor. We conclude this section by providing
a complexity analysis of our framework components.

3.1 Partial and Total Order
A partial order is a binary relation that is reflexive, antisymmet-

ric, and transitive. A total order (or called linear order) is a partial
order R such that for any two items x and y, if x 6= y then either
R(x, y) or R(y, x) holds.
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Figure 2: A partial order and its transitive reduction
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Figure 3: Four orders R1 ⊃ R2 ⊃ R3 ⊃ R4

A partial order R can be expressed in a Directed Acyclic Graph
(DAG): the items are the vertices in the graph and x → y is an edge
if and only if (x, y) ∈ R and x 6= y. We also write an edge x → y

as (x, y) or xy. For example, Figure 2(a) shows a partial order R,
which has 13 edges.

Since a partial order is transitive, some edges can be derived from
the others and thus are redundant. For example, in Figure 2(a), edge
a → d is redundant given edges a → b and b → d. Generally, an
edge x → y is redundant if there is a path from x to y that does not
contain the edge. For a partial order R, the transitive reduction of
R can be drawn in a Hasse diagram: for (x, y) ∈ R and x 6= y, x

is positioned higher than y; edge x → y is drawn if and only if the
edge is not redundant. Figure 2(b) shows the transitive reduction
of the same partial order R in Figure 2(a). The transitive reduction
has only 6 edges. For an order R, the transitive reduction may have
much fewer edges.

In this paper, we draw a partial order in a Hasse diagram, i.e.,
its transitive reduction, and omit the isolated vertices. For exam-
ple, Figure 3 shows four partial orders R1, R2, R3, and R4; R1 is
further a total order.

Let V be a set of items, which serves as the domain of our string
database. A string defines a global order on a subset of V . A string
can be written as s = x1 · · ·xl, where x1, . . . , xl ∈ V . l is called
the length of string s, i.e., len(s) = l. For strings s = x1 · · ·xl and
s′ = y1 · · · ym, s is called a super-string of s′ and s′ a sub-string of
s if (1) m ≤ l and (2) there exist integers 1 ≤ i1 < · · · < im ≤ l

such that xij
= yj (1 ≤ j ≤ m). We also say s contains s′.

For a string database SDB (set of strings), the support of a string s,
denoted by sup(s), is the number of strings in SDB that are super-
strings of s.

The transitive closure of a binary relation R is the minimal tran-
sitive relation R′ that contains R. Thus, (x, y) ∈ R provided that
there exist z1, . . . , zn such that (x, z1) ∈ R, (zn, y) ∈ R, and
(zi, zi+1) ∈ R for all 1 ≤ i < n.

The total order defined by string s = x1 · · ·xl can be written
in the transitive closure of s, denoted by C(s) = {(xi, xj)|1 ≤
i < j ≤ l}. Note that, in the transitive closure, we omit the trivial
pairs (xi, xi). For example, for string s = abcd, len(s) = 4. The
transitive closure is C(s) = {(a, b), (a, c), (a, d), (b, c), (b, d),
(c, d)}. Here, we omit the trivial pairs (a, a), (b, b), (c, c), and
(d, d).

The order containment relation is defined as, for two partial or-
ders R1 and R2, if R1 ⊂ R2, then R1 is said to be weaker than
R2, and R2 is stronger than R1. Intuitively, a partially ordered set
(or poset for short) satisfying R2 will also satisfy R1. For example,
in Figure 3, R4 ⊂ R3 ⊂ R2 ⊂ R1. Note that R4 covers fewer
items than the other three partial orders. Trivially, we can add the
missing items into the DAG as isolated vertices so that every DAG
covers the same set of items. To keep the DAG simple and easy to
read, we omit such isolated items.

3.2 Frequent Closed Partial Orders (FCPO)
A string database SDB is a multiset of strings. For a partial or-

der R, a string s is said to support R if R ⊆ C(s). The support of

R in SDB, denoted by sup(R), is the number of strings in SDB

that support R. Given a minimum support threshold min_sup, a
partial order R is called frequent if sup(R) ≥ min_sup. Follow-
ing the related definitions and the order containment relation, we
have the following result: for a string database SDB and partial
orders R and R′ such that R′ ⊂ R, we have sup(R′) ≥ sup(R).
Therefore, if R is frequent, then R′ is also frequent. To avoid the
triviality, instead of reporting all frequent partial orders, we can
mine the representative ones only.

Let us consider the program traces in Figure 1 again. The four se-
quential patterns can be regarded as frequent partial orders, which
are supported by Traces 2, 3, 4, and 5. As discussed before, given
that the partial order R is also supported by Strings 2, 3, 4, and
5, the four sequential patterns as frequent partial orders are redun-
dant. There does not exist another partial order R′ such that R′ is
stronger than R in Figure 1 and is also supported by Strings 2, 3,
4, and 5. In other words, R is the strongest one among all frequent
partial orders supported by Strings 2, 3, 4, and 5. Thus, the par-
tial order R is not redundant and can be used as the representative
of the frequent partial orders supported by Strings 2, 3, 4, and 5.
Technically, R is a frequent closed partial order.

