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Abstract. Benchmarking is among the most widely adopted practices in business to-
day. However, to the best of our knowledge, conducting multidimensional benchmarking
in data warehouses has not been explored from a technical efficiency perspective. In
this paper, we formulate benchmark queries in the context of data warehousing and
business intelligence, and develop algorithms to answer benchmark queries efficiently.
Our methods employ a few interesting ideas and the state-of-the-art data cube compu-
tation techniques to reduce the number of aggregate cells that need to be computed and
indexed. An empirical study using the TPC-H and the Weather data sets demonstrates
the efficiency and the scalability of our methods.
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1. Introduction

Organizations conduct benchmarking for continuous improvement. As a first
step, they want to identify if there are areas where they are not performing as
well as others. For example, an analyst is interested in finding the performance
of the senior sales representatives in Asia by measuring the average sales amount
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per representative. The analyst may then be interested in finding factors that
make up the context in which the performance of the senior sales representa-
tives is measured. These factors may include the product lines, the purchasing
customer industry, and the transaction time in a month. The analyst wants to
find other sales groups that are performing significantly better than the group of
senior sales representatives in Asia in some contexts. For example, some answers
interesting to the analyst may be, “compared to the group in question, the sales
representatives in North America outperforms the group most for selling laptops
to financial business customers during the first 2 quarters of the year”. This kind
of questions are also known as benchmarking analysis in business analytics, since
they try to find a benchmark for a query group.

The recognition of benchmarking as a useful management tool was formalized
in early 1980s when Xerox employed benchmarking as part of its “Leadership
through Quality”, a program to find ways to reduce manufacturing costs. In 1982,
Xerox determined that the average manufacturing cost of copies in Japanese com-
panies was 40-50% of that of Xerox’s, and they were able to undercut Xerox’s
prices effortlessly. As part of the “Leadership through Quality”, Xerox estab-
lished the benchmarking program, which played a major role in pulling Xerox
out of trouble in the years to come. Xerox since then has become one of the best
examples of the successful implementation of benchmarking [20].

Benchmark queries can be very sophisticated. For example, one may add
various constraints to refine search space. Instead of comparing a query group
with any group, one may only be interested in those groups that are super-groups,
sub-groups or sibling groups of the query group. For instance, the super-groups
of senior sales representatives in Asia are the sales representatives in Asia, the
senior sales representatives in the world, and all sales representatives in the
world. Likewise, the sibling groups of senior sales representatives in Asia are the
groups of senior sales representatives in other regions, such as North America,
South America, Europe, and the group of junior sales representatives in Asia.

Benchmarking in business is related to egocentric analysis. In egocentric anal-
ysis, given a query group, it tries to identify aspects in which the query group is
better than its peers. For example, given a group of senior sales representatives
in Asia as the query group, the egocentric analysis tries to identify the factors
by which this group performs the best compared to the other groups. An answer
may look like “compared to the senior sales representatives in other regions, the
query group has the best performance in selling desktop computers to educa-
tion customers”. If a query group cannot find a benchmark in a subspace, the
subspace is the answer to the egocentric analysis for the query group.

Data warehouses are the essential information infrastructure in modern en-
terprises. However, to the best of our knowledge, benchmarking effectively and
efficiently in data warehouses remains largely unexplored from a technical per-
spective in data management and analytics. Benchmark queries cannot be an-
swered online using the existing data cube and data warehouse techniques. Even
when we compute a whole data cube using all the attributes, in the context of
benchmarking, we need to define a query group and then need to search the cube
for the answers to the query. It is well recognized that the size of a data cube is
exponential with respect to the number of tuples and the dimensionality of the
base table.

In this paper, we tackle the problem of efficiently answering benchmark
queries. We make a few contributions. First, we formulate benchmark queries
technically. To the best of our knowledge, this technical problem has not been
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studied systematically in literature for computational efficiency. Second, we ex-
plore algorithmic approaches to benchmark queries. We develop two approaches.
First approach is the Sorted Inverted Index Cube (SIIC); we sort aggregate cells
in a cube and explore the idea of inverted index for fast access to the search
scope of a query. The second approach is the Dominant Answer Materialization
(DAM) approach; we exploit a property of aggregate cells to refine the defini-
tion of benchmark queries to remove redundancy in answers, thus achieving a
more efficiency. Finally, we conduct an extensive experimental study using both
synthetic and real data sets to determine the efficiency of our proposed methods.

The rest of the paper is organized as follows. In Section [2| we define bench-
mark queries and review related work. In Section [3] we develop a Sorted Inverted
Index Cube (SIIC) method. In Section |4} we propose a Dominant Answer Ma-
terialization (DAM) approach. We report an empirical evaluation in Section
Section [6] concludes the paper.

2. Problem Definition and Related Work

In this section, we first outline some preliminaries in data cube and multidimen-
sional analysis. We then define the benchmark queries formally.

2.1. Preliminaries

We largely follow the notations in the conventional data cube and data warehouse
literature [§]. Consider a relational table T'= (T'ID, Ay, ..., A, M), called base
table, and an aggregate function f, where TID is a tuple-id attribute to ensure
every tuple in the table is unique, A1, ..., A, are the dimensions attributes and
M is a measure attribute. We assume all dimension attributes are categorical, and
the measure attribute can be categorical or numeric. For a tuple ¢ € T, denote
by t. TID, t.A; and t.M the values of ¢ for the T'I D attribute, the dimension A;,
and the measure value of M, respectively.

Let D = {A4,,,...,A;} be a subset of dimensions, where 1 <i; <iy <--- <
i1 < n. D is often called a subspace. The cuboid on D is the group-bys using
attributes in D, denoted by Cp. Apparently, Cp is a set of tuples. Note that D
may be empty, that is, D = ().

An aggregate cell in the cuboid on D is a tuple ¢ =
(%, @iy s %, @iy, %, 04, %,a9gr) € Cp, where a;; belongs to the domain of
attribute A;;(1 < j <), meta-symbol * denotes that the dimension is general-
ized, and aggr = f({t.M | t.A;; = a;;,1 < j < 1}) is the aggregate of all tuples
in the group (*,a;,,*,ai,, -+ ,%,a;,%). To keep our presentation simple, we
overload the symbol ¢.M = aggr. Further, we ignore the aggregate cells c¢ if the
aggregate group {t | t.A;, = a;;,1 < j <1} is empty; that is, it does not contain
any tuple in the base table.

