
1

Consensus-based Ranking of Multi-valued
Objects: A Generalized Borda Count Approach

Ying Zhang1 Wenjie Zhang1 Jian Pei2 Xuemin Lin1 Qianlu Lin1 Aiping Li3
1 The University of New South Wales , {yingz,zhangw,lxue, qlin}@cse.unsw.edu.au

2 Simon Fraser University, jpei@cs.sfu.ca
3 National University of Defense Technology, apli1974@gmail.com

Abstract—In this paper, we tackle a novel problem of ranking multi-valued objects, where an object has multiple instances in a
multidimensional space, and the number of instances per object is not fixed. Given an ad hoc scoring function that assigns a score
to a multidimensional instance, we want to rank a set of multi-valued objects. Different from the existing models of ranking uncertain
and probabilistic data, which model an object as a random variable and the instances of an object are assumed exclusive, we have
to capture the coexistence of instances here. To tackle the problem, we advocate the semantics of favoring widely preferred objects
instead of majority votes, which is widely used in many elections and competitions. Technically, we borrow the idea from Borda Count, a
well recognized method in consensus-based voting systems. However, Borda Count cannot handle multi-valued objects of inconsistent
cardinality, and is costly to evaluate top-k queries on large multidimensional data sets. To address the challenges, we extend and
generalize Borda Count to quantile-based Borda Count, and develop efficient computational methods with comprehensive cost analysis.
We present case studies on real data sets to demonstrate the effectiveness of the generalized Borda Count ranking, and use synthetic
and real data sets to verify the efficiency of our computational method.

Index Terms—Multi-valued Objects, Consensus-based Ranking

✦

1 INTRODUCTION

In several applications, such as analyzing economic
data, data is often modeled as multi-valued objects.
For example, to compare the household income among
several cities, we often randomly collect the household
income of a set of individuals as samples from each city.
Then, cities are compared using the sample sets. In this
case, each city is represented as a multi-valued object,
each value, also known as an instance, being a sample.
Another example is the evaluation of the research groups
where each research group is a multi-valued object, and
the teaching and researching performance evaluations of
each staff correspond to one instance. Due to various
factors, such as the different availability of samples in
different cities, the number of samples per city is not
fixed. Similarly, the sizes of two research groups may be
different. According to the significance of the instances,
e.g., the size of a family and the position of a staff, the
instances may carry different weights.
As ranking is an essential analytic method, it is natural

and fundamental to investigate how to rank a set of
multi-valued objects. To the best of our knowledge, how-
ever, there is no existing work addressing this important
problem systematically. One may think we may sim-
ply rank multi-valued objects as uncertain/probabilistic
data. However, the models of multi-valued objects and
uncertain/probabilistic ones are fundamentally different.
All instances of an uncertain/probabilistic object are
assumed exclusive – only up to one instance can appear
at a time [23]. Therefore, the uncertain objects can be
ranked based on the possible world semantics. In contrast,

all instances of a multi-valued object are assumed co-
existing, and hence we cannot rank the multi-valued
objects by uncertain object models. Appendix C provides
the detailed introduction for the uncertain object model
and discussion of the difference between the uncertain
object model and the multi-valued object model. More-
over, the existing methods, such as expected value, me-
dian and quantile, summarize the multiple instances of
an object using an aggregate function that tries to capture
the central tendency (i.e., the majority) of an object, and
then rank objects according to the aggregates. We argue
that majority-based ranking may not be appropriate for
multi-valued objects. Instead, we propose a consensus-
based ranking approach, which prefers objects widely
ranked high, serves the task of ranking multi-valued
objects better.

1

A
B

C

1000

100

20

10

50

500

2 3 4 5

Median

I
n
c
o
m
e

(
K
)

Samples

Fig. 1. A synthesized data set in Example 1

Example 1 (Motivation). Suppose we want to compare
the annual household income of 3 cities, namely A, B
and C. Each city is modeled as a multi-valued object

Digital Object Indentifier 10.1109/TKDE.2012.250 1041-4347/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

and has 5 instances (with the same weight) whose in-
comes are shown in Fig 1 where instances of each ob-
ject are sorted in descending order based on their incomes.
Particularly, we have A={1000K, 30K, 15K, 10K, 5K},
B={400K, 100K, 40K, 20K, 15K}, and C={60K ,52K ,50K ,
15K , 12K}. To rank the 3 cities, one may calculate the
average income for each city, and then sort the cities on
average income. It is well known that the average income
based ranking is sensitive to the outliers. In the example,
A is ranked the first because its rank is boosted by the first
sample which has much higher income, although the remaining
of the samples have very low incomes. Another alternative
is to rank cities based on their φ-quantile income where
0 < φ ≤ 1. The quantile based approach is widely employed
in various literatures to summarize the distributions [18].
However, a single quantile (e.g., median) cannot capture the
score distribution. Moreover, it is difficult for users to set a
proper φ value and the rank of a city may vary dramatically
regarding different φ values. In the example, B is ranked the
1st, the 2nd and the 3rd positions when φ equals 0.5 (median),
0.3 and 0.1 respectively.

Observe that a single φ value cannot capture the score
distributions of the multi-valued objects, in the paper we
aim to develop a new consensus-based ranking approach
such that the ranking result regarding different φ values
are carefully considered in a comprehensive way. For
each given φ ∈ (0, 1], there is a ranking list according
to the φ-quantile values of the objects. Therefore, it is
intuitive to apply the rank aggregation approaches [11],
[22] (See Section 7.3) to compute the rank of the multi-
valued objects. The main challenge lies in the fact that
the number of possible φ value is infinite, and hence we
cannot directly apply the existing approaches. Due to
its simplicity and popularity, we adopt the Borda Count
(BC for short) method [10] for the rank aggregation.

In this paper, we will develop models and algorithms
for consensus-based ranking of multi-valued objects.
Our idea of consensus-based ranking is an extension of
consensus-based voting. Specifically, we start from Borda
Count, a typical consensus-based voting method. BC and
its variations have been popularly adopted by many pri-
vate organizations and competitions all-over the world
since the 18th century, such as determining awards for
sports in the US (e.g., the NBA MVP selection, rank-
ing players in NCAA), achieving consensus for non-
electoral purpose in Northern Ireland, electing student
governments and officers in a few US universities and
professional societies, and selecting features in OpenGL
Architecture Review Board.

In the BC method [10], suppose there are n voters
and m candidates. Every voter ranks the m candidates
according to her/his preference. Denote by ri = j
(0 ≤ j < m, 1 ≤ i ≤ n) that the i-th voter ranks a
candidate at at the (j + 1)-th position. A candidate has
an average rank

∑n
i=1

ri

n
. The m candidates are ranked

by their average ranks.

Example 2. Regarding the example in Fig. 1, we assume there

are 5 voters and the i-th voter ranks three objects regarding
their i-th samples. Recall that the samples of each multi-
valued object are sorted in descending order of their incomes.
Particularly, the object A is ranked at the 1st, the 3rd, the
3rd, the 3rd and the 3rd positions by the 1st, 2nd, 3rd, 4th
and 5th voters respectively. Consequently, the average rank of
A is 8

5 . Similarly, the average rank of B and C is 5
5 and 2

5
respectively. It is quite intuitive that C has the highest rank
because C is widely preferred. Ranking in this way is based on
the general agreement among the rankings of the 5 positions
instead of central tendency of the income data.

BC by itself is a single-winner approach. To meet the
need of data analytics on large data sets, we propose
to follow the popularly adopted theme of retrieving the
top-k objects. We address several challenges.
First, a straightforward extension of the BC method

can only handle the cases where every object has the
same number of instances. However, in many applica-
tions, different objects may have different cardinalities.
For example, in an economic data analysis, different
cities may likely have different numbers of instances. To
tackle the problem, we develop a generalized BC ranking
model based on quantiles. The central idea is to consider
all possible rankings at different quantiles in deriving the
overall ranking.
Second, more often than not, a multi-valued object as

well as all instances of the object are in a multidimen-
sional space. For example, an economic data set may
contain the information about household income, hous-
ing cost, and family size, which is in a 3-dimensional
space. A user may apply an ad hoc preference function
to calculate a score for each instance of an object, and
then uses those values to rank the objects. Then, how
to rank multi-dimensional, multi-valued objects is far
from trivial. To tackle the problem, we develop several
efficient techniques to compute the top-k objects.
Our principle contributions in this paper can be sum-

marized as follows.
• A novel consensus-based ranking method, named

BC ranking, is proposed for the problem of top k
query on multi-valued objects.

• Effective and efficient algorithms are developed to
compute the top k query based on BC ranks. Ef-
fective pruning techniques are proposed to signif-
icantly improve the performance in terms of CPU
and I/O costs.

• A cost model is proposed to analyze the I/O costs
of the algorithms. Experiments demonstrate that our
cost model is highly accurate.

• We present case studies on real data sets to demon-
strate the effectiveness of the generalized BC rank-
ing. We also use synthetic and real data sets to verify
the efficiency of our computational method.