A partial order R is closed in a string database SDB if there
exists no partial order R′ ⊃ R such that sup(R) = sup(R′). A
partial order R is a frequent closed partial order if it is both fre-
quent and closed. We next formalize the process of mining FCPOs
from program traces.

3.3 Formalizing FCPO Mining from Program
Traces

Informally, our framework mines FCPOs for the APIs specified
by the user from the program source code. Our framework ad-
dresses the following problems:

• Generating sequences of API invocations along different pro-
gram paths. These sequences are stored as a string multiset
database. However, generating all traces along all execution
paths is an uncomputable problem and a trace can be of infi-
nite size. Furthermore, a generated trace can be infeasible.

• Finding the complete set of frequent closed partial orders
from the API sequence database with respect to a minimum
support threshold min_sup.

Formally, let Σ be the set of valid program statements in the
given program source code. Let A be the set of APIs specified by
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the user. A trace t ∈ Σ∗, a sequence of statements executed by a
path p, is feasible if path p is feasible in the program. Let T⊂Σ∗

be the set of all feasible traces in the program. To simplify the def-
initions, let us assume that all APIs in A are empty methods, do
not take any arguments, and return void

1. For a given t∈T , let
A(t)∈A∗ be the API invocations along the trace t expressed as a
string. A(t) can be an empty string if t does not have any invoca-
tion of APIs from the set A. Let T ′⊆T be the set of all feasible
traces such that if t∈T ′, A(t) is not empty. However, the set T ′

is uncomputable and t∈T ′ can be of infinite size. Our framework
initially does the following steps:

• Generate the computable approximation of T ′ from the pro-
gram and extract A(t) for all t in the approximate set. The
extracted A(t)’s are stored in a string database, say, V .

• Extract the set of FCPOs among APIs in A from V , with
respect to a minimum threshold min_sup.

The high-level overview of our framework is shown in Figure 4.
Our framework has three main components: trace generator, sce-
nario extractor, and specification extractor. The user specifies a set
of APIs from which Triggers (explained in Section 3.4) are gener-
ated. The Triggers are then used with push-down model-checking
for trace generation. This process also recommends more APIs
related to the user-specified set of APIs. The scenario extractor
extracts various API scenarios (explained in Section 3.5) from the
traces, which are then fed to a FCPO miner [19]. The mined partial
orders are used by the specification extractor to output specifica-
tions. Each process is described in detail in the subsections below.
We first explain the process of trace generation.

3.4 Trace Generation
We first briefly summarize the Push-Down Model Checking (PDMC)

process [6,9], which we adapt for trace generation. To generate API
invocation sequences along different program paths, we introduce

1By assuming that APIs are empty methods that do not take any
arguments and return void, we restrict the program statements re-
lated to APIs from A in the program to only direct API invocations.
If this is not the case, for a given API, say a, we have to consider
all the program statements that affect and are affected by a by some
data flow dependencies. For example, if we have i = a(j); if

(i != NULL ) b(i);, then the program statements if (i !=

NULL) and b(i) are related to a. We relax this assumption to a
certain extent later in the paper by incorporating simple data flow
analysis.

start aCalled

end1

end2

a

b

c

Figure 5: A property FSM. end1 and end2 are final states

a1Called end
x

start
e

a1, a2, a3, … , ak

Figure 6: Trigger FSM that accepts the regular language

e(a1 + a2 + ... + ak)∗x

the concept of Triggers. Finally, we discuss the soundness of our
approach.

3.4.1 Push-Down Model Checking (PDMC)

Informally, given a property represented using a Finite State Ma-
chine (FSM), PDMC [9] checks to see if there is any path in the
program that puts the FSM in its final state. For example, if the
property FSM is specified as shown in Figure 5, PDMC reports
all program paths in which a is followed by either b or c. PDMC
models the program as a Push Down Automata (PDA) and the prop-
erty as an FSM. PDMC then combines the program PDA and the
property FSM to generate a new PDA; the new PDA is then model
checked to see if any final configuration in the PDA is reachable.
A configuration of a PDA P is a pair c = 〈q, ω〉, where q is the
state in which the PDA is in and ω is a string of stack symbols in
the PDA stack at that state. A configuration is said to be a final
configuration, if q belongs to the set of final states in the FSM. If
a final configuration is reachable, PDMC outputs the paths (in the
program) that cause the resultant PDA to reach this final configura-
tion. The resulting trace can either be feasible or infeasible because
of data-flow insensitivity (being incomplete). However, if there is a
program trace that puts the FSM in the final state, PDMC reports it
(being sound). We next describe our Triggers technique that adapts
PDMC to generate API invocation sequences in a program.