We can define a partial order < on cuboids. The cuboids Cp, < Cp, if
D1 C Ds. The set of cuboids form a lattice with respect to partial order <. We
can also define a partial order < on aggregate cells. The cells t; < to if for each
dimension A; (1 <i < n), when t1.4; # x, then ¢1.4; = t5.4;. We also say t; is
an ancestor of ty and to a descendant of t1. The set of aggregate cells too forms
a lattice with respect to partial order <. For two aggregate cells t; and ts, t; is
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a sibling of to if t1 and to have identical values in all dimensions except for one
in which neither has value “x”.

A data cube is the set of cuboids on all possible subspaces, that is, all subsets
of dimensions, including the empty set. Equivalently, a data cube is also the set
of all aggregate cells. We denote a data cube by cube(T, DIM, M, f), where T is
the base table, DIM is a subset of attributes of T" that are used as the dimensions
in the cube, M is the measure attribute, and f is the aggregate function.

For two aggregate cells w and v, if there does not exist a dimension A; such
that neither u.A; nor v.A; has value “x” and u.A; # v.A;, then the concatenation
of u and v, denoted by w = u ® v, is an aggregate cell such that for attribute
A;, wA; = u.A; if u.A; # *, otherwise w.A; = v.A;.

Example 1 (Preliminaries). Consider a relation table T = {TID, position,
gender, location, salary} for sales representatives of a company, where position,
gender, and location are the dimensions and salary is the measure. Suppose
we use avg() as the aggregate function, ¢ = (x, male, *,avg()) is an aggregate
cell, which represents the average salary of all male sales representatives of the
company.

Consider aggregate cells v = (senior,*,x), t = (senior, male,*) and ¢’ =
(senior, female, x). We have w < ¢, which means u is an ancestor of ¢, and
t is a descendant of w. Further, ¢ and ¢ are siblings. Aggregate cell v =
(*, male, North America) represents the male sales representatives in North
America. We can use the concatenation operator to get all senior male sales repre-
sentatives in North America; that is, w = u®v = (senior, male, North America).

n

2.2. Benchmark Queries

We consider a relational base table T = (TID, Ay, ..., Ay, M). The attributes
of T that will be used in a benchmark query can be divided into three groups:
the wnit-id attributes UID, the dimension attributes DIM, and the measure
attributes M, where UIDU DIM C {A4,...,A,}. We do not require that UID
and DIM are exclusive, that is, UID N DIM = () is not assumed.

The unit-id attributes are used to group tuples in T into aggregate units.
Since the term “group” can mean different things, to avoid confusion, for the
rest of this paper, we call a group a unit. We consider the data cube formed
using the unit-id attributes UID where each aggregate cell in the data cube
corresponds to a unit. We are interested in comparing the performance of the
units.

The dimension attributes are used to conduct multidimensional comparative
analysis between two units. The measure attribute is used to calculate aggre-
gates and derive quantity analysis. For the sake of simplicity, we have only one
measure attribute in our discussion. However, our methods can be extended to
the scenarios where multiple measure attributes are used to derive sophisticated
aggregates. We also assume that the measure attribute takes non-negative val-
ues. This assumption often is true in many business intelligence applications. For
example, measures such as count, sales volume, and amount are often used in
practice. Even when a measure can take negative values, we can always normal-
ize the attribute such that the normalized measure attribute has non-negative
values.
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For each non-empty unit that consists of at least one tuple in the base table,
using the dimension attributes DIM and the measure attributes M, we can form
a data cube, which quantifies the performance of the unit in multidimensional
aspects.

Example 2 (Attributes). Consider base table T' = {age-group, gender, location,
position, education, salary} that contains properties of employees of a company.
For simplicity, we omit the tuple-id attribute.

Suppose we use attributes UID = {age-group, gender} as the unit-id at-
tributes. That is, we are interested in comparing various groups formed by the
group-by operation by these two attributes. For example, (young, male) and
(mid-age, *) are two aggregate units.

We use attributes DIM = {location, position, education} as the dimension
attributes. That is, we compare units by those three dimensions. Finally, we use
M = {salary} as the measure attribute. Using the aggregate function average, we
can compare the average salary between different units with respect to different
office locations, positions, education levels and their combinations. For example,
we may find that, for the position “technical support” at location “Vancouver”,
the age group “mid-age” has a much higher average salary than the age group
“young”. A possible explanation may be seniority and years of experience. [

As noted earlier, unit-id attributes and dimension attributes may not be
exclusive. That is, an attribute may be both a unit-id attribute and a dimension
attribute. Technically, we can always create a copy of an attribute that is used as
both a unit-id attribute and a dimension attribute. As such, one copy is used as a
unit-id attribute and the other copy is used as a dimension attribute. Therefore,
without loss of generality, for the rest of the paper, we assume that the unit-id
attributes and the dimension attributes are exclusive.

To compare two aggregate cells ¢ and ¢, we are interested in the ratio of
their measures. In the rest of the paper, we focus on the ratio CC,A]@ The larger
the ration, the better ¢ is. Our discussion can be extended to comparing two
aggregate cells in some other ways.

For a unit u, an aggregate cell ¢ defined using the dimension attributes is
called an aspect of u if u ® ¢ is in the cube Cube(B,UID U DIM, M, f). Given
two units v and v defined using the unit-id attributes and an aggregate cell ¢

defined on the dimension attributes such that ¢ is an aspect of both u and v,
(u®c). M

measures the advantage of v over v in aspect c. The larger the ratio, the

(v®c).M
better u is in ¢ than v. We denote by R(u/v | ¢) = Ezgz;’%, the advantage of u
over v in c.

We define a benchmark querie benchmark query @ as follows:

— a base table T" and the specification of the unit-id attributes UI D, dimensions
DIM, and measure M;

— a query unit ¢ that is an aggregate cell in the data cube formed by the unit-id
attributes UID;

the search scope, namely ancestors, descendants and siblings; and

— a parameter k.