The rest of the paper is organized as follows. Sec-
tion 2 formalizes the problem. Section 3 discusses how
to reduce the search space. Section 4 presents an efficient
index based top-k query answering algorithm. Section 5
discusses the extension of the techniques and the future

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Notation Meaning

U, V Multi-valued objects
U , S set of multi-valued objects

f preference function
Uf score distribution of U regarding f
u, v instances of the multi-valued objects
n the number of multi-valued objects
m the average number of instances

per object
Umbb minimal bounding box of U

f−(U)(f+(U)) minimal(maximal) score
regarding Umbb and f

fφ(U) φ-quantile score of U regarding f
φγ,f (U) accumulated instance weights of U

regarding score γ and f
an upper bound function of φγ,f (U)

φ̄γ,f (U) regarding score γ and f
rφ,f (U) φ-quantile rank of U regarding f

r(U) Borda Count(BC) based rank of U
φ(u) distinguished quantile value of u

r−(U) lower bound of r(U)
Ustat indicate whether U is an active object

TABLE 1
The summary of notations.

work. Section 6 evaluates the effectiveness, efficiency and
scalability of our techniques. Section 7 introduces the
related work and Section 8 concludes the paper. Due to
space limitation, the following Sections are presented in
the Appendices of the paper in the supplemental file.
Specifically, Appendices are organized as follows. De-
tailed proof for the Theorem 3 is presented in Section A.
Section B proposes a cost model and analyzes the I/O
cost for algorithms proposed in the paper. In Section C,
we introduce the uncertain object model and quantile
rank based approach for uncertain object, as well as the
discussion on the difference between the uncertain object
model and multi-valued object model. This is followed
by some experiments in Section D.
Table 1 summarizes the notations frequently used in

the paper.

2 BACKGROUND
In this paper, a point p in a d-dimensional numerical
space Rd is used to represent a record with d features.
The coordinate value of p on the i-th dimension, denoted
by p.Di, corresponds to the i-th feature value of the
record. A top-k query consists of a preference function
f and a result size k, where f(p) defines a numerical
score for each point p ∈ Rd. Without loss of generality,
we assume that smaller scores are preferred. For simplicity
in presentation, we focus on linear additive functions in
this paper, i.e., f(p) =

∑d
i=1 aip.Di, where ai (ai > 0)

is a weight (1 ≤ i ≤ d). Without loss of generality, we
assume

∑d
i=1 ai = 1. Note that linear additive functions

are among the most popular preference functions [8].
Section 5 demonstrates that our techniques can be natu-
rally extended to other preference functions.
A multi-valued object is represented as U =

{(ui, w(ui))|1 ≤ i ≤ m} where ui is an instance (point),

0 1 0 4 0

A
B

2 0 s c o r e 3 0

C

a1 (0 . 3) a 2 (0 . 5) a3 (0 . 2)

b1 (0 . 5) b2 (0 . 5)

c1 (0 . 8) c2 (0 . 2)

Fig. 2. Score Distributions

0 < w(ui) ≤ 1 and
∑m

i=1 w(ui) = 1. The weight of an
instance reflects its significance for the multi-valued ob-
ject. For simplicity in presentation, a multi-valued object is
abbreviated as an object whenever there is no ambiguity.
Given an object U and a preference function f , the

score of U regarding f corresponds to a score distribu-
tion Uf = {f(u), w(u)} for all instances u ∈ U , where
f(u) denotes the score of u regarding f , and w(u) is the
weight of u. For simplicity in presentation, in this paper
we assume the instances of an object are ordered by their
scores regarding f ; that is, for any two instances ui and
uj of an object U , we have f(ui) ≤ f(uj) if i < j.

Example 3. In Fig. 2, the object A has three instances a1,
a2 and a3 with scores f(a1) = 10, f(a2) = 20 and f(a3) =
30 respectively and weights 0.3, 0.5 and 0.2 respectively. We
have Af = {(10, 0.3), (20, 0.5),(30, 0.2)}. Similarly, Bf =
{(15, 0.5),(35, 0.5)}, and Cf = {(25, 0.8), (40, 0.2)}.

We extend BC to rank a set of objects as follows.

Definition 1 (BC method). Consider nv voters. Let πi(U)
denote the position of the object U in the i-th voter’s rank
list. Note that in this paper πi(U) = 0 if an object U takes
the first position. For each object U , a score

∑nv

i=1 πi(U)/nv

is assigned. Then, the k objects with the smallest scores are
returned as the top k result.

To rank multi-valued objects, we need to use quantiles.

Definition 2 (φ-quantile score). Given φ ∈ (0, 1], the φ-
quantile score of an object U regarding f , denoted by fφ(U),
is the score of the first instance ui such that

∑i
j=1 w(uj) ≥ φ.

Clearly, fφ is a non-decreasing function.

Example 4. Based on Example 3, Fig. 3 depicts the φ-quantile
scores of an object as a function of the φ values. We have
fφ(A) = 20 when 0.3 < φ ≤ 0.8 according to Definition 2.
Similarly, fφ(B) = 15 when φ ∈ (0, 0.5].

To rank multi-valued objects where the number of
instances per object is not fixed, each φ-quantile for
φ ∈ (0, 1] is regarded as a voter, and ranks objects
according to their corresponding φ-quantile scores. Then,
the Borda Count based rank (BC rank for short) of each
object can be calculated according to the BC method.
This is a generalization of the BC rank method.

Definition 3 (φ-quantile rank). Given a set U of objects
and a preference function f , the φ-quantile rank of an object
U regarding f , denoted by rφ,f (U), is

rφ,f (U) = |{V |fφ(V) < fφ(U), V ∈ U − U}| (1)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

0.3 0.5 0.8 10

10

20

40

a1

a2

a3

b1

c1

b2

c2

score

30

),,(list,4.0 CABRanking=

A
B
C

),,(list,2.0 CBARankinng=

)(Af

)(Bf

)(Cf

Fig. 3. φ quantile score example

Example 5. In Fig. 3, the rank list of objects is (A, B, C)
when φ = 0.2, and (B, A, C) when φ = 0.4. According to
Definition 3, r0.2,f (A) = 0, r0.2,f (B) = 1, r0.2,f (C) = 2,
r0.4,f (A) = 1, r0.4,f (B) = 0, and r0.4,f (C) = 2.

As all possible quantile values within (0, 1] are consid-
ered as voters, the number of voters is infinite when BC
ranking is applied. Suppose quantile values are divided
into nv groups by φ0, φ1, φ2, . . . , φnv

where φi = i×∆φ

and ∆φ = 1
nv

. When ∆φ → 0, we have rφ,f (U) ≈ rφi,f (U)
for any φ ∈ (φi−1, φi]. In the light of BC method, the
BC rank of an object U , denoted by r(U), is defined as
follows.

Definition 4 (BC based rank).

r(U) = lim
∆φ→0

nv
∑

i=1

rφi,f (U)∆φ =

∫ 1

0
rφ,f (U)d(φ) (2)

Note that an object with a smaller BC rank is preferred
(i.e., ranked higher) in a top-k query.

Problem Statement. Given a set U of n multi-valued
objects and a preference function f , we investigate the
problem of retrieving the top k objects with the highest
BC based ranks. Without loss of generality, we assume
n > k and ties are broken arbitrarily.
In Equation 2, for an object U , since rφ,f (U) is not

pre-computed and the number of possible φ values is
infinite, it is infeasible to directly compute r(U). Section 3
shows how to reduce to a finite search space.

3 SEARCH SPACE REDUCTION
In this section, we show that only a limited number of
φ values are required for the computation of BC ranks.
For each instance ui ∈ U , let φ(ui) =

∑i
j=1 w(uj), which

is called a distinguished quantile of U . Let Φf (U) =
{φ(u)|u ∈ U} represent a set of distinguished quantiles of
U regarding f . For presentation simplicity, we assume
every object has a dummy instance u0 where φ(u0) = 0.
According to Definition 2, given an object U with m
instances, we have fφ(U) = fφi

(U) if φ(ui−1) < φ ≤ φ(ui)
where 1 ≤ i ≤ m.

Example 6. In Fig. 3, we have Φf (A) = {0.3, 0.8, 1}. Simi-
larly, Φf (B) = {0.5, 1} and Φf (C) = {0.8, 1}. According
to Definition 2, we have fφ(A) = 10 for φ ∈ (0, 0.3],
fφ(A) = 20 for φ ∈ (0.3, 0.8] and fφ(A) = 30 for
φ ∈ (0.8, 1].