3.4.2 Triggers

Our goal is to generate the set T ′⊆T from the program and ex-
tract A(t) for all t∈T ′, A(t)∈A∗, A = {a1, a2, a3, ..., ak}, where
ai, 1≤i≤k, are the APIs specified by the user. Let us assume that
we give the FSM shown in Figure 6 to PDMC to be verified against
a program P . The FSM in Figure 6 accepts any string of the form
e(

∑
i=1,2,...,k

ai)
∗x, where e and x are any two points in the pro-

gram. Given this Trigger FSM, PDMC outputs all program paths
that begin with e and end with x in the program. By setting e as
the entry point of the main routine and x as any exit point in the
program, we can collect sequences of API along paths that begin at
the main routine and ends at exit points.

Let B ⊆ Σ∗ be all sequences of program statements in P that
put the FSM in Figure 6, say F, in its final state. As defined earlier,
T⊂Σ∗ is the set of all feasible traces in the program, in this case,
P . If T∩B = φ, then the final state of F is never reached. Since B



and T are arbitrary languages and T is uncomputable, deciding if
T∩B = φ is an undecidable problem. Hence PDMC restricts the
form of B and T by modeling B to be a regular language accepted
by F (B = L(F)), and T as a context-free language accepted by
a PDA P (of program P). In general, we have T⊆L(P), which
then implies T∩B⊆L(F)∩L(P). Consequently, if L(F)∩L(P) is
empty, T∩B is definitely empty. However, if L(F)∩L(P) is not
empty, T∩B could either be empty or not. Since L(F) is a regular
language and L(P) is a context-free language, L(F)∩L(P) can be
captured by a PDA, say P, and hence the final state of F is reached
if and only if the PDA P accepts the empty language. There are
efficient algorithms to determine if the language accepted by the
PDA is empty [13]. Once P is constructed, PDMC checks to see if
any final configuration is reachable in P. Chen and Wagner [7] use
the preceding analysis to adapt PDMC for light-weight property
checking. We use the preceding analysis for static trace generation.
We call the FSMs such as the one used in Figure 6 as Triggers. By
using Triggers, we have achieved two purposes:

• We have produced Tex, the set of traces in the program that
begin with e and end with x instead of T ′⊆T . However,
some traces can still be infeasible in the program because of
data-flow insensitivity.

• The knowledge of A = {a1, a2, a3, ..., ak} allows us to ex-
tract A(t) from any t∈Tex.

3.4.3 Soundness

The consequence of using a context-free language for T intro-
duces imprecision but retains the soundness of analysis. Infeasible
traces might occur (being incomplete) because of data-flow insen-
sitivity of the PDMC process, but all the program traces that put the
FSM in its final state are reported (being sound). Since determining
if T∩B = φ is undecidable, no tool can be sound and complete at
the same time. Consequently, there could be some infeasible API
sequences in the database being fed to the FCPO miner. For exam-
ple, in Figure 1, the variable i might never assume value 1; there-
fore, the trace a → f → e → c is infeasible in the program. Also,
along some feasible paths, the implicit API ordering rules might
be violated and APIs could be used incorrectly (producing buggy
traces with actual errors). Hence the API sequence database might
contain certain wrong API sequences. However, we assume that
most programs that we analyze are well written. Hence, we expect
only few feasible paths to be buggy, if at all. We expect to han-
dle infeasible and buggy traces by selecting appropriate min_sup

value. The traces generated by PDMC with Triggers can still be
of infinite size (for example if there is a loop). We address this
problem in Section 4.

To simplify the definitions, we had assumed in Section 3.3 that
the APIs are empty methods, do not take any arguments, and re-
turn void. If we relax this assumption, then we should also con-
sider those statements in the program that affect and are affected
by a given API, say a. For example, if we have i = a(j); if

(i != NULL ) b(i);, then the program statements if (i !=

NULL) and b(i) are related to a. We should include such state-
ments in the API sequence database before being fed to the FCPO
miner. A possible API specification (a path in the partial order)
could look like “the return value of a should always be compared
to NULL before being passed to b”. In Section 4, we implement
simple data flow extensions to the PDMC process to include a few
such statements in the API sequence database. We do not imple-
ment a potentially expensive pointer or alias analysis to consider all
such statements. We intend to explore data-flow-sensitive model-
checkers in future work for trace generation.

3.5 Scenario Extraction
A single static trace from the model checker might involve sev-

eral API usage scenarios, being often interspersed. We have to sep-
arate different usage scenarios from a given trace, so that each sce-
nario can be fed separately to the miner. A naive algorithm for sce-
nario extraction would be to remove all duplicate APIs in a given
trace and feed the resulting API sequence as a single scenario to the
miner. But most traces have multiple scenarios around the same set
of APIs. Furthermore, these different scenarios represent different
usage patterns among the API set. The naive algorithm of deleting
duplicates lead to loss of API ordering information and a drastic
decrease in the number of scenarios fed to the miner.