Let u be a unit on the unit-id attributes and ¢ be an aspect of the query unit
q- (u,c) is a top-k answer to the benchmark query @ if:



age-group | gender | location position education Sales
young M Vancouver | staff University | 200
young F Seattle manager | College 230
young F Seattle manager | University | 220
mid-age M Vancouver | staff College 220
mid-age M Seattle staff University | 200
mid-age M Vancouver | manager | University | 224

Table 1. Base table of employees of a company.

— wu is in the search scope; that is, an ancestor, a descendant, or a sibling of
q.UID as specified in the query input;

_ (u®c).M
(q®c).M

> 1; and

— there are at most k& — 1 pairs (v, ¢’) such that ' is also in the search scope,

¢ # c is another aspect of u, and ((’; ’gcc/’))‘% > Ezgz)) %
The requirement ((Zgg _']J\\g > 1 ensures that u has a non-trivial advantage over ¢

in ¢ and thus is a significant benchmark for q. We ignore the aggregate cells ¢
such that ¢ ® ¢ is empty. For each answer (u,c) in the top-k answers, u is called
a benchmark unit, and the subspace c is called the benchmark aspect of u.

Given a benchmark query @, we want to compute all top-k answers to the
query. When there are multiple answers (u, ¢) with the same advantage over the
query unit ¢, we will return more than k answers.

Example 3 (Benchmark query). Consider base table T' = {age-group, gen-
der, location, position, education, salary} that contains properties of a com-
pany. Table [I| shows the base table. We use avg() as the aggregate function.
Let UID = {age-group,gender}, DIM = {location, position, education}, and
M = {sales}.

Suppose the query unit is ¢ = (young, Male), k = 2, and the search scope is

siblings. The top-2 answers are ((young, Female), (x, *, %)) (ratio: 222 = 1.125),

200
224

((mid-age, Male), (Vancouver, *, University)) (ratio: 555 = 1.12). (*,*,*) and

(Vancouver, *, University) are the corresponding aspects. m

Aggregate functions can be categorized into two types: monotonic aggregates
and non-monotonic aggregates. An aggregate function f is monotonic if for any
aggregate cells ¢; and ¢o such that ¢; < co, f(c1) > f(c2). An aggregate function
is mon-monotonic if it does not have this property. For example, if the mea-
sure attribute only has non-negative values, then aggregate functions sum() and
count() are monotonic. Aggregate function avg() is non-monotonic.

For a monotonic aggregate function, answering a benchmark query is straight-
forward, since the apex cell (x, *,...,*) always has the largest aggregate value
and thus the largest ratio. However, using a monotonic aggregate function in a
benchmark query is uninteresting because it does not lead to any notable knowl-
edge discovery. In this paper, we assume that the aggregate functions used are
non-monotonic, such as, avg(), and aggregate values are positive. The methods
developed here can be applied to cases where aggregate functions are monotonic.
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2.3. Related Work

Benchmark queries are related to iceberg queries, gradient analysis, and
discovery-driven OLAP. We briefly review the existing studies and how bench-
mark queries differ from them.

In online analytics processing (OLAP) in data warehouses, iceberg queries [7]
compute the aggregate cells whose aggregate values are over a user defined
threshold. For example, in a data cube of sales data, an iceberg query may return
all the aggregate cells whose total sales amount is over 100 thousand dollars.

Iceberg queries have been extensively studied. A focus is on efficient algo-
rithms for answering iceberg queries. For example, Beyer and Ramakrishan [2]
proposed algorithm BUC which computes iceberg cubes with monotonic ag-
gregate functions. Han et al. [9] developed a method for computing iceberg
queries with non-monotonic aggregate functions. Ng et al. [16] investigated ice-
berg queries on distributed systems. Chen et al. [5] explored iceberg cube com-
putation in shared-nothing clusters. Lo et al. [I5] extended iceberg queries to
sequence data. Recently, He et al. [I0] used patterns as “dimensions” in iceberg
queries on sequences. Chen et al. [4] extended iceberg queries to graphs.

Although both iceberg queries and benchmark queries are concerned with
aggregates, they are fundamentally different. Iceberg queries do not use any query
unit and do not compare aggregate cells. Further, while Iceberg queries are often
used as the first step for materializing a scope for further analysis, benchmark
queries are tools for more focused analysis on a target unit. Benchmark queries
cannot be answered by a straight application of iceberg query methods.

In gradient analysis [0 [13], given a probe aggregate cell ¢, we want to find
all pairs of aggregate cells (¢g,v) such that ¢ is an ancestor of v and the change
of aggregates from ¢ to v is significant, guarded by a gradient threshold. For
example, given that the average house price in Vancouver is 1.1 million dollars as
the probe cell, using gradient analysis we can find all the sub-regions of Vancouver
where the average house price is 20% higher than 1.1 million dollars. Gradient
analysis has been found useful in business intelligence [3] [I7]. More efficient and
effective algorithms were proposed [19]. We note that gradient analysis can also
be extended to search for pairs (v, q), where ¢ is a descendant of v.

There are some similarities between gradient analysis and benchmark queries.
First, both gradient analysis and benchmark queries use a query aggregate cell,
and find interesting aggregate cells when compared to the query cell. Second,
both gradient analysis and benchmark queries use the aggregate ratios as the
significance measure. Third, both gradient analysis and benchmark queries can
search ancestors and descendants of the query cell. However, the two types of
queries have some fundamental differences. Gradient analysis does not separate
the unit attributes and the dimension attributes. Gradient analysis in this sense
can be regarded as a special case of benchmark queries where the set of dimension
attributes DIM is empty. Also, the business objectives for the two are also very
different. Benchmark queries facilitate more detailed multidimensional analysis
for comparing the query unit with the other units in the intended search scope.

Sarawagi et al. [I§] developed the notion of discovery-driven exploration of
OLAP cube. The main idea is to identify anomalies within a data cube and
provide proper indicators in the corresponding aggregate cells. Both discovery-
driven exploration of OLAP cube and benchmark queries want to find significant
exceptions. However, discovery-driven exploration does not focus on one query
cell. It instead considers all descendant cells for each aggregate cell. Further, the
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objectives in the two problems are very different. Discovery-driven exploration
aims to provide navigation guidance for users to browse interesting regions of
a cube, while benchmark queries compares a query unit with the other units.
Thus, the measures used are very different.