Algorithm 1: Quantile Based Algorithm(U , f , k)

Input : U : a set of objects to be ranked,
f : preference function, k

Output : top k objects regarding f
Compute and sort instances of U for all U ∈ U regarding1

f ;
Q :=

S

Φf (U) for all U ∈ U ;2

sort Q in increasing order;3

T := 0; r(U) := 0 for all U ∈ U ;4

for each φ in Q accessed in order do5

Sort objects in U based on their φ-quantile scores ;6

for each U ∈ U do7

r(U) := r(U) + rφ,f (U) × (φ − T) ;8

T := φ;9

return k objects with highest BC ranks10

Nevertheless, the φ-quantile rank (rφ,f (U)) of U may
change between two consecutive distinguished quantiles
in Φf (U). This is because the φ-quantile scores of other
objects change and lead to different φ-quantile ranks of
U .
Let Q denote the union of all distinguished quantiles of

all objects, i.e., Q =
⋃

Φf (U) for U ∈ U , Theorem below
indicates the φ-quantile rank of an object remains un-
changed for any two consecutive distinguished quantiles
in Q.

Theorem 1. Let Q =
⋃

Φf (U) for all objects U ∈ U .
Suppose the distinguished quantiles in Q are in increasing
order, then we have

r(U) =
|Q|
∑

i=1

(φi − φi−1) × rφi,f (U) (3)

The correctness of Theorem 1 is immediate since the
φ-quantile scores of all objects remain unchanged for any
two consecutive distinguished quantiles in Q.

Example 7. In Fig. 3, we have Q = {0.3, 0.5, 0.8, 1}.
We have rφ,f (A) equals 0, 1, 0 and 0 when φ falls in
(0, 0.3], (0.3, 0.5], (0.5, 0.8] and (0.8, 1] respectively. There-
fore, r(A) = 0 × 0.3 + 1 × 0.2 + 0 × 0.3 + 0 × 0.2 = 0.2.
Similarly, we have r(B) = 1.1 and r(C) = 1.7. The top 2
result is {A, B}.

Algorithm 1 illustrates an implementation of BC rank
based top k algorithm according to Theorem 1. For each
φ ∈ Q, Lines 6-9 sort the objects in U by their φ-quantile
scores and update their BC ranks. In Line 9, T keeps the
largest distinguished quantile processed so far. Line 10
returns k objects with highest BC ranks. Recall that V
has higher BC rank than U if r(V) < r(U).

Example 8. In Fig. 3, when φ = 0.5, we have T = 0.3,
r(A) = 0 and rφ,f (A) = 1. Therefore, r(A) = 0 + 1× (0.5−
0.3) = 0.2 in Line 8.

Let |Q| denote the number of distinct distin-
guished quantiles in Q, the time complexity of Algo-
rithm 1 is O(nm log(m) + |Q| × n log(n))=O(nm log(m)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

+n2m log(n)), where n and m are the number of objects
and the average number of instances per object, respec-
tively.

4 AN INDEX-BASED ALGORITHM
In Algorithm 1, the ranks of the objects are computed
simultaneously, which leads to high CPU and I/O costs.
Users are often interested in only the top k objects with
the highest BC ranks. This motivates us to develop an
index based algorithm to sequentially compute the ranks
of the objects such that many unpromising objects can
be eliminated by filtering and pruning techniques, and
hence reduce the CPU and I/O costs.
According to the definition of φ-quantile rank (Equa-

tion 1), we rewrite Equation 2 as follows.

r(U) =
∑

V ∈U\U

∆U,V (4)

where ∆U,V denotes the contribution of V to r(U); that
is, ∆U,V =

∫ 1
0 ξ(φ)d(φ) where ξ(φ) = 1 if fφ(V) < fφ(U)

otherwise ξ(φ) = 0. This implies that we can calculate
r(U) based on ∆U,V for each V ∈ U \ U . Note that if
U = V , we have ∆U,V = 0 and ∆V,U = 0.
Suppose the instances of two objects U and V are

ordered by their scores regarding f respectively, we
can compute ∆U,V and ∆V,U at the same time with
O(m) time following the similar rationale of Algorithm 1,
where Q = Φf (U)

⋃

Φf (V). Recall that m is the average
number of instances per object.

Example 9. In Fig. 3, we have ∆A,B = 0.2 and ∆B,A = 0.8
because fφ(A) > fφ(B) if φ ∈ (0.3, 0.5] and otherwise
fφ(A) < fφ(B). Similarly, we have ∆A,C = 0 and ∆C,A = 1.
Therefore, r(A) = ∆A,B + ∆A,C = 0.2 according to Equa-
tion 4.

The time complexity of the algorithm is O(nm log(m)
+n2m) in the worse case because we may have to
calculate ∆A,B for every pair of objects A and B in
U . Therefore, the key of the algorithm is to develop
effective and efficient filtering and pruning techniques
such that a large number of non-promising objects can
be eliminated, and hence save CPU and I/O costs.
In this section, we propose a framework of the index

based algorithm in Section 4.1, which consists of filtering
and refinement phases. Section 4.2 introduces an R-Tree
based filtering technique to eliminate the non-promising
objects. Then the refinement algorithm is presented in
Section 4.3.

4.1 Framework
Given an object U , let Umbb denote the Minimal Bound-
ing Box (MBB) of the instances of U ; that is, the Umbb

is the minimal bounding box such that for any instance
u ∈ U , u is located within Umbb. The computation of the
MBB of the object is cheap, i.e., only need one scan of
the instances, and it is space efficient to maintain MBBs
of the objects. Therefore, in this paper, we assume the

Algorithm 2: Index Based Algorithm(RU , f , k)

Input : RU : the R-Tree for a set of objects U ,
f : the preference function, k

Output : top k objects regarding BC ranks
S ← Filtering(RU , f , k);1

return Refinement(S, f , k)2

MBBs of all objects are available and are organized by an
R-Tree [14], denoted by RU . Particularly, the MBB of an
object corresponds to a data entry of RU . Note that our
techniques can be easily adapted to other spatial index
techniques, since the algorithm follows the standard
branch and bound paradigm [6].
Algorithm 2 presents the framework of our index

based algorithm. Line 1 applies the filtering technique
based on RU , i.e., the R-Tree based on MBBs of the
objects, to eliminate some non-promising objects. Line 2
refines the remaining objects and return the top k objects
with highest BC ranks. The details of Filtering and Re-
finement algorithms will be presented in Section 4.2 and
Section 4.3 respectively.

4.2 Filtering
Given an object U and a linear preference function f ,
f−(U) (f+(U)) denotes the minimal (maximal) score of
U regarding Umbb and f . Because of the linearity of
the preference function, it is immediate that we have
f−(U) ≤ f(u) ≤ f+(U) for any u ∈ Umbb.

Intuitively, for two objects A and B, A should be
ranked higher than B if f+(A) < f−(B) because the
worst instance (with the maximal score value) of A can
still outperform the best instance (with the minimal
score value) of B regardless of the quantile φ values.
Recall that we assume the lower score values are pre-
ferred.

This motivates us to develop efficient filtering tech-
nique to reduce the top k candidate size based on the
MBBs of the objects (i.e., f−(U) and f+(U) for any
object U), and hence significantly reduce the CPU and
I/O costs. Theorem below indicates that we can safely
exclude some objects from the top k computation based
on the minimal and maximal scores derived from their
MBBs and the linear preference function f .

Theorem 2. Let f+
k be the k-th smallest f+ score of the

objects in U , then only object U with f−(U) ≤ f+
k can be

top k candidates regarding f . Let f+
s be the largest f+ score

among these candidate objects, any object V with f−(V) >
f+

s can be excluded from the top k computation.

Proof: Given two objects U and V with f+(V) <
f−(U), it is immediate that rφ,f (V) < rφ,f (U) for any
φ ∈ (0, 1], and hence r(V) < r(U). An object U can be
excluded from top k candidates if there exist k other
objects {V } such that f+(V) < f−(U). Therefore, only
object U with f−(U) ≤ f+

k can be top k candidates
regarding f . Let f+

s be the largest f+ score among the
top k candidate objects, any object V with f−(V) > f+

s

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Bf

Af

Cf
Df
Ef

s c o r e

+
kf

+
sf

)(Bf)(Bf +)(Cf +

b1
b2

c1

c2

d1

d2

Fig. 4. top k example for k = 2

can be excluded from computation because V does not
contribute to the BC rank of any top k candidate object,
i.e., ∆U,V = 0 for any candidate object U .

Example 10. In Fig. 4, we have f+
k = f+(B) when

k = 2 and hence the top k candidates C = {A, B, C}.
Consequently, we have f+

s = f+(C) and E can be pruned
since f−(E) > f+

s . Note that although D is not a top k
candidate, it contributes to the computation of r(C). Therefore,
we have S = {A, B, C, D}, where S denotes the set of objects
survived from filtering procedure.

For an object U , we use Ustat to indicate if U is an
active object (i.e., top k candidate). Clearly, we only need
to compute BC rank of the objects {U}, where Ustat is set
to active. Note that besides the top k candidates, we also
need to keep objects which may contribute to the rank of
the active objects. For instance, in Fig. 4 suppose w(b1) =
w(b2) = 0.5, w(c1) = 0.6, w(c2) = 0.4, w(d1) = 0.9 and
w(d2) = 0.1, we have r(C) < r(B) if D is not considered,
otherwise, it turns out r(B) < r(C).

