
A Random Method for Quantifying Changing
Distributions in Data Streams

Haixun Wang1 and Jian Pei2

1 IBM T. J. Watson Research Center, USA
haixun@us.ibm.com

2 Simon Fraser University, Canada
jpei@cs.sfu.ca

Abstract. In applications such as fraud and intrusion detection, it is of great
interest to measure the evolving trends in the data. We consider the problem
of quantifying changes between two datasets with class labels. Traditionally,
changes are often measured by first estimating the probability distributions of the
given data, and then computing the distance, for instance, the K-L divergence,
between the estimated distributions. However, this approach is computationally
infeasible for large, high dimensional datasets. The problem becomes more chal-
lenging in the streaming data environment, as the high speed makes it difficult for
the learning process to keep up with the concept drifts in the data. To tackle this
problem, we propose a method to quantify concept drifts using a universal model
that incurs minimal learning cost. In addition, our model also provides the ability
of performing classification.

1 Introduction

In this paper, we studythe distance between two data distributionsinstead of two vec-
tors or two sequences. Assume tuples in a training setD are drawn from an unknown
distributionF (x, t). Each tuple is of the form(x, t), wherex is a vector andt is the
class label ofx. The task of supervised learning or classification is to learn the unknown
relationship betweenx andt, that is, to find a modelf∗(x), such that the averaged dif-
ference betweenf∗(x) andt is minimum.

We assume there are concept drifts in the unknown data distributionF (x, t). How
do we quantify the concept drift by defining and computing the distance between the
original datasetD and a new data setD′, which is drawn from the changed unknown
distribution? Furthermore, how quantified changes can be used to tune the modelf∗(x)
we learned before so that it maintains high accuracy on the changed data?

In the field of information theory, relative entropy, or the Kullback Leibler (K-L)
divergence, has been suggested as an appropriate measure for comparing data distri-
butions [5]. However, such methods are not computationally feasible for large, high
dimensional datasets, or data coming from continuous streams. In the field of data min-
ing, several works have studied how todetectchanges of data distributions over streams
and sequences [1, 10]. However, more often than not, change detection only serves to
trigger a costly learning process, and the change itself is not used to mend the current
prediction model directly. Recently, several works [8, 13] have studied how to update

the current modelf∗(x) in response to the concept drifts in data streams, for instance,
by assimilating new instances inD′ and forgetting old instances inD. These can be
very costly undertakings since they do not handle changes directly on the probability
distribution level, but rely on a lot of learning and re-learning.

We aim at devising an efficient method to measure distribution changes in high-
dimensional, labeled datasets. We assign asignatureto each dataset, and compare dis-
tribution changes by comparing the signatures. Furthermore, the signature should also
enable us to make predictions.

2 A Model-based Naive Approach

In this section, we introduce a naive but computationally feasible method for measuring
distances between two datasets. We analyze the prediction error of this naive approach
through bias/variance decomposition, and we study its impact on the distance measure.
In the next section, we introduce a general approach based on the lessons learned here.

x

y

X>x?

Y>y? Y>y’?

[0,30][10,0][0,20] [40,0]

(a) (b)

F T

TFF T

y’

Fig. 1. Model-based description

x

y

x*

y*

(a)

x

y

(b)

Fig. 2. Distribution Changes

2.1 Measuring Distribution Changes using a Classification Model

Assume we are given a datasetD which consists of a set of tuples(x, t), wherex is a
vector andt is the class label ofx. We learn a decision tree classifierTD from D. The
decision tree classifierTD can be regarded as a summarization of the class distribution
of datasetD. More specifically, letn1, n2, ..., nk be the leaf nodes ofTD. Each leaf
nodeni is associated with a class distribution (number of objects belonging to each
class). Together,(n1, n2, ..., nk) forms a special histogram of frequency counts.

For instance, in Figure 1(a) we show a two dimensional dataset where the shaded
areas in the top-left and bottom-right corner are populated with objects of one class, and
the rest of the area is populated with objects of the other class. In the rest of the paper,
we assume the number of objects in an area is proportional to the size of the area.

From the dataset, we learn a decision tree classifier, which partitions the two di-
mensional space into 4 areas, each represented by a leaf node as shown in Figure 1(b).
Each leaf node is associated with the number of objects of each class in that area. For
instance, the second leaf node to the left represents the top-left area, where we assume
[40,0] are the number of objects of the two classes in that area. All together, we can use

the class distribution of the objects in the leaf nodes to describe the dataset. We call it
thesignatureof the data:

([0, 20], [40, 0], [10, 0], [0, 30]) (1)

Assume now there is some distribution change in the underlying dataset. In one case,
the boundary of the shaded area moved fromx to x∗ horizontally and fromy to y∗

vertically, as shown in Figure 2(a).
We want to quantify the change using the model we learned from the original

dataset. Here, we use the decision tree to classify the changed data set, and use the
classification error to quantify the change. To a certain extent, the classification error
represents the magnitude of the change, but certainly not the change itself. Because, for
instance, datasets in Figure 2(a) and 2(b) will have the same classification error (com-
pared with the original data set in Figure 1(a), they have the same amount of shaded
area “out of the place”), but they have very different data distributions. Apparently, the
error-based distance measure cannot be used to replace or tune the predictions made by
the original decision tree for the changed data.