Common forms of benchmarking methods lend from economic efficiency anal-
ysis which involve parametric and non-parametric techniques. The primary ob-
jective of both is to measure the technical efficiency which is defined as the ability
of a producer to produce maximum output from a given set of inputs. Techni-
cal efficiency thus is translated as the success indicator of performance measure
by which producers are evaluated. Given the importance of technical efficiency
analysis, several models of frontiers have been developed. The frontier models are
based on the premise that efficient producers operate on the production frontier
using the most efficient technology available, while inefficient producers operate
below the production frontier and the level of inefficiency is measured by the
deviation from the frontier [I2]. The major advantage of this method is that it
allows the test of hypothesis concerning the goodness of fit of the model. The
stochastic aspect of the model allows it to handle measurement problems appro-
priately and other stochastic influences that would otherwise show up as causes
of inefficiency [I1]. However, the major drawback is that it requires specification
of technology, which may be restrictive in most cases [12].

Data Envelopment Analysis (DEA) is a non-parametric linear programming
technique widely used in the operations research and management science liter-
ature [I]. DEA estimates the cost level that an efficient organization should be
able to achieve in a particular market. The model seeks to determine an envelop-
ment surface, also referred to as the efficiency frontier. Rather than estimating
the impact of different cost drivers, DEA establishes an efficiency frontier (taking
account of all relevant variables) based on the “envelope” of observations. Each
organization is then assigned an efficiency score based on its proximity to the
estimated efficiency frontier. With DEA, the efficient frontier (determined by the
efficient organizations in the sample) is the benchmark against that the relative
performance of organizations is measured.

As pointed out earlier, conducting benchmarking effectively and efficiently
using scalable computational technology, particularly on readily available data
warehouse infrastructure, has not been explored in literature. Bridging the gap
between business needs and the technology motivates this study.

3. A Sorted Inverted Index Cube (SIIC) Method

With the advanced data warehousing techniques, we can materialize a mul-
tidiemsional data cube. We assume a data cube materialization method
Cube(B,{A1,...,A,}, M, f) that computes a data cube from a multidimensional
table B using the attributes Aq,..., A, as dimensions, M as the measure, and
aggregate function f. In our experiments, we use the BUC algorithm [2] to ma-
terialize a data cube.

For each possible unit u, let B, be the set of tuples in the base table that
belong to u. That is, B, = {t | t € BAu = t}. Given a query unit ¢, a benchmark
query compares the data cube Cube(B,, DIM, M, f) and Cube(B,,, DIM, M, f)
for every unit u in the search scope.

To facilitate answering benchmark queries, we can materialize
Cube(B,, DIM, M, f) for every unit u. This is equivalent to materializing
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the whole data cube Cube(B,UID U DIM, M, f), since we also need to find all
units using attributes UID. The remaining problem is how to find answers in
the whole data cube.

A naive method would be to, given unit ¢, we search every unit u in the scope
and compute the advantage of u over ¢ on every possible aggregate cell ¢ in the
set of attributes DIM. However, the search scope of a query unit may contain
an exponential number of units. Also, there are another exponential number of
aggregate cells in the set of attributes DIM. As a result, checking the advantage
for every unit u in every subspace c is very time consuming. To address this,
we want to organize units and aspects systematically such that the search can
ignore many non-promising aggregate cells. To that end, we propose a method
based on simple ideas.

3.1. Inverted indices for Fast Search

We use two simple ideas to facilitate fast search.

The first idea is to sort all aggregate cells in the cube Cube(B,UID U
DIM, M, f) in the aggregate value descending order. We search aggregate cells
in this order for query answering. Using this order, we visit the aggregate cells of
larger aggregate values earlier and thus heuristically we have a better chance of
getting aggregate cells that have more significant advantage over the query cell.

Let <qg44r be the aggregate value descending order on all aggregate cells in
Cube(B,UIDUDIM, M, f). If there are two or more aggregate cells having the
same aggregate value, the tie can be broken arbitrarily. For any aggregate cells
u and v, if u <qg¢r v, then u.M > v.M.

The second idea is to facilitate the visit of aggregate cells in the search scope
using inverted indices. For every unit-id attribute, we maintain an inverted index
for each value of the domain to record the list of aggregate cells containing the
value. Suppose a;; is a value in the domain of unit-id attribute A;. We build an
inverted index Index,,, which is a list of aggregate cells u € Cube(B,UIC U
DIM, M, f) such that u.A; = a,;. All the aggregate cells in every inverted index
list are sorted according to the order <gqqr-

We can retrieve all aggregate cells of cube Cube(By, DIM, M, f) using the
inverted indices efficiently in a way similar to merge-sort. Let ¢ be the query
unit, and q.4;,,...,q.A;, are the unit-id attribute values that are not *. To find
all aggregate cells for the unit ¢, we only need to search the inverted indices
Indexq 4, -, Indexq_Ail and find all aggregate cells ¢ such that ¢ appears in
every list Index,, Ai and has the value * in all other unit-id attributes. Since we

scan the inverted index lists in the order of <444, we can find all aggregate cells
in unit ¢ in one scan.

We also show that retrieving all unit aggregate cells in the search scope,
that is, ancestors, descendants and siblings, can also be conducted efficiently
using the inverted index in a way similar to merge-sort. Let ¢ be the query
unit, and q.4;,,...,q.4;, be the unit-id attribute values that are not *. To
search for the ancestor units and their aggregate cells, we scan the inverted
indices Indexq.a, ,...,Index, 4, ina synchronized manner. Except for unit
(*,...,%), which can be checked separately as a special case, an aggregate cell
¢ is an ancestor of ¢ if (1) ¢ appears in at least one of the inverted index
Inalexq,Ai1 e ,Inde:rq_Ail; and (2) c.Aij = x if ¢ does not appear in Indexq,Aij.
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Inverted indexes of ‘young’ Inverted indexes of ‘M’
(young, F, *, *, *) 225 (mid-age, M, Vancouver, *, University) 224
(young, *, S, *, *) 225

(young, M, Vancouver, staff, University) | 200

(young, M, Vancouver, staff, University) | 200 (young, M, Vancouver, *, University) 200

Fig. 1. Example of SIIC, using inverted indices for values “young” and “M”.