An Efficient Filtering Algorithm. We can first compute
the f−(U) and f+(U) for each object U ∈ U , and then
apply Theorem 2 by sorting objects based on their f+

values. However, all MBBs of the objects will be accessed
which is less efficient. Below, we show how to efficiently
apply the filtering based on RU .
As illustrated in Algorithm 3, we eliminate the objects

based on Theorem 2. A min heap H is employed to
keep the entries of RU , where the key of an entry e
is its minimal score regarding f , denoted by f−(embb).
The algorithm consists of two phases. In the first phase
(phase one), we use f+

k to maintain the k-th smallest f+

values for the objects seen so far. An object U visited
during phase one is a top k candidate, and Ustat is
set to active in Line 12. Moreover, Line 11 updates f+

k

based on max (f+(U)). Recall that max records the score
upper bound (i.e., f+(U)) of the most recently visited
object U . Specifically, a priority queue with maximal
size k is employed to maintain the k objects with the
smallest f+ values (i.e., f+

k) seen so far. Meanwhile, we
keep the largest f+ value among the objects visited for
f+

s . Recall that f+
s is the largest f+ value among the

candidate objects, i.e., the objects visited in the phase
one. Algorithm 3 goes to the second phase (phase two)
in Line 9 once the minimal score of the current object is
larger than f+

k , which implies that all of the unvisited

Algorithm 3: Filtering(RU , f , k)

Input : RU : the R-Tree for a set of objects U ,
f : the preference function, k

Output : S : objects survived from filtering
f+

k := ∞; f+
s := 0; S := ∅; H := ∅ ;1

insert root of RU into the heap H ;2

while H '= ∅ do3

e := Deheap(H);4

min := f−(embb); max := f+(embb);5

if e corresponds to the object U then6

if In phase one then7

if min > f+
k then8

algorithm status becomes phase two;9

else10

Update f+
k and f+

s based on max;11

Ustat := active;12

S := S ∪ U if in phase one or min < f+
s ;13

else14

if In phase one or min < f+
s then15

load child entries of e ;16

for each child entry ei do17

if In phase one or f−(eimbb
) < f+

s then18

put ei into heap H ;19

return S20

objects (including the current one) are not top k can-
didate objects. Nevertheless, we also keep an object U
with f−(U) ≤ f+

s because it may contribute to the rank
computation of the candidate objects. Lines 15-19 put
child entries of e into heap H for further computation if
the algorithm is in the first phase or the minimal score
of embb regarding f is smaller than f+

s . In our top k
algorithm, we only need to consider the objects in S,
i.e., objects survived from the filtering phase.
Correctness. In Algorithm 3, objects are accessed in non-
decreasing order regarding their f− values. As the value
of f+

k for objects seen as far is non-increasing, we have
f+

k < f−(U) ≤ f+(U) for any object U accessed after
phase one. Therefore, f+

k and f+
s are correctly calculated

at the end of phase one. In the second phase, an inter-
mediate entry e is not processed if f−(embb) > f+

s since
f−(eimbb

) > f+
s for any child entry ei of e. Therefore, the

correctness of Algorithm 3 holds.
Time Complexity. In Lines 4 and 19 of Algorithm 3, it
takes time O(log(n)) to maintain the heap H , where n
is the number of the objects in U . The update of f+

k

(Line 11) costs time O(log(k)) by using a priority queue.
Since n is usually much larger than k, the time cost
of Algorithm 3 is O(ne log(n)), where ne denotes the
number of entries (data entries and intermediate entries)
visited in Algorithm 3. A comprehensive analysis on
|S| and the I/O cost of Algorithm 3 is presented in
Appendix B.

4.3 Refinement
According to Theorem 2, we only need to compute the
BC ranks of the active objects in S based on Equation 4

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

to find the top k objects. Nevertheless, the costs may still
be expensive due to the possiblely large number of active
objects and the I/O cost incurred when the instances of
the objects are loaded.
In this subsection, we first introduce two important

pruning rules, namely dominance based pruning and rank
based pruning respectively, to further reduce the number
of candidate objects and the number of I/O incurred.
Then together with the Equation 4, we have the Refine-
ment algorithm.

DOMINANCE BASED PRUNING.
We first introduce a dominance relationship between

two objects regarding f , then present a dominance based
pruning technique. Following is a formal definition of
the dominance relationship between two objects.

Definition 5 (Dominance). For two objects U and V , if
fφ(V) < fφ(U) for any φ ∈ (0, 1], then we say V dominates
U regarding the preference function f , denoted by V ≺f U .

Example 11. In Fig. 3, we have A ≺f C because fφ(A) <
fφ(C) for any φ ∈ (0, 1]. Since f0.4(A) > f0.4(B), we have
A)≺f B.

According to Definition 5, if V ≺f U , we have fφ(V) <
fφ(U) for any φ ∈ (0, 1]. This implies r(V) < r(U) ac-
cording to Definition 4. The observation below indicates
that an object U can be excluded from top k candidates
if there are at least k other objects which dominate U
regarding f .

Observation 1. For a given set of objects U and a preferece
function f , an object U can be eliminated from top k candi-
dates if there exist k other objects which dominate U regarding
f .

Applying dominance based pruning. For two objects U
and V , it is immediate that V ≺f U if ∆U,V = 1. We
use Udc to record the number of objects which dominate
U . According to Observation 1, an object U can be
eliminated from top k candidates if Udc ≥ k.
Using the aggregate information. Considering that it is
expensive to access instances of an object because of the
I/O cost incurred, we develop an I/O efficient approach
to check dominance relationship of two objects; that is,
when some pre-computed aggregate information of U
is available, we may claim V ≺f U without accessing
instances of U .
Let φγ,f (U) denote the total weights of the instances

of U whose scores regarding f are not larger than γ;
that is, φγ,f (U) =

∑

u∈U,f(u)≤γ w(u). For instance, we
have φ30,f (C) = 0.8 in Fig. 3. In order to avoid the
computation of φγ,f (U) in which instances of U are
accessed, we introduce a function φ̄γ,f (U) as an upper
bound function of φγ,f (U), i.e., φ̄γ,f (U) ≥ φγ,f (U) for any
score γ. Later, we will show how to derive φ̄γ,f (U) based
on the aggregate information of U ,i.e., without accessing
the instances of U .
Given two objects U and V , we suppose only V is

loaded, i.e., the scores of the instances of V are computed

regarding f . Lemma below implies that we can claim
V ≺f U based on the upper bound function φ̄γ,f (U).

Lemma 1. Given objects U and V , we have V ≺f U if
φ̄f+(V),f (U) < φf−(U),f (V).

Proof: Let φ0 = φf+(V),f (U) and φ1 = φf−(U),f (V),
as shown in Fig. 5, φ0 and φ1 correspond to the total
weight of the instances in the shaded and striped areas
respectively. φ0 < φ1 = φf−(U),f (V) implies that fφ(V) <
f−(U) for any φ ∈ (0, φ0]. As fφ(U) ≥ f−(U) always
holds, we have fφ(V) < fφ(U) for any φ ∈ (0, φ0]. Since
fφ(V) ≤ f+(V) always holds and fφ(U) > f+(V) for any
φ ∈ (φ0, 1], we have fφ(V) < fφ(V) for any φ ∈ (φ0, 1].
Therefore, V ≺f U holds according to Definition 5. Since
φ̄f+(V),f (U) ≥ φf+(V),f (U) = φ0, the correctness of the
Lemma is immediate.

vf

Uf

0 . 3 1.)(Vf

)(Vf +)(Uf

s c o r e

1 0

)(),(V
fUf

2 0

)(),(U
fVf

Fig. 5. Lemma 1

Below, we first introduce some aggregate information,
then present a novel dominance checking approach based
on the aggregate information and Lemma 1.

Definition 6 (mean (µ(U))). We use µ(U) to denote the
mean of an object U , where µ(U).Di =

∑

u∈U u.Di × w(u).

Definition 7 (variance σ2(U)). σ2(U) denotes the vari-
ance of an object U on each dimension; that is, σ2

i (U) =
∑

u∈U (u.Di − µ(U).Di)2 × w(u).

Theorem below indicates that we can claim V ≺f U
based on the aggregate information of U . Recall that, in
Section 2 we assume f(p) =

∑d
i=1 ai × p.Di and ai > 0

for 1 ≤ i ≤ d.

Theorem 3. Given two objects U and V , let γ = f+(V)
with f−(U) ≤ γ ≤ f+(U), we have V ≺f U if φ̄γ,f (U) <
φf−(U),f (V), where φ̄γ,f (U) = mini∈[1,d]{&(∆i, σ2

i (U)}.

Specifically, ∆i = µ(U).Di−(li+
γ−f−(U)

ai
), where li denotes

the projection of the lower corner of Umbb on i-th dimension
and the function &(x, y) is defined as follows.