To ensure that the measure can represent, to a certain extent, the distribution of the
change so that it can be used to help make predictions without learning a new model
from the changed dataset, we simply ‘throw’ the objects in Figure 2(a) into the decision
tree learned from the original dataset. The class distribution in the leaf nodes is now the
signature of the changed dataset:

([0, 20], [38, 2], [10, 0], [2, 28]) (2)

Now, the dataset in Figure 2(b) results in a different signature:([0, 20], [40, 0], [10, 0], [4, 26]),
which means signatures are better than prediction errors in representing distributions.

Although we didn’t learn a decision tree from the new datasets, the signature, which
combines the original decision tree structure and the new class distributions in the leaf
nodes, give us some ability to make predictions. Take the dataset in Figure 2(a) and its
signature Eq (2) for example. If a test object is classified into the 2nd leaf node to the
left, the prediction that the object belong to the positive class will be the probability
output n1

n1+n2
= 38

38+2 , wheren1 andn2 are the number of positive and negative nodes
in that leaf node respectively.

The signatures also enable us to quantify the differences between the two datasets.
If we treat the signature as a vector, we can use anyLp metric to compute their distance.
For example, the distance function Eq (3) between two signaturesa andb is based on
the Manhattan distance:

Dists(a, b) =
1
2

n∑

j=1

c∑

k=1

|na,j,k

Na
− nb,j,k

Nb
| (3)

wheren is the number of leaf nodes,c is the number of different classes,na,j,k is the
number of nodes in thej-th leaf node that are of class labelk, andNa is the total number
of objects in dataseta. For any two signaturesa andb, we have0 ≤ Dists(a, b) ≤ 1.

This naive approach gives us the following benefits. First, it is computationally effi-
cient to compare the differences of two data distributions. Second, the data descriptors
can be used to make predictions. However, this naive method is also flawed.

2.2 Error Analysis

In the naive method, the model used to describe other datasets is partially learned from
a dataset which may have a very different data distribution. This can result in significant
prediction error and create problems for the distance measure. In this section, we first
reveal such problems, then we use bias-variance decomposition to study their cause.

positive:

v

x>v?

(a) Da (d)(b) Db (c)

x>v?

(e)

x>v?

(f)

negative:

[7,0] [0,4] [3,1] [1,3] [3,1] [1,3]

Fig. 3. A Greedy Learner

FromDa in Figure 3(a), we learn a decision tree, and we show the tree hierarchy in
Figure 3(d). We then populate the leaf nodes of the decision tree with objects in other
datasets. Figure 3(b) and 3(c) represent two very different data distributions. However,
because of the tree structure learned fromDa, a same signature,([3, 1], [1, 3]), will be
assigned to both datasets. Thus, the distance between the two very different distributions
is 0. The signature is thus inaccurate because of the possible large variance introduced
by training datasets such asDa.

For similar reasons, using signatures assigned by the naive method for prediction
is also flawed. We populate the leaf nodes of the decision tree learned fromDa in
Figure 3(a) with objects in datasetDb in Figure 3(b). This results in a signature of
([3, 1], [1, 3]). Such a signature apparently has large prediction error – even when it is
applied onDb itself, the error can be as large as 25% under zero-one loss.

Clearly, this is due to the fact thatDa’s data distribution is very different from
Db’s. Decision trees are built in a divide-and-conquer, greedy manner, and in this case,
there is no need to make a split on the Y axis for training setDa, although such a
split will result in the largest information gain as far as training setDb is concerned.
The difference of the two data distributions, combined with the greedy nature of the
decision tree construction process, results in a large prediction error.

We observe samples(x, t) drawn independently from some unknown distribution.
We want to learn the unknown relationship betweenx andt. That is, we want to find
a function,f∗(x), that minimizes a certain loss functionL(t, f∗(x)), whereL can be
zero-one loss, square loss, absolute loss, etc.