Again, since we scan the inverted indices in the order of <444, we can find all
ancestor units of ¢ and their aggregate cells in one scan.

To find all descendant units, we search the inverted indices
IndequAil,...,Indeﬂcq.Ail and find all cells ¢ such that ¢ appears in ev-
ery inverted index Index,. Ai and takes a non-* value in at least one unit-id
attribute other than A, ,...,A;,. To find all siblings of ¢, we search the
inverted indices Indexq.a, ;... ,Indexq.Ail and find all cells ¢ such that (1) ¢

appears in every inverted index Index, 4, except for one, say Indexq a, ; (2)
vj ‘4o

c.Ai; # q.Ai, and c.A;; # % and (3) c.A;; = * if ¢.A;; = *. Clearly, the
above two searches can be achieved in one scan of the inverted indices.

Example 4 (SIIC). We use Table as the example. Let avg() be
the aggregate function. Let UID = {age-group,gender}, DIM =
{location, position, education}, and M = {sales}.

First, we build an inverted index for each value in the domain of every unit-id
attribute. Two examples of inverted indices are shown in Figure [f}

Suppose the query unit is ¢ = (young, M), we can find that
(young, M, Vancouver, staff, University) appears in both the inverted indices
of young and M, thus (young, M, Vancouver, staff, University) must be an
aggregate cell of unit ¢. Similarly, we can easily find the set of all ag-
gregate cells of unit ¢, {(young, M, Vancouver, staff, University) : 200,

(young, M, Vancouver, *, University) : 200,. ..}, using the inverted indices.

To find all aggregate cells of the ancestors, descendants and siblings of ¢, we
can apply the similar technique to the search scope of ¢. For example, to find
all the aggregate cells of the sibling unit (young, F), we only need to check the
aggregate cells appearing in both the inverted indices for “young” and “F”.
We have all aggregate cells sorted in the search scope {(young, F, * * *) :
225, (mid-age,M), (Vancouver,* University) : 224, ...}.

We will continue and complete the query answering process in Example[5| =

3.2. Pruning

Since we scan the aggregate cells in the aggregate value descending order, we
maintain the top-k answers we have seen so far. We have the following property.

Lemma 1. Consider an aggregate cell ¢ on the dimension attributes such that
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Sorted list Current Top-2

(young, F, %, % %) 225 (young, F, i *,%%) 225

mid-age, M,: Vancouver, *, Universi 224
g ty

current scan

M 1
i (young, F, *, % University) 220 i<—
[N | query
(mid-age, M, | *, *, University) 212
pruned (young, M, | *, * *) 200
(young, *, *, *, University) 210

Fig. 2. Example of SIIC with pruning.

g®c is not empty. For two units u and v’ such that u@c¢ <4gqr ¥ Rc, EZSS:JI\Z >

(u'®c).M
(q®c).M *
Proof. We only need to recall that, if u® ¢ <qgqr ¢ ® ¢, (U@ c).M > (W ®c).M
and the assumption that the aggregate values are positive. [

Using the result above, for any aggregate cell ¢ on the dimension attributes
such that c is an aspect of g, that is, ¢ ® ¢ is not empty, if we meet the condition
where an aggregate cell v = u ® ¢ such that (u,c) is not qualified as a top-k
answer among the aggregate cells processed so far, then any pairs (u/,¢) to be
scanned later is not qualified either, and thus ¢ can be pruned.

Let v be the current aggregate cell we are considering in the inverted indices.
For any aspect c of g, if % is less than the top-k answers we have seen so
far, then no aggregate cells after v in the sorted list can form a pair (u,c) such
that v = u ® ¢ and (u, ¢) is qualified as a top-k answer. In this case, the aspect
¢ can be pruned as well.

Using the above pruning rules, we can prune the aspects of ¢, that is, the
aggregate cells in cube Cube(By, DIM, M, f). Once all aspects of ¢ are deter-
mined to be either included in the current top-k answers or pruned, the search
can terminate and the current top-k answers can be returned as the final answers
to the benchmark query.

Example 5 (SIIC cont’d). We incorporate pruning techniques into Example

Suppose the query umit is ¢ = (young, M), and we want to find the
top-2 benchmarking answers. Assume that we have {(young, M, * * *) :
225, (mid-age, M, Vancouver, *, University) : 224} as the current top-
2 benchmarks, as illustrated in Figure We are scanning the aggre-
gate cell {(young, F, * * University) : 220}. It is easy to verify that
{(young, F, *, * University) : 220} is not qualified as a top-2 answer. We also
know that every unit cell appearing after {(young, F)} has a smaller aggregate
value than {(young, F, *, *, University) : 220}. Thus, all the following unit cells
compatible with {(*, *, University)} can be pruned. m

4. A Dominant Answer Materialization (DAM) Method

The SIIC method uses some simple yet efficient techniques to accelerate answer-
ing benchmark queries. However, there is one severe drawback; that is, in the
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worst case, we still have to go through the list of all aggregate cells of the whole
data cube Cube(B,UID U DIM,M, f). This can incur a significant cost when
the data cube is large. In this section, we develop a new method that can answer
benchmark queries efficiently if the search scope does not involve siblings.

4.1. Search Scope of Ancestors

We consider the search scope of ancestors first and discuss how to address the
search scope of descendants later.

Consider a query unit ¢ and a unit « that is an ancestor of ¢; that is, u < q.
Then, u is called a mazimal unit of ¢ with respect to aspect ¢ if ¢ is an aspect
of both ¢ and u, and there does not exist another ancestor u’ of ¢ such that
(u'®c).M > (u®c).M
(q®c).M (q®c).M *

We observe the following.

Theorem 1 (Monotonicity). Given a unit q, if a unit u is a mazimal unit of q
with respect to aspect c, then for any unit ¢’ such that u < q' < q, u is also a
mazimal unit of ¢' with respect to c.

Proof. We prove by contradiction. Assume that u is not a maximal unit of ¢’
with respect to c¢. Then, there exists another unit u’ such that v’ < ¢’ and
(v’ ®c). M > (u®c).M

(@’®c).M ~ (¢'®c).M" ,
Since v’ < ¢’ and ¢’ < q, we have v’ < q. Since v’ < ¢/, Eg,gg:% > ((;gcc))..%’

and the measure values are non-negative, we have (v’ ® ¢).M > (u ® ¢).M.