We develop a refined scenario extraction algorithm is based on
identifying producer-consumer chains (PC-chains) among APIs in
the trace. The algorithm (henceforth called as the PC-Chain algo-
rithm) is based on the assumption that related APIs have some form
of data dependencies between them such as a producer-consumer
relationship. In short, the PC-Chain algorithm first identifies PC-
chains among APIs in traces and outputs them as scenarios. Iso-
lated partial orders are then constructed among APIs in related
PC-chains. Finally, partial orders are computed between heads of
PC-chains, and these partial orders form partial order clusters. As
an example, consider three sets of APIs (a, b, c, d), (e, f, g), and
(h, i, j). The first API in each set produces a value that is consumed
by the remaining APIs in the set. Figure 7(a) shows two traces pro-
duced by the model checker. The APIs are all interspersed and
there are three scenarios in each trace. The arrows in Figure 7(a)
show the PC-chains among related APIs. Figure 7(b) shows six dif-
ferent scenarios extracted from two traces. Figure 7(c) summarizes
the six different API scenarios compactly as three isolated partial
orders. Finally, Figure 7(d) merges the isolated partial orders into
one big partial order. Algorithm 1 summarizes the PC-Chain sce-
nario extraction algorithm.

Input: static traces
Output: partial order clusters
Identify all producers;
foreach producer do

Identify consumers;
Construct PC-chain;
Output PC-chain as a scenario;

end

Construct isolated partial orders from scenarios;
Collect the head APIs from isolated partial orders;
Construct partial order among head APIs to form partial order
clusters;
return patial order clusters;

Algorithm 1: The PC-Chain algorithm for scenario extraction

3.6 Mining FCPOs
To mine the complete set of FCPOs, FRECPO [19] searches a

set enumeration tree of transitive reductions of partial orders in a
depth-first manner. In principle, a partial order can be uniquely
represented as the set of edges in its transitive reduction. Moreover,
all edges in a set can be sorted in the dictionary order and they can
be written as a list. Therefore, we can enumerate all partial orders
in the dictionary order. A set enumeration tree of partial orders can
be formed: for orders R1 and R2, R1 is an ancestor of R2, and R2

is a descendant of R1 in the tree if and only if the list of edges in
R1 is a prefix of the list of edges in R2. By a depth-first search of
the set enumeration tree of transitive reductions of partial orders,
FRECPO does not miss any frequent partial order.

To be efficient and scalable, FRECPO prunes the futile branches



Figure 7: Scenario extraction example

and narrows the search space as much as possible. Basically, three
types of techniques are used. First, FRECPO prunes infrequent
items, edges, and partial orders. If a partial order R in the set enu-
meration tree is infrequent, then the partial orders in the subtree
rooted at R, which are stronger than R, cannot be frequent. The
subtree can be pruned. Second, FRECPO prunes forbidden edges.
Not every edge can appear in the transitive reduction of a partial
order. For example, if every string containing ac also contains ab

and bc, then edge ac should not appear in the transitive reduction
of any frequent closed partial order. Edge ac is called a forbidden
edge. Removing the forbidden edges can also reduce the search
space. Finally, FRECPO extracts transitive reductions of frequent
partial orders directly and does not need to compute the transitive
reductions.

3.7 Specification Extraction
One of the major problems with specification miners is the num-

ber of false specifications that they produce. False specifications
lead to false positives, which drastically decrease the programmer
productivity. Our tool learns frequent partial orders from program
traces. But frequent partial orders might just be usage patterns spe-
cific to the analyzed client code, and not a universal specification.
Hence we need to separate real specifications from frequent usage
patterns that are only specific to the analyzed client code. We pro-
pose an algorithm to address this issue (henceforth called as the
Mine-Verify algorithm). The Mine-Verify algorithm uses two dis-
joint sets (randomly split) of clients using the same set of APIs.
The first set is used for mining specifications (henceforth, we call
this set of clients as mine clients). The specifications mined by our
framework, by analyzing mine clients, are verified against another
set of clients (we call this set of clients as verify clients) using a
static compile-time model checker. This process of mining specifi-
cations from one set of client programs (mine clients) and verifying
it against another set (verify clients) enables our tool to reduce the
number of mined false specifications. With a high probability, a
real specification mined from mine clients will either be satisfied
by verify clients (specification compliance) or violated a few times
(bugs). This mechanism is based on an assumption [4, 8, 27] that
a client generally uses an API or a set of APIs correctly most of
the times. On the other hand, if a specification mined from mine
clients causes too many violations in verify clients, we flag the
mined specification as a possible frequent usage pattern; frequent

usage patterns are not universal API specifications. We illustrate
the Mine-Verify algorithm in Section 5. Algorithm 2 summarizes
the Mine-Verify algorithm.