We use the notationf∗(x|D) to indicate that the prediction model we learn depends
on the training datasetD. We decompose the expected prediction error (EPE) into
three terms: noise (σ2), bias, and variance:

EPE(x) = σ2 + Bias(f∗(x|D))2 + V ar(f∗(x|D))

Let ED(f∗(x|D)) be the predicted value for samplex averaged over all the training
datasets. The variance can be expressed by:

ED(EDf∗(x|D)− f∗(x|D))2

The variance term measures how sensitive the predicted value atx is to random fluc-
tuations in the training dataset. Traditionally, a model is learned from a training dataset
D drawn from the data distribution we try to learn. In our case, we have two training
sets,Da andDb. FromDa we learn the structure of the histogram (or equivalently the
hierarchy of a decision tree), and fromDb we learn the data distributions within the
structure or within the hierarchy. The variance can thus be expressed by:

EDa,Db
(EDa,Db

f∗(x|Da, Db)− f∗(x|Da, Db))2

SinceDa might be drawn from a data distribution different from the distribution
of Db, which is the distribution we want to learn, by including bothDa andDb in the
condition, the variance is increased because of the added fluctuations.

3 A Universal Model

As discussed in the previous section, the majority of variance and bias is introduced due
to training setDa, from which we learn the structure of a histogram, or a hierarchy of a
decision tree. Furthermore, it constitutes the major part of the learning cost. When the
change of data distributions betweenDa andDb is non-trivial, the benefits of learning
the tree structure fromDa becomes insignificant, since there is no guarantee that such
a tree structure will fit the training dataset ofDb well. In this case, it becomes obvious
that using an arbitrary tree structure not only serves the same purpose but at the same
time eliminates the cost of learning such a structure.

Our goal is to find such an ‘arbitrary’ structure. It must be general and universal so
that it can fit ‘any’ datasetDb well, thus we can avoid the bias and variance component
in the prediction error such as those introduced by one particular datasetDa.

3.1 Distance by Random Signatures

A decision tree assigns a signature to a dataset. A signature can be regarded as a special
histogram. Each bin, which corresponds to a leaf node in the decision tree, is ‘cut out’ or
defined by the splitting conditions on the path from the root node to that leaf node. The
learning procedure determines those conditions as well as their applying order through
the computation of information gain.

Take the training setDa in Figure 4 as an example. It is a two dimensional dataset
with two class labels. FromDa, we learn a decision tree, which partitions the two
dimensional space into a set of ‘bins’, each of which is in fact a leaf node in the decision
tree. The signature is created by anentropy-based partition, since a decision tree is
often constructed through the computation of information gain. Note that this learning
procedure has super-linear complexity.

x

Fig. 4. A Decision
Tree Histogram

xx x

Fig. 5. Random Forest Histograms

We propose to create signatures by randomly partitioning the multi-dimensional
space into a set of bins. Figure 5 is such an example. The positions and the order of
the splits are totally random, and instead of creating one histogram, we create multiple
histograms, each of which is independently and randomly partitioned. In the following,
we study two different ways of random partitioning.

Random ForestWe use the following procedure to create a random decision tree for a
training datasetD.

1. partition(D): randomly pick an unused attribute to partitionD into D1, · · · , Dn;
2. for each partitionDi (1 ≤ i ≤ n), recursively invokepartition(Di) till the k-th

recursive level.

We repeat this processN times to create a forest ofN random trees [3]. Each tree
defines a signature, and the random forest consists ofN signatures for the dataset.

Random HistogramsWe use the following procedure to create a random histogram for
a training datasetD.

1. Randomly pickk attributes,a1, · · · , ak, as well as one value for each attribute, such
that{a1 = v1, · · · , ak = vk} defines a bin in the histogram.

2. Repeat the above stepM times so that we have a histogram ofM bins.

We repeat the above processN times to createN random histograms.

Each of the above methods createsN random structures. Given a datasetDx, we
populate the random structures with objects inDx, which results inN signaturesSx,1, · · · , Sx,N

for Dx. We use the same random structures for all datasets. Clearly, for any two datasets,
Da andDb, signaturesSa,i andSb,i have the same number of bins and each bin defines
the same subspace in the multi-dimensional data space. We then define the distance
between two datasetsDa and Db as: Dist(Da, Db) = 1

N

∑N
i=1 Dists(Sa,i, Sb,i),

whereDists is the distance between two signatures defined in Eq (3), and we have
0 ≤ Dist(Da, Db) ≤ 1.

The difference between this method and the naive method is that in this method,
i) the structure of a signature does not rely on one dataset (which is known asDa in
the naive method), and ii) instead of having one signature, it uses multiple signatures.
As will be discussed in detail in the following sections, the multiple random signatures
is capable of ‘fitting’ any dataset, which means the distance metric and the prediction
model will have high accuracy.

3.2 Classification by Random Signatures

A signature is composed of a set of histograms, each of which can be expressed by a
vector[n1, · · · , nc], whereni is the number of objects that belong to classi.