Consequently, we have ((’;'gf))_ﬁ > EZ;’S:%. That is, u is not a maximal unit of
q with respect to c¢. A contradiction. ]

Theorem [1| suggests a useful hint for answering benchmark queries. Multiple
query units may share a common aggregate unit as an answer for benchmark
queries. To answer benchmark queries efficiently, we can precompute those ag-
gregate units and the associated aspects that may be answers to benchmark
queries. With that in mind, the problem now is, for an aggregate unit u, which
query units may take u as a possible answer to benchmark queries, and with
respect to which aspects? The following lemma answers this question.

Lemma 2. For aggregate units u and v such that u < v, let ¢ be an aspect of
both uw and v. Then, u is not a maximal unit of v with respect to c if:

1. there exists an ancestor v’ < u such that (v ® ¢).M > (u® c¢).M; or
2. there exists a descendant u” such that u < v’ < v and (u®c).M < (v ®c).M.

Proof. If there exists an ancestor v’ < u such that (v’ ®c¢).M > (u® c¢).M, then
R(u' /v | ¢) > R(u/v | ¢). If there exists a descendant u” such that u < u” < v
and (u®ec).M < (v’ ®¢).M, then R(u" /v | c¢) > R(u/v | ¢). In both cases, u is
not a maximal unit of v with respect to c. [

According to the first statement in Lemma [2] in order to answer benchmark
queries whose search scope is ancestors, we do not need to store the whole data
cube Cube(B,UIDUDIM, M, f). Instead, we only need to store those aggregate
units u and aspects ¢ whereby there does not exist another unit v’ and ¢’ and
(u®c).M < (v ®¢).M. In other words, we only need to store those units and
aspects whose measure values are not dominated by any of their ancestors.
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For an aggregate unit u and aspect ¢, we call (u,c) a dominant answer if
there does not exist another unit «’ and ¢’ and (u® ¢).M < (v’ ® ¢).M. Thus, to
answer any benchmark query, we only need to materialize all dominant answers.

Once all dominant answers are materialized, we can organize those dominant
answers using inverted indices as described in the SIIC method. The query an-
swering method remains the same. The second statement in Lemma 2] guarantees
the correctness. The major saving in the DAM method is that we do not need
to store or search any non-dominant answers.

The last remaining is how to compute the dominant answers. A brute-force
method would be to compute a full data cube and then select the dominant
answers from all the aggregate cells. Since we are concerned with groups of
aggregate cells with different measure values, we can adopt the quotient cube
method [14].

The quotient cube method [14], instead of computing all the aggregate cells in
a cube, it groups the aggregate cells according to the tuples in the base table that
contribute most to the aggregate of the cells. For an aggregate cell u, the method
considers the set of descendant tuples in the base table cov(u) = {t | u < t,t €
B}. If two aggregate cells u; and us share the identical set of descendant tuples in
the base table; that is, cov(u1) = cov(us), then the two cells are allocated to the
same quotient group. It was shown that each quotient group has a unique upper
bound, which is also in the group [14]. In other words, if there are aggregate cells
uy and wug such that cov(uy) = cov(ug) but u; £ uy and ug A wy, then there
exists another aggregate cell u such that u < u, u < ug and cov(u) = cov(uy) =
cov(us).

The quotient group technique thus is suitable for answering benchmark
queries. We only need to materialize the upper bounds of the quotient groups
that are dominant answers.

Example 6 (DAM). We continue with Table |l We assume that the query unit
is ¢ = (young, M) and use average (avg()) as the aggregate measure.

The set of ancestors of the query unit is {(*, M), (young, *), (*, *)}. It is
easy to verify that v = (*, M) is a maximal unit of ¢ with respect to the aspect
¢ = (Vancouver, *, University), and v = (*, *) is a maximal unit of ¢ with
respect to the aspect ¢ = (Vancouver, staff, *).

According to the base table, ((mid-age, M), (Vancouver, *, University)) is a
dominant answer since there does not exist a unit v’ that has a greater aggregate
value than avg((mid-age, M) ® (Vancouver, *, University)).

As an example of quotient cube based on the base ta-
ble, we can verify that cov(mid-age, M, Vancouver, manager, *) =
cov(mid-age, M, *, manager, University); they have the same set of de-
scendant tuples in the base table. Thus, these two aggregate cells are in the
same quotient group. Finally, (mid-age, M, *, manager, *) is the upper bound
of the group.

With the aid of the quotient cube algorithm, we can material-
ize all dominant answers from the quotient groups in Table that
is, {(young, F, * * *) (mid-age, M, Vancouver, *, University),...}. Unlike the
SIIC method, we only store the dominant answers with the DAM method; this
reduces both the search space as well as time. Once a query is given, we can use
the inverted indices to answer the query efficiently. (]
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4.2. Search Scope of Descendants

We now consider benchmark queries with the search scope of descendants. Given
a query unit ¢ and a unit u that is a descendant of ¢; that is, u > ¢g. Then, v is

called a mazimal unit of ¢ with respect to aspect cif ¢ is an aspect of both ¢ and w,
t (u'®c).M > (u®c).M
(q®c). M (q®c).M *

and there does not exist another descendant u’ of ¢ such tha
We have the following result similar to Theorem

Corollary 1 (Monotonicity). Given a unit q, if a unit v is a mazimal unit of
q with respect to aspect ¢, then for any unit q' such that v = ¢ = q, u is also a
mazimal unit of ¢' with respect to c. [

We also have a result similar to Lemma 2

Corollary 2. For aggregate units u and v such that u = v, let ¢ be an aspect of
both w and v. Then, u is not a mazximal unit of v with respect to c if

1. there exists a descendant u' = u such that (v’ ® ¢).M > (u® ¢).M; or
2. there exists an ancestor u” such that u > u” > v and (u®c).M < (v’ ®c).M.

We thus have a method similar to that for the search scope of ancestors.

5. An Empirical Study

We present an empirical study in this section. The algorithms were implemented
with Python 2.7 running with PyPyEI JIT optimization. PyPy is an advanced
just-in-time compiler, which provides about 10 times faster running time and
additional scalability for our algorithms than the standard Python. All experi-
ments were conducted using an Intel Core i7-3770 3.40GHz CPU, 16GB memory,
and a 1'TB HDD running Ubuntu 14.04.