&(x, y) =

{

1/(1 + x2

y) if x > 0 and y > 0
1.0 otherwise

(5)

Please refer to Appendix A for details of the proof.

RANK BASED PRUNING.
Given two objects U and V , as ∆U,V and ∆V,U are

computed at the same time, we do not need to compute
∆V,U for V if r(U) is already calculated. Instead, we keep
a lower bound of the BC rank of an object V , denoted
by r−(V). r−(V) may increase after the computation

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

of r(U). For instance, suppose we first calculate r(A)
in Fig. 3, which results in ∆A,B = 0.2 , ∆B,A = 0.8,
∆A,C = 0 and ∆C,A = 1. Then we have r(A) = 0.2,
r−(B) = 0.8 and r−(C) = 1. Clearly, we can exclude B
and C without further computation if k = 1, and hence
the computation cost of ∆B,C and ∆C,B is saved.
Motivated by this, Theorem below indicates that an

object U can be excluded from top k candidate if there
exist k other objects whose BC ranks are higher than
r−(U).

Theorem 4. We can exclude an object U from top k candi-
dates if r−(U) > λk , where λk is the k-th highest BC rank
computed so far.

PUTTING TOGETHER.
Based on the pruning techniques proposed above,

we present an efficient Refinement algorithm as illus-
trated in Algorithm 4. For each object U ∈ S, FD(U)
and PD(U) denote a set of objects, where FD(U) =
{V |f+(V) < f−(U), V ∈ U} and PD(U) = {V |f−(V) ≤
f+(U), V ∈ U \ (U ∪ FD(U))} respectively. As shown in
Fig. 4, we have FD(B) = {A} and PD(B) = {C}. It is
easy to see that ∆U,V = 1 for V ∈ FD(U), and ∆U,V = 0
for V ∈ U \ (PD(U) ∩ FD(U) ∩U). This implies that we
do not need to explicitly compute ∆U,V for r(U) unless
V ∈ PD(U). Moreover, we have V ≺f U if V ∈ FD(U)
and hence Line 3 sets r−(U) and Udc to |FD(U)|.
Line 5 processes active objects (e.g., top k candidates).

As shown in Line 7, for each object V ∈ PD(U) we do
not need to compute ∆U,V and ∆V,U if V is processed
at Line 5. This is because ∆U,V is already computed
since V ∈ PD(U) implies U ∈ PD(V). The ∆ value
computation can also be avoided if neither of two objects
is an active object (i.e., top k candidates). Line 8 computes
∆U,V and ∆V,U , then Line 9 updates r−(U) and r+(V).
Note that when aggregate information of U is available,
we have Udc = Udc + 1, ∆U,V = 1 and ∆V,U = 0
if V ≺f U holds according to Theorem 3; that is, the
∆ values computation and the loading of instances of
U may be avoided. We apply the pruning techniques
to eliminate U from top k candidates in Lines 10-13.
Specifically, λk is employed to keep the k-th highest BC
rank seen so far for the rank based pruning. An object U
can also be eliminated from top k candidates if Udc ≥ k
based on the dominance based pruning. In Line 15 we have
r(U) = r−(U) if U remains active, and we also update
λk based on r(U).
Accessing Order. In Algorithms 4, we compute BC ranks
of the objects in a sequential order. Intuitively, an object
with high BC rank should be visited early for the effec-
tiveness of the dominance based and rank based pruning
techniques. Line 4 sorts the active objects in S, where the

key of an object U is f−(U)+f+(U)
2 . Our empirical study

shows that it performs better than other alternative keys
such as f−(U) and f+(U). Note that when the aggregate
information of the objects is available, the active objects
are sorted based on f(µ(U)) instead because intuitively
the object with smaller f(µ(U)) is more likely to be top

Algorithm 4: Refinement(S, f , k)

Input : S : objects for refinement, f : preference
function, k

Output : top k objects regarding f
λk := ∞;1

for each U ∈ S do2

r−(U) := |FD(U)|; Udc := |FD(U)|;3

L ← sort all active objects U ∈ S by f−(U)+f+(U)
2 ;4

for each active object U ∈ L visited in order do5

for each V ∈ PD(U) do6

if V is not processed and V or U is an active7

object then
ComputeDelta(U , V) ;8

r−(U) := r−(U) + ∆U,V ;9

r−(V) := r−(V) + ∆V,U ;
if Udc ≥ k or r−(U) > λk then10

Ustat:= non-active;11

if Vdc ≥ k or r−(V) > λk then12

Vstat:= non-active;13

if Ustat = active then14

r(U) := r−(U); update λk ;15

return k objects with highest BC ranks16

k objects. This is confirmed by the empirical study.
Time Complexity. Let |S| denote the number of objects
in S, the time cost of Lines 2-3 is O(|S| × log(|S|))
because we can compute the |FD(U)| for all object
U ∈ S by sorting objects based on their f+ value. It
takes O(|S| × log(|S|)) time to sort objects in Line 4 to
determine the access order. Suppose f− and f+ values
of the objects are organized by an interval tree [9] with
construction time O(|S| × log(|S|)), where f−(U) and
f+(U) of an object U correspond to an interval, it takes
O(log(|S|) + |PD(U)|) time to retrieve PD(U) in Line 6.
Let n∆ denote the total number of ∆ value computations
invoked in Line 8 and na be the number of objects loaded
in Algorithm 4, the time cost in Lines 5-15 is O(n∆ ×
m+na×m log(m)) because the instances of an object are
sorted when they are loaded for ∆ value computation
(Line 8). Therefore, the time complexity of Algorithm 4
is O(|S| × (log(|S|) + nov) + n∆ × m + na × m log(m)),
where nov is the average size of PD(U) for objects
U ∈ S. Although it remains O(n2 × m) in the worst
case, the performance of Algorithm 4 is very efficient
in the empirical study because a large amount of objects
are eliminated from the top k candidates and hence the
CPU and I/O costs are significantly reduced. Note that
Appendix B provides a comprehensive analysis on the
I/O cost of Algorithm 4.

5 EXTENTION AND FUTURE WORK

In this Section, we discuss how to extend the techniques
developed in this paper to other preference functions
in Section 5.1 and Section 5.2. Section 5.3 discusses the
possible future work of the paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

5.1 General Linear Preference Functions
A more general linear preference function is in the form
of f(p) =

∑d
i=1 ai × p.Di, where ai may be any real

constant. All techniques in this paper can be immediately
applied except that if ai < 0, Equation 6 (instead of
Equation 7) in Lemma 2 is used to derive the upper
bound function φ̄γ,f (U) in Theorem 3 for i-th dimension.

5.2 Other Preference functions
Without considering the aggregate information, our tech-
niques can be immediately applied to a preference func-
tion f if f−(Umbb) and f+(Umbb) can be calculated in
a reasonable time for a given object U . Specifically,
f−(Umbb) = min{f(x)|x ∈ Umbb} and f+(Umbb) =
max{f(x)|x ∈ Umbb}. This is not a demanding require-
ment because it takes O(d) time for many sorts of prefer-
ence functions, such as Eucledian distance function [29]
and monotonic functions.
Clearly, Lemma 1 holds for any preference function.

The main difference is how to derive φ̄γ,f (U) based on
aggregate information of U regarding a preference func-
tion f . Below is a brief introduction of the motivation.
As shown in Fig. 6, the shaded area denotes the inter-

section of the space {x|f(x) ≤ γ} and Umbb, total weight
of the instances in this area equals φγ,f (U). Following the
same rationale of Theorem 3, we can use the rectangle
r(a, d) or r(a, b) to derive φ̄γ,f (U) based on µ(U) and
σ2(U).

)(, Ufr

mbbU

ruf =)(a

b
d

Fig. 6. Derive φ̄γ,f (U)

5.3 Future Work
As discussed in Section 1, the main idea of the paper is
to effectively and efficiently apply the rank aggregation
methods to compute the final top k ranking results
regarding all possible φ quantile where φ ∈ (0, 1]. There-
fore, theoretically, any rank aggregation approach which
does not need training can be applied. Nevertheless,
from a technique point of view, the challenges are two-
fold. Firstly, the number of possible φ value is infinite,
and hence we need to reduce the search space. Secondly,
as the number of possible φ values is still very large after
search space reduction, it is essential to develop efficient
rank computation algorithm.
In the paper, we adopt the Borda Count method

because we can effectively address above two issues.
Moreover, as shown in [11] and [28], the Borda Count
method is time efficient, and it satisfies some important
properties such as anonymity, neutrality and consistency.