Input: Two disjoint (randomly split) set of clients, mine

clients and verify clients, user-specified APIs
Output: Potential Real specifications
Mine specifications from mine clients;
Let S = (S1, S2, ...Sn) be the specifications mined;
i = 1;
T = user specified threshold (a small number);
while i <= n do

Check Si against verify clients;
Let V = Number of violations;
if V == 0 then

Flag Si as a real specification;
end

else if V > 0 AND V <= T then
Flag Si as a real specification;
Potential bugs found;

end

else if V > T then
Flag Si as NOT a specification;

end

i + +;
end

Algorithm 2: The Mine-Verify algorithm for finding real speci-
fications

3.8 Complexity
PDMC constructs PDA P from the program Control Flow Graph

(a directed graph G = (N, E)) where each node represents a pro-
gram point and each edge represents a valid program statement.
PDMC takes O(E) time to construct the PDA P from the CFG G,
takes O(E × |Q|) (Q is the number of states in the FSA) for com-
puting P, the product of FSA F and PDA P, takes O(|Q|2×E) for
deciding if the PDA P is empty and O(|Q|2) × lg|Q| × E × lgN

for backtracking. The derivations are shown by Chen [6].
It has been shown that the problem of counting the complete set

of frequent closed partial order is #P-complete. In other words,
FRECPO is of exponential complexity with respect to |A|. How-
ever, FRECPO is pseudo-linear. That is, the runtime is linear with
respect to the number of frequent closed partial orders in the data
set. In practice, the number of significant frequent closed partial or-
ders of APIs for a program is often small. Thus, it is highly feasible
and effective to use FRECPO in our application context.

4. IMPLEMENTATION
To generate static traces, we adapted a publicly available model

checker called MOPS [7]. To mine FCPOs, we adopted an FCPO
miner called FRECPO [19]. The process of generating error traces
from a final configuration 〈q, ω〉 (ω is the stack content contain-
ing a list of return addresses) of PDA P is called backtracking

[6]. With the knowledge of a user-specified set of APIs, A =
{a1, a2, a3, ..., ak}, our framework extracts A(t) from any trace
t output by MOPS. The PDMC process outputs a graph in which
certain paths map to violation paths in the program [6]. Multiple
program paths (and hence graph paths) can violate a given property
specified by a FSM (such as the one shown in Figure 5), and many
such violations could be similar because they indicate the same pro-
gramming error. So instead of reporting all program traces that vi-
olate a given property, the MOPS model checker clusters similar
traces and reports the shortest trace as a candidate trace for each
violation. This mechanism would save the user’s time considerably



Table 1: X11 client programs used in our evaluation
appres beforelight bitmap dpsexec dpsinfo editres glxgears glxinfo

iceauth ico listres luit makepsres oclock proxymngr rstart

setxkbmap showfont smproxy texteroids twm viewres x11perf xauth

xbiff xcalc xclipboard xclock xcmsdb xconsole xditview xdpyinfo

xev xeyes xf86dga xfd xfindproxy xfontsel xfsinfo xfwp

xgamma xgc xhost xinit xkbevd xkbprint xkbutils xkill

xload xlogo xlsatoms xlsclients xlsfonts xmag xman xmessage

xmh xmodmap xpr xrandr xrdb xrefresh xset xsetmode

xsetpointer xsetroot xstdcmap xterm xtrap xvidtune xvinfo xwud

Table 2: Call frequencies for selected X11 APIs
XCreateGC 56

XOpenDisplay 32

XCreateWindow 26

XOpenIM 4

XQueryBestSize 2

XFreeModifiermap 1

because the user has to review each trace manually. However, for
our purposes, given a Trigger, we need all the traces in the pro-
gram that contain the APIs specified in the Trigger. We modified
the backtracking algorithm of MOPS, wherein, instead of cluster-
ing traces, we consider all program paths that satisfy the Trigger,
and output a random number of traces by random walking the graph
generated by the PDMC process. In our experiments, we specified
a threshold (20 in our experiments) for the number of traces to be
generated from each mine client.

Because the basic MOPS static checker is data-flow insensitive,
it assumes that a given variable might take any value. Therefore, it
assumes that both branches of a conditional statement may be taken
and that a loop may execute anywhere between zero to infinite it-
erations. Data-flow insensitivity causes MOPS to output infeasible
traces. Furthermore, the trace size and the number of traces can be
infinite due to loops. MOPS monitors backtracking and aborts if it
detects a loop. We write extensions to the MOPS pattern match-
ing [7]; these extensions make it possible to track the value of vari-
ables that take the return status of an API call along the different
branches of conditional constructs. For each possible execution
sequence, our extensions associate a value to the variable that is
being tracked using pattern matching. MOPS pattern matching al-
lows our framework to correlate two program statements related
by program variables (as an example, FILE* fp = fopen(...)

and fread(fp) are related through the file pointer variable, fp).
Our extensions enable our framework to mine properties such as “If
API a returns NULL, then API b should always be called along the
NULL path”. Our current implementation does not consider alias-
ing. Hence our framework might miss some traces in which the
API return variables are aliased.

5. EVALUATION
We applied our framework on 72 client programs from the

X11R6.9.0 distribution. The analyzed client programs use APIs
for the X11 windowing system, with roughly 200K LOC in total.
Table 1 lists the X11 client programs used in our evaluation. We
selected X11 client programs because the Inter-Client Communi-
cation Conventions Manual (ICCCM) [21] from the X Consortium
standard describes several rules for how well-behaved programs
should use the X11 APIs, serving as an oracle. For each experi-
ment, we randomly choose 36 clients as mine clients. The remain-
ing 36 clients are verify clients.