5.1. Data Sets and Experiment Settings

We evaluated our algorithms on both synthetic data and real data.

— TPC-H benchmark (synthetic data). TPC-H (as of the experiemtns, we
used TPC-H v2.17.1) is a widely used benchmark that consists of a suite of
business oriented ad-hoc queries and concurrent data modifications. TPC-H

has 8 separate and individual base tables. We used the joined results of table
PART and table LINEITEM as the evaluation base table.

— Weather data set (real data). The weather data setﬂ contains 1,015, 367
tuples with attributes including station-id, longitude, latitude, solar-altitude,
present-weather, day, hour, weather-change-code, and brightness.

In our experiments, 100 queries were randomly generated for each data set.
Each experiment was conducted 10 times, reporting the average values. Using
the avg() as the aggregation function, we compare the following methods in the
experiments.

L http://www.pypy.org/
2 http://cdiac.ornl.gov/ftp/ndp026b/
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Method Dimensionality of UID 2 3 4 5 6 7 8 9 10
Computed (x10%) 04109 |23 |35 |52]|62]| 75| 098] 12
SHC / SHcp Indexed (x10°) 0204|1121 |36 ]| 43| 64| 80| 9.6
DAM Computed (x10°) 09 | 1.7 | 22 | 41 |55 |63 | 74|97 | 11
Indexed (x10%) 09 [ 12 |16 |22 |25 ] 29| 3336 |40

Table 2. TPC-H: the number of computed and indexed cells when the dimen-
sionality of DIM is fixed to 5.

— SIIC: the Sorted Inverted Index Cube method without pruning;
— SIICP: the Sorted Inverted Index Cube method with pruning;
— DAM: the Dominant Answer Materialization method.

We used BUC [2] to materialize the data cubes for SIIC and SIICP, and the
Quotient Cube algorithm [14] to compute the quotient groups for DAM.

5.2. Reducing the Numbers of Aggregate Cells Computed and
Indexed

We conducted two experiments to evaluate the effectiveness of reducing the num-
bers of aggregate cells computed and indexed in our algorithms while the indices
were constructed.

For the first set of experiments, we fixed the dimensionality of DIM, and re-
ported the numbers of cells computed and indexed with respect to the increase
of dimensionality of UID. We sorted the attributes in the descending order car-
dinalities. For the TPC-H data set, we generated 9 testing data sets with 2 to
10 dimensions of UID and the dimensionality of DIM was fixed to 5. For the
Weather data set, we generated 4 testing data sets with 2 to 5 dimensions if UID
and the dimensionality of DIM was fixed to 5.

The results are shown in tables 2/ and [3] For the materialization step, SIICP
and SIIC have the same mechanism; thus, they have the same results for the
number of computed and indexed cells. The DAM algorithm shows its advantage
over SIICP and SIIC for both the synthetic and the real data sets. Figure [3]
shows the reduction ratio of the computed and indexed cells with the TPC-H
data set. The reduction ratio is ratio of the number of cells computed by DAM
to the number of cells computed by SIICP/SIIC. The reduction ratio in most
cases is about 10% meaning that DAM only computes and indices about 10%
of the cells that SIICP and SIIC do. Further, the ratio becomes smaller when
the dimensionality of UID increases. This indicates that when UID has more
dimensions, DAM can save more in materialization and indexing. Figure[4 shows
the results with the Weather data set. The trends are similar to those with the
synthetic data set.

The savings of DAM are due to the fact DAM only stores and searches the
dominant answers in the quotient groups. This mechanism also reduces the run-
time and the memory usage in query answering, which will be shown later.

For the second set of experiments, we fixed the dimensionality of UID, and
reported the numbers of computed and indexed cells with respect to the dimen-
sionality of DIM. For the TPC-H data set, we generated 4 testing data sets with
2 to 5 dimensions of DIM and the dimensionality of UID was fixed to 10. For
the Weather data set, we generated 4 testing data sets with 2 to 5 dimensions
of DIM and the dimensionality of UI D was fixed to 5.
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Method Dimensionality of UID 2 3 4 5
Computed (x10°) 52 | 11 | 25 | 35
SHC / SHCP I qexed (x107) 21| 36 | 51 | 11
Computed (x10°) 09 [ 1.5 [ 2.1 | 2.2
DAM Indexed (x10%) 35 [ 45| 51 | 54

Table 3. Weather: the number of computed and indexed cells when the dimen-
sionality of DIM fixed to 5.

Reduction ratio of DAM w.r.t baselines on computed cells.

100%
DAM
o 75%7 —e— sIIC/SIICP
§
c
Qo
5 50%
©
Q
o
25%
1 1 1 1 1
2 4 6 8 10
Number of dimensions on UID
(a) Reduction ratio of computed cells.
Reduction ratio of DAM w.r.t baselines on indexed cells.
100%
DAM
75%
o —e— SIIC/SIICP
]
c
£ 50%-
)
el
Q
[
25%

0% = T T T J

4 6 8
Number of dimensions on UID

(b) Reduction ratio of indexed cells.

Fig. 3. TPC-H: reduction ratio of DAM to SIIC/SIICP when the dimensionality
of DIM is fixed.

The results are shown in tables [] and 5] Similar to the first set of experi-
ments, SIICP and SIIC have the same mechanism in the materialization step; as
such, the two methods have the same numbers of computed and indexed cells.
The DAM algorithm significantly outperforms SIICP and SIIC on both with
the synthetic and the real data sets. Figure [5| shows the reduction ratio of the
computed and indexed cells with the TPC-H data set. The reduction ratio in
most cases is under 10%. Similar to the earlier observation, the ratio decreases
when the dimensionality of DIM increases. This indicates that when DIM has
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Reduction ratio of DAM w.r.t baselines on computed cells.
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Reduction ratio of DAM w.r.t baselines on indexed cells.
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Fig. 4. Weather: reduction ratio of DAM over SIIC/SIICP when the dimension-

ality of DIM is fixed.