The signature is used for prediction: an testing object that falls into a bin with class
histogram[n1, · · · , nc] is classified to be of classi if i = arg maxi

ni∑
ni

. However, a

random signature is often a “weak” classifier.
The weakness of a single random signature can often be averted as our random

methods createN signatures for a training dataset. The final prediction is a voted com-
bination of all signatures. In other words, each signature is a classifier, and theN sig-
natures form a classifier ensemble.

Combining an ensemble of classifiers is an established research area [2, 6, 12]. Par-
ticularly, for random forests, the prediction accuracy is shown to be no less than that
of normal decision trees. Although each random signature is possibly a very “weak”
classifier, it has been shown that if each classifier in the ensemble is independent in the
production of its error, the expected error of the ensemble can be reduced to zero as the
number of the classifiers goes to infinity [7].

3.3 Signatures’ Structural Diversity

Whether the signature-based distance metric and prediction model are meaningful de-
pends on whether the random signatures can “fit” any dataset. The strength of an ensem-
ble comes from its diversity [9]. In this section, we discuss how to guarantee signatures’
structural diversity.

In an ensemble, a classifier is valuable if it disagrees on some inputs with the other
classifiers. Building a diverse ensemble in which each hypothesis is as different as pos-
sible is important to an ensemble method. Normally, diversity is measured by predic-
tion disagreements among ensemble classifiers. In our case, random structures are cre-
ated without a training dataset, which means we can only measure diversity by directly
studying the differences of their internal structures. In a signature, each bin corresponds
to a set of attribute values. We use the number of different attribute combinations as a
measure of diversity. Let A be the number of attributes of the datasets. For simplicity,
in our discussion we assume each attribute hasv unique values.

– In a random forest, each tree of heightk hasvk leaf nodes. The path from the root
node to any leaf node hask−1 edges. Thus, the diversity of attribute combinations
in one random tree is at mostmin(vk−1,

(
k−1
A

)
). In the worst case, all leaf nodes

(bins) share one attribute combination. Furthermore, attribute combinations may be
correlated.

– For random histograms, each bin is defined independently byk attribute values. To
compare with the above methods, we createvk bins. The diversity can be as high
asmin(vk,

(
k
A

)
). In the worst case, all bins share one attribute combination. This

occurs when all attributes are used (k = A), or each random selection returns the
same set of attributes.

In summary, random histograms provide the most diverse set of attribute combina-
tions with low correlation.

Our second question is how many bins should we keep in each random structure?
We answer this question for random histograms. For random histograms, the number
of attribute combinations is at mostmin(vk,

(
k
A

)
). Note that

(
k
A

)
reaches maximum

when k = A/2. Thus, whenvA/2 >
(
A/2
A

)
, we shall usek = A/2 attributes for

random histograms; otherwise, we shall usek attributes wherek satisfiesvk >=
(

k
A

)

andvk−1 <
(
k−1
A

)
.

4 Conclusion

The ability to quantify the similarity between two datasets is important to many ap-
plications, especially data stream applications that deal with time-changing data dis-
tributions. Statistical methods, such as K-L divergence and Kriging, are usually not
computationally feasible for large, high speed datasets. In this paper, we propose a new
approach based on the theory of random forests and classifier ensemble. To measure
the difference between two data distributions, our approach measures the difference be-
tween the models derived from the datasets. To do this, we must use models that can
truthfully represent the dataset, and models that can be trained efficiently. The mod-
els we propose for this purpose is the random histograms. The random histograms as-
sign datasets signatures, which serve for two purposes: i) to measure distance between
datasets by directly comparing signatures; and ii) to perform classification.

References

1. Charu C. Aggarwal. A framework for diagnosing changes in evolving data streams. In
SIGMOD, 2003.

2. Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants.Machine Learning, 36(1-2):105–139, 1999.

3. L. Breiman. Random forests.Machine Learning, 45(1):5–32, 2001.
4. Sergey Brin. Near neighbor search in large metric spaces. InVLDB, Switzerland, 1995.
5. Thomas M. Cover.Elements of Information Theory. Wiley-Interscience, 1991.
6. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. InICML,

pages 148–156, 1996.
7. L. Hansen and P. Salamon. Neural network ensembles.IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 12:993–1001, 1990.
8. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. InSIGKDD,

pages 97–106, San Francisco, CA, 2001. ACM Press.
9. A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning.

In Advances in Neural Information Processing Systems, volume 7, pages 231–238. MIT
Press, 1995.

10. Junshui Ma and Simon Perkins. Online novelty detection on temporal sequences. In
SIGKDD, 2003.

11. M. A. Oliver and R. Webster. Kriging: a method of interpolation for geographical informa-
tion systems.International Journal Geographic Information Systems, 4(3), 1990.

12. Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction in ensemble classi-
fiers. Connection Science, 8(3-4):385–403, 1996.

13. Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams
using ensemble classifiers. InSIGKDD, 2003.