Roughly, 700 distinct X11 APIs were used across 72 client pro-
grams. For each X11 API, we calculated the number of call sites
across all client programs. Table 2 shows the call site frequencies

S2 endstart
main_entry main_exit

S1
XOpenIM

e e

Figure 8: Trigger used to generate functions, APIs, and expres-

sions related to XOpenIM

for selected X11 APIs. APIs such as XCreateGC, XOpenDisplay,
and XCreateWindow were called quite often (more than 25 times)
among 72 clients. But the usage of APIs such as XOpenIM,
XQueryBestSize, and XFreeModifiermapwere relatively sparse
(less than 5 times) across all the clients. We next present an illus-
trative example of how specifications are mined by our tool around
XOpenIM API. This simple example demonstrates how our tool se-
lects specifications from frequent usage patterns using the Mine-
Verify algorithm. The example also demonstrates how our tool
handles infeasible traces that appear because of the absence of deep
data flow analysis in our model checker.

First, we randomly partition the X11 clients into mine clients and
verify clients. Then we use our tool to generate static traces from
each mine-client program using the Trigger shown in Figure 8. For
the purposes of this illustration and clarity, we pick t = 20 dis-
tinct traces from the resulting trace set. States S1 and S2 in the
Trigger have self transitions on e. e is any function/API invoked
before/after XOpenIM or any expression that uses or defines the re-
turn variable and input parameters of XOpenIM. The Trigger causes
the model checker to output paths (as traces from main_entry

to main_exit) that involve a call to XOpenIM. The traces con-
tain function calls and APIs that are ancestors or descendants of
XOpenIM in the program call graphs of each client that XOpenIM
appears in. The model checker also outputs expressions (in the
program) that share a use-def or def-use relation (we do not con-
sider aliasing) with XOpenIM’s return variable or input parameters
(again, across all clients with a call site to XOpenIM). These traces
are then fed to the partial order miner after scenarios are extracted.
The miner summarizes the traces seen from different program call
graphs (from different mine clients) as a single partial order (for a
given minimum support value, m). Our tool produces all partial or-
ders with support s greater than or equal to m. Our tool then picks
partial orders with a higher support value as likely specifications.
However, a certain frequent usage pattern (not a specification) spe-
cific to the mine clients might be output as a specification. We next
show how the Mine-Verify algorithm can be used to separate real
specifications from false one.

We parsed the traces generated from the Trigger shown in Fig-
ure 8, and picked 5 APIs, including XOpenIM, which frequently ap-
pear in all traces. These APIs were XtDisplay (0), XOpenIM(1),
XGetIMValues (2), XFree (3), and XCloseIM (4). We use number
symbols (in braces) to represent the APIs and we use < xy > to
indicate that API y follows API x. In the extracted partial orders, <



Table 3: Statistics for the specifications mined by our tool
Name Seed Mined Related APIs Extra Specs MV filtered Real FALSE Missed

PrsTransTbl XtParseTranslationTable Yes 2 0 0 0 0 0

XPutImage XPutImage No 5 8 2 4 2 1

XSaveContext XSaveContext Yes 3 3 0 3 0 0

XSetFont XSetFont Yes 2 2 0 2 0 0

14 > (XCloseIM follows XOpenIM) and < 23 > (XFree follows
XGetIMValues) had a support of 8 each, < 01 > (XOpenIM fol-
lows XtDisplay) had a support of 20, and < 12 > (XGetIMValues
follow XOpenIM) had a support of 16. Low support of 8 for < 14 >

was due to the fact that if XOpenIM fails (returning NULL), the en-
closing function returns without calling XCloseIM. The case for
XGetIMValues was similar except that XOpenIM returns NULL on
failure, while XGetIMValues return NULL on success. The inclu-
sion of traces in which APIs fail reduced the support for < 14 >

and < 23 >. However, using the tool developed in our previous
work [1], we can mine interface details (such as return values on
failure) for a given API automatically from the source code. The
mined information can be used to avoid traces in which the APIs
fail (by implementing simple data flow extensions to the model
checker). When this mechanism was used, the support for < 14 >

and < 23 > increased to 18. With the minimum support value of
16/20, the likely specifications were < 01 >, < 12 >, < 14 >,
and < 23 >. We verified these likely properties against verify
clients. < 14 > gave a single violation. This pattern is a specifica-
tion, leading to a bug. < 23 > gave no violation. This pattern is a
specification finding no bug. < 01 > gave a very large number of
violations (we stopped after 10 violations were reported on verify
clients). This pattern is a false specification, which is rejected by
our tool using the Mine-Verify algorithm. Finally, < 12 > gave
no violation with verify clients. This pattern is a false specifica-
tion uncaught by our tool. This false specification is not caught by
our tool because of the limited ways in which XOpenIM was used in
our subjects. In both mine clients and verify clients, all instances of
XOpenIM were followed by XGetIMValues, though it is not neces-
sary. Other APIs such as XSetIMValues can also follow XOpenIM.
We consulted the ICCCM manual to confirm our results.