Method Dimensionality of DIM 2 3 4 5
Computed (x10°) 59 | 7.1 | 9.6 | 12

SIIC / SIICP Indexed (x10°) 44 [ 65| 79 | 9.6

DAM Computed (x10°) 65| 7995 11
Indexed (x10%) 26 | 3.1 | 3.5 | 4.0

Table 4. TPC-H: the number of computed and indexed cells when the dimen-
sionality of UID is fixed to 10 on the TPC-H data set.

more dimensions, DAM can save more in materialization and indexing. Figure [f]
shows the results with the Weather data set and it demonstrates similar trends.
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Method Dimensionality of DIM 2 3 4 5
Computed (x10°) 42 [ 98 [ 22 | 35
SIIC / SICP Indexed (x10%) 1.5 ] 26 | 59 | 11
5
DAM Computed (x10°) 0.8 | 1.4 | 19 | 2.2
Tndexed (x107) 31| 42 | 48 | 54

Table 5. Weather: the number of computed and indexed cells when the dimen-
sionality of UID is fixed to 5 on the Weather data set.

Reduction ratio of DAM w.r.t baselines on computed cells.
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Q
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Number of dimensions on DIM

(b) Reduction ratio of indexed cells.

Fig. 5. TPC-H: reduction ratio of DAM to SIIC/SIICP when the dimensionality
of UID is fixed.

5.3. Runtime and Memory Usage

We fixed the dimensionality of DIM, and reported both the runtime and the
memory usage in index construction and query answering with respect to the
dimensionality of UID. The testing data sets were the same as those for the
first set of experiments in Section The memory usage reported is the peak
memory usage in the query answering process. When we tested query answering,



Multidimensional Benchmarking in Data Warehouses 19

Reduction ratio of DAM w.r.t baselines on computed cells.
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Fig. 6. Weather: reduction ratio of DAM over SIIC/SIICP when the dimension-
ality of UID is fixed.

100 random queries were conducted; thus, the average query answering runtime
and the standard deviation are reported.

The results with the TPC-H data set and the Weather data set are shown in
Figures [7] and [§] respectively.

For the runtime, DAM saves time in both the indexing and the query an-
swering steps. As shown in Figures a) and a), in the index construction step,
DAM takes less than half of the runtime of SIIC. Further, the runtime of DAM
increases much more slowly than that of SIIC and SIICP when the dimension-
ality of UID increases. In the index construction step, SIIC and SIICP have
the same mechanism; as such, the two methods present the same results for the
indexing time. As shown in Figures [7{b) and [§(b), , SIICP is faster than SIIC
in the query answering, but is still much more slowly than DAM.

For the memory usage, as shown in Figures C) and c), DAM consumes a
small amount of memory, while SITC and SIICP consume much larger amounts



20

Runtime (Materialization/Indexing) on TPC-H Dataset

SlIc/siicP
30
DAM

04 —
T

2

4 5 6 7 8
Number of dimensions on UID

(a) TPC-H: index construction time with DIM fixed.

Runtime (Query answering) on TPC-H Dataset

307

Slic
25
SlIcP

DAM

®20- .

©

c

Q

o

[

ALE

(o}

£

§10-

i
) t
o -Lﬂ...l

Number of d|menS|ons on UID

(b) TPC-H: query answering time with DIM fixed.

~ Memory usage on TPC-H Dataset with fixed DIM

slic

SIIcP
250 -
= Mo
= 200
>
S 150 -
£
[
=100+
0_

Number of dlmenS|ons on UID

(¢) TPC-H: memory usage with DIM fixed.

Fig. 7. TPC-H: runtime and memory usage with DIM fixed.
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Runtime (Materialization/Indexing) on Weather Dataset
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of memory. Further, the memory usage of DAM increases more slowly than that
of SIIC and SIICP when the dimensionality of UID increases. The above results
indicate that when UID has more dimensions, DAM can save more time and
memory in indexing.

The savings of DAM come from the fact that DAM only computes and stores
the dominant answers in the quotient groups. Once a query is given, DAM only
searches the dominant answers, which leads to efficiency in both time and mem-
ory usage. Both SIIC and SIICP need to materialize the data cube using BUC,
and then build the inverted indices. SIICP is faster than SIIC because SIICP
applies the pruning techniques in query answering.

Next, we fixed the dimensionality of UID, and reported both the runtime
and the memory usage with respect to the dimensionality of DIM. The testing
data sets were the same as those for the second set of experiments in Section[5.2)

The results are shown in Figures [J] and The DAM algorithm clearly out-
performs SIIC and SIICP on both the real and the synthetic data sets. The
runtime and memory usage of DAM increase slower than those of SIIC and
SIICP when the dimensionality of DIM increases.

5.4. Scalability

To assess the scalability of our algorithms, we generated and used 4 TPC-H data
sets with different sizes: 25%, 50%, 75%, 100% of 1GB using the corresponding
TPC-H data set size parameters: 0.25, 0.5, 0.75, 1, respectively. The dimension-
ality of UID was fixed to 10, and the dimensionality of DIM was fixed to 5.
The runtime and the memory usage are reported with respect to the different
sizes of the data sets.

The results are shown in Figure The DAM algorithm is much more scal-
able than the SIIC and SIICP methods in materialization/indexing as well as
query answering. For the memory usage, all the three methods are scalable. DAM
consistently uses much less memory than SIIC and SIICP.

6. Conclusions

Benchmarking is conducted extensively in various industries for performance
improvement. However, performing multidimensional benchmarking efficiently
with large data sets remains a technical problem. In this paper, we formulated
benchmark queries in the context of data warehousing and business intelligence.
Benchmark queries cannot be answered in a straightforward manner using ex-
isting OLAP methods. To this end, we developed a few algorithms to answer
benchmark queries efficiently.

Our methods employ progressive data cube computation techniques to re-
duce the number of aggregate cells that need to be computed and indexed. An
empirical study using the TPC-H and the Weather data sets demonstrates the
efficiency and scalability of our methods. In particular, the DAM method is fast
and scalable with large data sets.

To the best of our knowledge, there are no tools that allow multidimensional
benchmarking in data warehouses in business today. We plan to develop tools
using the techniques proposed in this paper as our contribution to business at
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Fig. 11. TPC-H: scalability.
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large. We also plan to explore new types of analytic queries and tasks built upon
benchmark queries.
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