City Names Avg-R Med-R BC

Richmond, VA 1 (72.83K) 9 (47.52K) 6
Greensboro, NC 2 (69.62K) 8 (47.59K) 4
Chattanooga, TN 3 (68.36K) 3 (47.88K) 3
Pittsburgh, PA 4 (68.37K) 7 (48.6K) 7

Montgomery, AL 5 (62.40K) 4 (47.87K) 2
Philadelphia, PA 6 (62.36K) 6 (47.92K) 9
Pasadena, TX 7 (61.39K) 2 (49.07K) 5

Newport News, VA 8 (60.41K) 10 (47.34K) 8
Vancouver, WA 9 (58.13K) 5 (48.19K) 10
Hampton, VA 10 (58.07K) 1 (50.92K) 1

TABLE 2
Evaluating Cities

However, the Borda Count method cannot satisfy the
Condorcet criterion [28], [11]. Therefore, it is worthwhile
to investigate how to effectively apply other more so-
phisticated rank aggregation methods such as footrule
method and markov train method [11]. The main chal-
lenge is how to develop efficient rank computation algo-
rithms. In BC rank based algorithm, we can compute the
BC rank of an object by pair-wise computions with other
objects , and hence develop efficient pruning techniques
which can effectively bound the BC rank of an object
during the computation (i.e., without accessing all other
objects). However, it is far from trivial to develop sim-
ilar pruning techniques for the algorithms based on the
footrule method and markov chain method due to the
higher complexity of the footrule method and markov
chain method.

6 PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness of BC Rank,
and the efficiency and scalability of our methods.

6.1 Effectiveness of BC Rank

We use the 2009 Integrated Public Use Microdata (http:
//usa.ipums.org/usa, IPUMS for short) and the paper
citation dataset (http://www.arnetminer.org/citation) to
evaluate the ranking approaches. In the IPUMS dataset,
a city is a multi-valued object and an instance corre-
sponds to a record of an individual in the city with
two attributes: family income and expense. In the paper
citation dataset, an author is treated as a multi-valued
object, an instance is the number of citations of his/her
individual paper published, and the number of instances
is the number of papers by the author. As discussed
in Section 1, we do not compare with the probabilistic
based approaches due to the inherent difference between
uncertain data model and multi-valued object model. We
assume all instances of an object carry the same weight,
and use the average and median as the representatives
for the majority based rankings. Note that median is a
special case of φ-quantile where φ = 0.5.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

6.1.1 Results on the IPUMS Data
We use income-expense (i.e., discretionary income)
as the scoring function to rank the livability of
10 cities where the average discretionary income
is around 60K. For avg-based ranking (AV G-R)
and median-based ranking (Med-R), we rank cities
based on their average discretionary income and
median discretionary income respectively. Table 2 shows
the ranking of the cities based on avg-based ranking
(AV G-R), median-based ranking (Med-R) and the BC
ranking (BC). Although there are several well studied
methods to compare two income distributions, such
as stochastic dominance [15], those methods generate
partial orders instead of a ranking, and thus cannot
be used to answer ranking queries.
As shown in Table 2, the three rankings are quite

different. For instance, Richmond has the highest aver-
age discretionary income, but is ranked number 9
and 6 by the median and BC ranking methods. While
Hampton is ranked numbers 10, 1 and 1, respectively,
by the avg-based ranking, median-based ranking and
BC ranking. To compare the effectiveness of different
ranking approaches, Fig. 7(a) and Fig. 7(b) depict the
discretionary income distributions of three cities, in
which families are ordered by their discretionary in-
comes and x axis is in percentage of the families. Fig. 7(a)
shows discretionary income distributions of Vancouver
and Hampton. The rich families in Vancouver (top-
20%) have higher discretionary income than those in
Hampton, and also bring up the average discretionary
income of the city. However, most of the lower-80%
families in Hampton have a higher discretionary income
than those in Vancouver and hence is ranked higher by
BC ranking and median-based ranking. Fig. 7(b) illus-
trates discretionary income distributions of Vancouver
and Greensboro. The upper-45% families in Greensboro
have significant higher discretionary income than those
in Vancouver, while the discretionary income of two
cities become quite similar in the remaining part. It is
intuitive that Greensboro should be ranked higher than
Vancouver, which is captured by BC ranking and avg-
based ranking. But median-based ranking is in favor of
Vancouver because the discretionary income of the 50%
families are ranked slightly higher than those in Greens-
boro. The results in two Fig. 7(a) and Fig. 7(b) clearly
show that the BC ranking makes a more comprehensive
and unbiased comparison than the avg-based ranking
and median-based ranking.

6.1.2 Results on the Paper Citation Data
The h-index (the maximum value h such that an author
has h papers each cited at least h times) is a popu-
lar method used to indicate the impact of an author.
Therefore, we use h-index based ranking as a base-
line to evaluate the effectiveness of avg-based ranking
and BC ranking on paper citation data. Table 3 shows
the rankings of 10 well known authors regarding avg-
based ranking (AV G-R), BC ranking (BC), and h-index

101

102

103

 0 20 40 60 80 100

In
co

m
e

- E
xp

en
se

 (K
)

Percentage

Hampton, VA
Vancouver, WA

(a) Vancouver vs Hampton

101

102

103

 0 20 40 60 80 100

In
co

m
e

- E
xp

en
se

 (K
)

Percentage

Greensboro, NC
Vancouver, WA

(b) Vancouver vs Greensboro

Fig. 7. Score Distributions

based ranking (H-R), respectively. In avg-based rank-
ing, median-based ranking and h index based ranking,
authors are ranked based on their average number of
citations, the meadian of the number of citations and h
index value (h-index) respectively, which are shown in
the bracket next to their corresponding ranks.

Compared with the avg-based ranking and median-
based ranking, the BC ranking is more consistent with
the h-index based ranking. For instance, Massoud Pe-
dram has the largest h-index value among the 10 au-
thors. He is ranked numbers 1, 6 and 6 in the BC rank-
ing, avg-based ranking and the median-based ranking,
respectively. The BC ranking is superior to the avg-
based and median-based rank methods as shown in the
example, since it produces rankings closer to the h-index
based ranking that is popularly used in the domain.
Note that h-index is not a general ranking approach.
For instance, we cannot use h-index to rank the IPUMS
dataset.

Author Names Avg-R Med-R BC H-R

Rami G. Melhem 1 (26.70) 4 (9) 3 3 (40)
Tzi-cker Chiueh 2 (26.67) 3 (10) 2 4 (35)

Hong-Yuan Mark Liao 3 (26.65) 10 (3) 9 8 (27)
Ronald R. Yager 4 (26.64) 4 (9) 4 2 (42)
Yu-Kwong Kwok 5 (26.63) 7 (5) 8 10 (24)
Massoud Pedram 6 (26.60) 6 (7) 1 1 (50)
Norbert Fuhr 7 (26.43) 1 (11) 5 5 (33)

Mark Sanderson 8 (26.40) 7 (5) 7 7 (28)
Dewayne E. Perry 9 (26.33) 9 (4) 10 8 (27)
Olivier Danvy 10 (26.21) 1 (11) 6 6 (31)

TABLE 3
Evaluating Authors

Discussion 1. In the above experiments, we show that the
BC ranking methold can provide a comprehensive ranking
result since it can capture the score distributions of the objects.
Nevertheless, we can also construct some examples in which
the BC ranking method is outperformed by avg-based and
quantile-based ranking methods. For instance, suppose
objects A and B have 9 instances each, and instances have
the same weight. The instances of each object are sorted by
their scores in decreasing order. Assuming the larger score

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

value is preferred, we have that f(ai) is much smaller than
f(bi) for 1 ≤ i ≤ 4 and f(ai) is slightly larger than
f(bi) for 5 ≤ i ≤ 9. In this example, A is ranked first
regarding BC ranking approach while B wins out for the
avg-based method and the quantile-based ranking method
where φ = 0.3. Intuitively, B should be the winner if
only A and B are involved in the comparison because B
significantly outperforms A regarding a considerable number
of quantile values. However, we do not observe this kind of
score distributions in our empirical study. Moreover, if A and
B are evaluated together with other objects, B is likely to
win regarding BC ranking method because B is ranked much
higher than A when 1 ≤ i ≤ 4.

6.2 Efficiency and I/O Model Accuracy
Now, we evaluate the efficiency and scalability of our
techniques developed in this paper.

6.2.1 Settings and Data Sets
We evaluate the following algorithms.

QB The Quantile based Algorithm (Algorithm 1)
presented in Section 3.

QB-S First apply the filtering technique (Algorithm 3)
proposed in Section 4, then run Algorithm QB.
According to Theorem 2, it suffices for QB
Algorithm to retrieve top k answer based on
the objects survived from filtering.

PB The index based Algorithm (Algorithm 2) pro-
posed in Section 4 without aggregate informa-
tion.

PB-A The index based Algorithm (Algorithm 2) pro-
posed in Section 4 with aggregate information
.