We manually inspected each trace produced by our tool against
the source code. Of the 20 traces, only one trace was found to be
infeasible. The trace entered the conditional if(!found), even
when the variable found was true. Infeasible traces appear be-
cause of the data-flow-insensitivity of our model checker. We ex-
pect to handle infeasible traces by specifying minimum support val-
ues appropriately in our experiments. We next demonstrate how our
tool can be used to mine specifications around those mined by Am-
mons et al. [5] (for convenience, we call their approach dynamic-
trace miner). We used a minimum support value of 0.8 in our ex-
periments. A mined pattern with more than 3 violations in verify
clients was flagged as a potential usage pattern and was not consid-
ered a specification.

Table 3 summarizes our results. An implementation limitation of
our model checker is that it cannot handle function pointers or call-
backs. Hence, we considered only those X11 specifications mined
by the dynamic-trace miner that do not involve callbacks. The four
specifications from dynamic-trace-miner used in our evaluation are
shown in Column 1 of Table 3. Our first goal was to specify an API
(we call this API the seed API) from the specification mined by
the dynamic-trace miner and check if our tool can mine the same
specification. Column 2 shows the seed API given to our tool. We
could mine all specifications mined by dynamic-trace miner ex-
cept for one (XPutImage) as Column 3 shows. XPutImage re-
quires that the image and graphics context passed to XPutImage

Table 4: Statistics for the specifications mined around

XOpenDisplay

Specifications mined 10

MV filtered 4

Real 5

FALSE 1

Missed 1

API must have been created on the same display. The data-flow
analysis required to mine this specification was not present in the
model checker that we used and hence we missed this specification.

The second goal was to mine specifications among APIs related
to the specified seed, not mined by the dynamic-trace miner. Re-
lated APIs are those APIs that have simple data dependencies with
the seed API. Related APIs either produce a value that the seed
API consumes or consume a value produced by the seed API. Our
approach first gathers the APIs related to the seed API. Column
4 displays number of APIs that are determined by our tool to be
related to the seed API. Then our tool mines frequent usage sce-
narios as partial orders and produces ones with high support as
likely specifications. Specifications learnt around the related API
XOpenDisplay are shown separately later this section because a
very large number of APIs interact with XOpenDisplay. Column
5 shows the number of likely specifications mined by our tool,
around the specification mined by the dynamic-trace miner. Af-
ter running the Mine-Verify algorithm on the specifications mined
by our tool (Column 6), we separate out true specifications (Col-
umn 7) from false specifications (Column 8). As we had prior
knowledge of specifications from the ICCCM manual, we noted
that our tool missed a specification involving XCreateImage, a re-
lated API, owing to data-flow-insensitivity of our model checker
(Column 9).

We next present our results for specifications learnt around the
XOpenDisplay API. XOpenDisplay returns a pointer to the Dis-

play structure that serves as the connection to the X server and that
contains all the information about that X server. XOpenDisplay

connects the application to the X server through TCP or DEC-
net communications protocols, or through some local inter-process
communication protocol. The pointer returned by XOpenDisplay

is consumed by a large number of X11 APIs, scattered across pro-
cedure boundaries. Hence XOpenDisplay makes an interesting
case study for our tool. Figure 9 shows a partial order learnt by our
tool, being a frequent usage scenario. Table 4 shows the statistics
for the specifications learnt by our tool around XOpenDisplay.

6. RELATED WORK
Various mining approaches have been developed to extract API

usage rules or patterns out of source code or execution traces. From
source code, CodeWeb developed by Michail [18] mines associ-
ation rules [2] such as that application classes inheriting from a
particular library class often instantiate another class or one of its
descendants. PR-Miner developed by Li and Zhou [15] uses fre-
quent item set mining [10] to extract implicit programming rules
from source code and detect their violations for detecting bugs.
The tool developed by Williams and Hollingsworth [25] and Dy-
naMine developed by Livshits and Zimmermann [17] mine simple



Figure 9: A usage scenario around XOpenDisplay API as a

partial order. Lower support values produce larger partial or-

ders. Higher support values produce smaller partial orders

(specifications). Specifications are shown with dotted lines.

rules from software revision histories. These rules involve mostly
method pairs. From error-handling code, Weimer and Necula [23]
mine temporal safety rules that involve pairs of API calls. From
source code, Engler et al. [8] also infer API rules that involve pairs
of API calls. Perracotta developed by Yang et al. [27] infers tempo-
ral properties (in the form of pre-defined templates involving two
API calls) from program executions. From source code, MAPO de-
veloped by Xie and Pei [26] mines API usage patterns in the form
of frequent subsequences [22]. Different from the API rules or pat-
terns mined by these previous approaches, our framework mines
more complicated API usage patterns in the form of partial orders
from source code. The mined partial orders provide important, use-
ful API ordering information that is not provided by patterns mined
by previous approaches. Different from most of the preceding ap-
proaches using intra-procedural static program information, our ap-
proach considers the program control flow and hence can mine pat-
terns from APIs being spread across procedural boundaries. In our
evaluation, we observed that most X11 APIs are spread across pro-
cedural boundaries.

LtRules developed by Liu et al. [16] receives a given set of APIs,
creates all possible API usage orders (as FSMs) determined by a set
of pre-defined templates (involving with one or two API calls), and
checks the generated API FSMs against “good” clients by using the
BLAST [11] model checker. The template instantiations that pass
the BLAST test are considered to be specifications. These speci-
fications are used for verifying compliance in other clients. This
technique requires “good” reference test programs and fails to in-
fer properties if reference programs have bugs. In our approach, we
make no assumptions about mine clients and verify clients except
that they are disjoint and randomly split. Our framework generates
Triggers from user-specified APIs instead of concrete properties
like LtRules. As we use mining techniques for pattern inference,
we can still infer properties from buggy programs. In addition, our
mined partial order patterns are beyond the mined patterns speci-
fied by their user-defined, simple property templates.

Kremenek et al. [14] incorporate many disparate sources of ev-

idence and use factor graphs to learn specifications around func-
tions/APIs called very few times in the program. Our approach
learns from multiple static paths (each leading to a trace) that go
through API call sites and works for APIs with very few call sites.
Our tool also outputs APIs and expressions related to the specified
API and learns usage scenarios and specifications among them.

Ammons et al. [4,5] infer API usage properties by observing pro-
gram execution and concisely summarizing the frequent interaction
patterns as probabilistic finite state automaton (PFSA) based on a
PFSA learner [20]. Their approach requires setup of runtime en-
vironments and availability of sufficient system tests that exercise
various parts of the program. Our framework requires only system
source code. In addition, the PFSA learner [20] used by their ap-
proach cannot infer frequent API usage patterns from traces where
other APIs not related to the patterns also occur. Our tool gathers
APIs related to the specified API and learns usage scenarios and
specifications among them. In our evaluation, we showed how our
approach can mine specifications around those mined by their ap-
proach.

A number of approaches [3, 12, 24] have been developed to ap-
ply static analysis or model checking on the API implementation
code to synthesize permissive API usage patterns that are allowed
by the API implementation. Different from these approaches, our
framework analyzes API client code (rather than API implementa-
tion code) and applies a miner on static traces extracted from the
client code. In general, the API usage partial orders mined from
API client code are a subset of permissive API usage patterns al-
lowed by API implementation code. Our mined API usage patterns
may provide more guidance (with a focused set of commonly ob-
served API usage patterns) to the programmers in reusing APIs.

7. DISCUSSION AND FUTURE WORK
The model checker used in our framework is data-flow-insensitive.

This limitation leads to infeasible traces. In our experiments, we
handled infeasible traces by specifying support values appropri-
ately. However, a large number of infeasible traces might lead to
false specifications that might not be caught by the Mine-Verify al-
gorithm. In our experiments, the number of generated traces were
in hundreds (both intra- and inter-procedural) and it was not worth-
while to manually inspect each trace against the source code to de-
termine whether the trace was feasible or not. Hence we have not
quantified the actual number of infeasible traces in our evaluation.
Instead, in our evaluation, we measured the number of real and
false specifications mined by our tool, using the ICCCM manual as
oracle. In future work, we plan to explore the utility of data-flow-
sensitive model checkers such as BLAST [11] for trace generation.
However, a downside of using data-flow-sensitive model checkers
for trace generation is that they are generally not scalable. The data-
flow-insensitive model checker adapted in our experiments, MOPS,
is scalable and was used to verify code bases as large as the entire
Linux distribution (30M LOC). The model checker that we used
does not handle function pointers and callbacks. Hence we could
not mine X11 specifications that involve callbacks. Finally, the
FCPO miner employed in our framework does not handle duplicate
strings. We handled this implementation limitation by appropri-
ately modifying the scenario extraction algorithm. In future work,
we plan to apply PFSA (Probabilistic Finite State Automata) learn-
ers [20] on the static traces generated by the model checker. As
PFSAs allow loops unlike partial orders, we expect to mine inter-
esting classes of properties beyond those mined in our experiments.
Although we have applied our framework on clients written in C,
the basic idea is applicable to even object-oriented languages such
as Java and C#.



8. CONCLUSIONS
Usage patterns and ordering rules among APIs are often not doc-

umented by API developers. In this paper, we presented a frame-
work to automatically extract usage scenarios among user-specified
APIs as partial orders, directly from API client code. Specifications
were extracted from the frequent partial orders using our Mine-
Verify specification extraction algorithm. We adapted a compile-
time model checker to generate interprocedural control-flow-sensitive
static traces related to the APIs. From the static traces, our sce-
nario extraction algorithm extracted different API usage scenarios,
which were fed to a miner. The miner summarized different us-
age scenarios as compact partial orders, from which specifications
were extracted. We applied our framework on 72 X11 clients with
200K LOC in total and compared our approach with an existing
specification miner. Our results highlighted the unique benefits of
our approach and showed that the extracted API partial orders are
useful in assisting effective API reuse and checking.
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