All algorithms are implemented in standard C++ with
STL library support and compiled with GNU GCC.
Experiments are run on a PC with Intel Xeon 2.40GHz
dual CPU and 4G memory running Debian Linux. The
disk page size is set to 4096 bytes. In the experiments,
the MBBs of the objects are organized by R-Tree. When
aggregate information is used, the aggregate information
(mean and variance) of an object is kept with its MBB in
the the argument R-Tree.
Our experiments are conducted on both synthetic

datasets and real dataset.
To generate a synthetic data set, we first generate the

centres of n objects using the benchmark data generator
in [3], where n varies from 20K to 100K with the default
value 20, 000. Anti-correlated (A), Correlated (C) and Inde-
pendent (E) distributions of n object centres are used in
our experiments. By default, we use Anti-correlated distri-
bution. Then, for each object we create a hyper-rectangle
region where the instances of this object appear. The
edge size of the hyper-rectangle region follows a uniform
distribution in range (0, 4r] with expectation 2r, where r
varies from 100 to 400 with default value 200.
The number of instances of an object follows a uniform

distribution in range [1, 2m] where m varies from 200 to

1, 000 with the default value 400. In expectation, each
object has m instances and the total number of instances
in a dataset is nm; by default, it is 8, 000, 000. Instances
of an object may follow four distributions Uniform (U),
Normal (N), Zipf (Z) and Mixed (M). In the first two
distributions, instances of an object follow Uniform or
Constrained Normal distribution and the standard devi-
ation (σ) of Constrained Normal is set to 0.2 × r. For
Zipf distribution, we first randomly choose an instance
u, then the distances of other instances to u follow
the Zipf distribution with z = 0.5. The instance of
Mixed distribution randomly chosen from one of three
distributions. In this paper, all instances of an object have
the same weight.
For the distributions of object centres and the instances

within an object, we have Anti-Mixed datasets where the
centers of object MBBs follow Anti-correlated distribu-
tion, while instances follow Mixed distribution, denoted
by AM . Similarly, we have AU , AN , AZ , EM , EN and CM

datasets. AM is used by default in the experiments. The
dimensionalities of the datasets vary from 2 to 5, with
default value 3.
We use the NBA game-by-game technique statistics

from 1991 to 2005. The NBA dataset is downloaded
from www.nba.com and consists of 339, 721 records (in-
stances) of 1, 313 players. We treat each player as an
object and the records of a player as the instances of the
corresponding object. Instances of an object take equal
weight. Three attributes are selected in our experiments:
the number of points, the number of assistants, and the
number of rebounds. The larger the attribute values, the
better.
Moreover, we generate two datasets in which the

centers of the objects are obtained from the Forest Cover-
Type dataset (FC)1 and Household dataset 2. In FC, we
select the horizontal distances of each observation point
to the Hydrology and roadways. In Household, each
record represents the percentage of an American familys
annual income spent on 3 types of expenditures (e.g.,
gas, etc.). The instances of two datasets follow the Mixed
distribution. There are 581, 012 and 127, 932 objects in
FC and Household respectively. And the total number
of instances in FC and Household are 116.6m and 51.2m
respectively.

In the experiments, a workload consists of 500 linear
functions where f(p) =

∑d
i=1 ai × p.Di. We randomly

choose ai from (0, 1] for each dimension. In the paper,
the average query processing time, which includes the
CPU time and I/O latency, is used to measure the
performance of the algorithms. Moreover, we also record
the number of I/Os incurred for the algorithms.

Table 4 below lists parameters which may poten-
tially have an impact on our performance study. In the
experiments, all parameters use default values unless
otherwise specified.

1. http://archive.ics.uci.edu/ml/datasets.html
2. http://www.ipums.org

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

Notation Definition (Default Values)
r avg. edge length (200)
n the number of uncertain object (20K)
k k value for the ranked query (40)
m avg. number of instances of

each object(400)
d dimensionality (3)

TABLE 4
System Parameters

101

102

103

20 40 60 80 100Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

 k

PB-0
PB-1
PB-2

PB

Fig. 8. Pruning rules

 2
 4
 6
 8

 10
 12
 14

20 40 60 80 100Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

 k

Min
Max
Avg

Mean

Fig. 9. Access orders

6.2.2 Efficiency
We evaluate the effectiveness of the filtering and pruning
techniques against the default dataset. The filtering tech-
nique, dominance based pruning technique and rank based
pruning technique, are incrementally included in PB1,
PB2 and PB. Note that PB0 does not have filtering and
pruning techniques. As shown in Fig. 8, the filtering and
pruning techniques significantly reduce the query pro-
cessing time as a large number of objects are eliminated
from top k candidates. Fig. 9 investigates the impact
of the accessing order in Algorithm 2 against the NBA
dataset, where the min, max , avg and mean represent

that the key of an object U is f−(U), f+(U), f−(U)+f+(U)
2

and f(µ(U)) respectively. As expected, the average score
based approach outperforms the minimal and maximal
score based ones, and the mean based method can further
improve the performance.
We evaluate the performance of the algorithms against

datasets AM , AU , AN , AZ , EM CM , NBA, FC and
Household in Fig. 10 where the empty bars on top
of each algorithm represent the CPU costs, while the
bars below stand for the I/O latency. As expected, the
performance of QB is always ranked the last among four
algorithms. QB-S achieves a magnitude of speed up on
synthetic datasets by applying the filtering technique.
PB outperforms QB by at least one magnitude on all
datasets, and PB-A further improves the CPU and I/O
cost by taking advantage of the aggregate information.
Note that the improvement of I/O cost is not significant
on NBA dataset because the MBBs of the objects are
heavily overlapped and hence many objects are loaded.
Nevertheless, it is shown that the CPU cost reduced
by our pruning techniques is significant. We excluded
QB Algorithm from the following experiments for better
evaluation of other algorithms.
We study the impact of k on the query processing

time and I/O costs of Algorithms QB-S, PB and PB-A
in Fig. 11. The performance are evaluated on the default
dataset (AM) and FC. It is reported that the average
processing time and I/O costs of three algorithms in-

P B Q B - S Q B P B - A

100
101
102
103
104

AM AN AZ AU EM CM NBA FC HouseholdAv
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

Fig. 10. Different datasets

100

101

102

20 40 60 80 100Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

 k

QB-S
PB

PB-A

(a) Avg. Processing Time on AM

 0
 2
 4
 6
 8

 10
 12
 14
 16

20 40 60 80 100

IO

 (K
)

 k

QB-S
PB

PB-A

(b) IO cost on AM

101

102

103

104

20 40 60 80 100Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

 k

QB-S
PB

PB-A

(c) Avg. Processing Time on FC

 0
 10
 20
 30
 40
 50
 60
 70
 80

20 40 60 80 100

IO

 (K
)

 k

QB-S
PB

PB-A

(d) IO cost on FC

Fig. 11. The effect of k

crease slowly against the growth of k. Same as Fig. 10,
PB significantly outperforms QB-S, and PB-A further
reduces the processing time and I/O cost.

100

101

102

103

104

20K 40K 60K 80K 100K

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

QB-S
PB

PB-A

Fig. 12. Diff. n

101

102

200 400 600 800 1000

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

QB-S
PB

PB-A

Fig. 13. Diff. m

100

101

102

103

0.02 0.04 0.06 0.08

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

QB-S
PB

PB-A

Fig. 14. Diff. r

100

101

102

103

2d 3d 4d 5d

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e(
s)

QB-S
PB

PB-A

Fig. 15. Diff. d

We further investigate the impact of the number of
objects, the number of instances, the edge length and the
dimensionality against the performance of Algorithms
QB-S, PB and PB-A. As expected, the performance of
Algorithms PB and PB-A degrades on the growth of n
and m in Fig. 12 and Fig. 13 respectively. Nevertheless,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

the increase of their costs is slow compared with QB-S.
Fig. 14 demonstrates the performance of three algorithms
also degrades on the growth of r. It is interesting that the
performance of three algorithms influctuates against the
growth of the dimensionality in Fig. 15. This is because
the degree of the MBBs’ overlapping is reduced when
the dimensionality increases with same edge length,
which reduces the number of objects involved in the
computation, but on the other hand the computational
cost and I/O cost for each object are more expensive
when the dimensionality is high.

6.2.3 Cost Model Accuracy
We evaluate the accuracy of the cost model proposed
in Section B for Algorithms QB-S, PB and PB-A against
dataset EN . Recall that EN denote the synthetic dataset
where the centers of the objects follow the independent
(E) distribution and the instances of each object follow
the Normal (N) distribution. Fig. 16 plots the I/O com-
parison as a function of the density and k respectively.
The proposed cost model is highly accurate, incurring
a relative error less than 7% in most of the cases. As
expected, PB-A achieves the best I/O performance in all
settings.

E s t P B E s t P B - A Q B - S E s t Q B - S P B P B - A

 0

 500

 1000

 1500

 2000

 2500

 3000

1.0 2.0 3.0 4.0 5.0

IO

(a) Diff. Density

 0

 500

 1000

 1500

 2000

 2500

20 40 60 80 100

IO

(b) Diff. k

Fig. 16. I/O cost estimation

7 RELATED WORK
In this section, we introduce the existing works which
are closely related to the paper.

7.1 Conventional top k computation
Top k query processing is a very active research area
and various novel techniques have been developed. For
instance, FA [12] and TA [21] algorithms are proposed
to efficiently compute the top k objects to reduce the
access cost, where the attribute values of each object
are sorted and resident on multiple (distributed) data
repositories. Many efficient index techniques have been
proposed to pre-compute and organize the candidate set
based on the geometric properties of the convex and
skyline, such as Onion [5] and Skyband [20]. However,
in those conventional top k query processing techniques,
an object is usually represented by a point in a multidi-
mensional space and hence is ranked based on its unique

score regarding a preference function. Therefore, those
techniques cannot be directly applied to top k query on
multi-valued objects because the multiple instances of a
multi-valued object lead to multiple scores.

7.2 Top k query for Uncertain Objects
Recently, a large amount of work has been dedicated
to top k queries on uncertain objects with different
semantics, such as U-top k [25], U-k ranks [25], expected
rank based top k [7], [16] and quantile rank based top
k [16], parameterized ranking function based top k [17].

7.3 Rank Aggregation Methods
The problem of rank aggregation [4], [1], [11], [22] is to
compute a consensus ranking, given a set of individual
ranking preferences. For instance, in the metasearch the
system need to combine the results returned by mul-
tiple search engines in response to a given query. As
shown in the seminal work by Dwork in [11], there are
many rank aggregation methods such as Borda Count
method, Footrule methods and Markov chain methods.
Borda Count is usually described as a consensus based
voting system and has a wide spectrum of applications.
In order to avoid the “tyranny of the majority” [13]
which may happen in majority based voting systems,
the Borda’s method can seek the consent, not necessarily
the agreement, of participants and the resolution of
objections, which is widely used in various decision
systems [2], [27]. It is shown in [11] that the footrule
optimal aggregation is a good approximation of Kemeny
optimal aggregation, which ensures the satisfaction of
the extended Condorcet principle [24]. The markov chain
methods are proposed in [11], which can provide a more
holistic viewpoint of comparing all candidates against
each other.

7.4 KNN Query on multi-valued Objects
Zhang et al. [29] present a relevant study on multi-
valued objects, where the quantile distance is employed
to retrieve k nearest neighbors. The key idea is to use
φ-quantile of the distance (score) distribution of two
multi-valued objects to measure their closeness, where φ
(φ ∈ (0, 1]) is predefined. The φ-quantile based ranking
is equivalent to median-based rankind when φ = 0.5.
Similar to median-based ranking, for a pregiven φ value,
the φ-quantile based approach cannot properly capture
the distribution.

8 CONCLUSIONS
To effectively and efficiently process top k queries on
multi-valued objects, which has several applications, we
propose a novel ranking semantics, BC rank. We develop
effective and efficient BC rank based top k algorithms
and conduct comprehensive experiments on both real
and synthetic data to demonstrate the effectiveness and
efficiency of our techniques.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

REFERENCES
[1] J. A. Aslam and M. H. Montague. Models for metasearch. In

SIGIR, 2001.
[2] J. A. Benediktsson and I. Kanellopoulos. Classification of multi-

source and hyperspectral data based on decision. IEEE TRANS-
ACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE 2001.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR, pages 21–28, 1995.

[5] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and
J. R. Smith. The onion technique: Indexing for linear optimization
queries. In SIGMOD, 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms (second edition). 2001.

[7] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected ranks. In ICDE, 2009.

[8] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k
query answering for data streams. In VLDB, 2007.

[9] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications (2nd edition).
Springer-Verlag, 2000.

[10] J.-C. de Borda. Mmoire sur les lections au scrutin. 1781.
[11] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggrega-

tion methods for the web. In WWW, pages 613–622, 2001.
[12] R. Fagin. Combining fuzzy information from multiple systems.

J. Comput. Syst. Sci., 58(1), 1999.
[13] L. Guinier. Tyranny of the Majority : Fundamental Fairness in

Representative Democracy. 1995.
[14] A. Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD Conference 1984.
[15] R. Herrerias-pleguezuelo. Distribution Models Theory. 2005.
[16] J. Jestes, G. Cormode, F. Li, and K. Yi. Semantics of ranking

queries for probabilistic data. IEEE Trans. Knowl. Data Eng.,
23(12):1903–1917, 2011.

[17] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking
in probabilistic databases. PVLDB, 2(1), 2009.

[18] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate me-
dians and other quantiles in one pass and with limited memory.
In SIGMOD Conference, pages 426–435, 1998.

[19] R. Meester. A Natural Introduction to Probability Theory. 2004.
[20] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitor-

ing of top-k queries over sliding windows. In SIGMOD, 2006.
[21] S. Nepal and M. V. Ramakrishna. Query processing issues in

image (multimedia) databases. In ICDE, 1999.
[22] M. E. Renda and U. Straccia. Web metasearch: Rank vs. score

based rank aggregation methods. In SAC, 2003.
[23] A. D. Sarma, O. Benjelloun, A. Y. Halevy, S. U. Nabar, and

J. Widom. Representing uncertain data: models, properties, and
algorithms. VLDB J., 2009.

[24] J. H. Smith. Aggregation of preferences with variable electorate.
Econometrica, 41(6):pp. 1027–1041.

[25] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query
processing in uncertain databases. In ICDE 2007.

[26] Y. Theodoridis and T. K. Sellis. A model for the prediction of
r-tree performance. In PODS, pages 161–171, 1996.

[27] A. P. Topchy, M. H. C. Law, A. K. Jain, and A. L. N. Fred. Analysis
of consensus partition in cluster ensemble. In ICDM, 2004.

[28] H. P. Young. An axiomatization of borda’s rule. Journal of Economic
Theory, 9(1):43–52, 1974.

[29] W. Zhang, X. Lin, M. A. Cheema, Y. Zhang, and W. Wang.
Quantile-based knn over multi-valued objects. In ICDE, 2010.

Ying Zhang is a Research Fellow and Australian
Research Council Australian Postdoctoral Fel-
lowship (ARC APD) holder (2010-2013) in the
School of Computer Science and Engineering,
the University of New South Wales. He received
his BSc and MSc degrees in Computer Sci-
ence from Peking University, and PhD in Com-
puter Science from the University of New South
Wales. His research interests include query pro-
cessing on data stream, uncertain data and
graphs.

Wenjie Zhang is currently a lecturer and ARC
DECRA (Australian Research Council Discov-
ery Early Career Researcher Award) Fellow in
School of Computer Science and Engineering,
the University of New South Wales, Australia.
She received PhD in computer science and en-
gineering in 2010 from the University of New
South Wales. Since 2008, she has published
more than 20 papers in SIGMOD, VLDB, ICDE,
TODS, TKDE and VLDBJ. She is the recipi-
ent of Best (Student) Paper Award of National

DataBase Conference of China 2006, APWebWAIM 2009, Australasian
Database Conference 2010 and DASFAA 2012, and also co-authored
one of the best papers in ICDE2010, ICDE 2012 and DASFAA 2012.
In 2011, she received the Australian Research Council Discovery Early
Career Researcher Award.

Jian Pei is a Professor at the School of Comput-
ing Science, Simon Fraser University, Canada.
He is interested in researching, developing,
and deploying effective and efficient data anal-
ysis techniques for novel data intensive ap-
plications, including data mining, Web search,
data warehousing and online analytic process-
ing, database systems, and their applications in
social networks and media, health-informatics,
business and bioinformatics. He has published
prolifically and his publications have been cited

thousands of times. He has served regularly for the leading academic
journals and conferences in his fields. He is an ACM Distinguished
Speaker, and a senior member of ACM and IEEE. He is the recipient
of several prestigious awards.

Xuemin Lin is a Professor in the School of Com-
puter Science and Engineering, the University
of New South Wales. He has been the head of
database research group at UNSW since 2002.
He is a concurrent professor in the School of
Software, East China Normal University. Before
joining UNSW, Xuemin held various academic
positions at the University of Queensland and
the University of Western Australia. Dr. Lin got
his PhD in Computer Science from the University
of Queensland in 1992 and his BSc in Applied

Math from Fudan University in 1984. During 1984-1988, he studied for
Ph.D. in Applied Math at Fudan University. He currently is an associate
editor of ACM Transactions on Database Systems. He is a senior
member of IEEE. His current research interests lie in data streams,
approximate query processing, spatial data analysis, and graph visu-
alization.

Qianlu Lin is currently a PhD student in the
School of Computer Science and Engineer-
ing, the University of New South Wales, Aus-
tralia. She received her B.S. degree in com-
puter science from the University of New South
Wales, Australia. Her research focuses on high-
dimensional indexing.

Aiping Li received the BS and PhD degrees
in computer science and technology at Na-
tional University of Defense Technology (NUDT),
China in 2000 and 2004, respectively. He has
been an associate professor in the Institute of
Computer and Technology of National University
of Defense Technology, Since 2006. He vis-
ited the University of New South Wales, Aus-
tralia. His research interests include uncertain
databases, data mining,spatial databases and
time series databases.He is a member of the

IEEE.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

