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In many applications, such as bioinformatics and cross-market customer relationship management,

there are data from multiple sources jointly describing the same set of objects. An important data

mining task is to find interesting groups of objects that form clusters in subspaces of the data sources

jointly supported by those data sources.

In this paper, we study a novel problem of mining mutual subspace clusters from multiple sources.

We develop two interesting models and the corresponding methods for mutual subspace clustering.

The density-based model identifies dense regions in subspaces as clusters. The bottom-up method

searches for density-based mutual subspace clusters systematically from low-dimensional subspaces to

high-dimensional ones. The partitioning model divides points in a data set into k exclusive clusters and

a signature subspace is found for each cluster, where k is the number of clusters desired by a user.

The top-down method interleaves the well-known k-means clustering procedures in multiple sources.

We use experimental results on synthetic data sets and real data sets to report the effectiveness and the

efficiency of the methods.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In many applications, there are multiple data sources. It is
important to analyze data using the multiple data sources in an
integrative way.

1.1. Motivation application examples and challenges

To develop effective therapies for cancers, both clinical data
and genomic data have been accumulated for cancer patients.
Examining clinical data or genomic data independently may not
reveal the inherent patterns and correlations present in both data
sets. Therefore, it is important to integrate clinical and genomic
data and mining knowledge from both data sources.1

Clustering is a powerful tool for uncovering underlying pat-
terns without requiring much prior knowledge about data. To
discover phenotypes of cancer, subspace clustering has been
widely used to analyze such data. However, in order to under-
stand the clusters on clinical attributes well, and find out the
genomic explanations, it is highly desirable to find clusters that
are manifested in subspaces in both the clinical attributes and the
ll rights reserved.

i@cs.sfu.ca (J. Pei).

omics-and-clinical-data-for-

herapies/
genomic attributes. For a cluster mutual in a clinical subspace and
a genomic subspace, we can use the genomic attributes to verify
and justify the clinical attributes. The mutual clusters are more
understandable and more robust. In addition, mutual subspace
clustering is also helpful in integrating multiple sources.

As another example, consider cross-market customer relation-
ship management. Customer behaviors in multiple markets (e.g.,
financial planning and investment, vacation expenditure, reading,
entertainment and leisure expense) can be collected. Mutual sub-
space clustering can achieve more reliable customer segmentation.
A mutual cluster which is a set of customers that are exclusively
similar to each other in a subspace (i.e., some features) in each
market is interesting, since we may use the features in different
markets to explain their behaviors in the other markets. Mutual
subspace clustering not only generates more robust clusters, but also
integrates data from multiple sources and produces more under-
standable knowledge.

Recently, in a few applications such as bioinformatics, health-
informatics and cross-market customer relationship manage-
ment, attribute data about the same set of objects is collected
from multiple aspects and/or sources. The availability of such data
enables the verification and justification of learning from multiple
sources, as demonstrated in recent research [14,15,26,27]. Parti-
cularly, joint clustering from multiple sources (e.g., [19,23,7])
which discovers clusters agreed by multiple sources has been
found interesting and important in those applications.
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Fig. 1. An example of mutual clusters.
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In this paper, we study mining mutual subspace clusters for
those applications with multiple data sources. In the clinical and
genomic data analysis example, a mutual cluster is a subset of
patients that form a cluster in both a subspace of the clinical data
source and a subspace of the genomic data source. Such a mutual
cluster may suggest the inherent connection between the geno-
mic features and the clinical features.

Is mutual subspace clustering computationally challenging?
One may consider the straightforward generate-and-test meth-
ods. For example, a simple method works in two steps. In the first
step, we can find the complete set of possible subspace clusters in
the first data source, say clinical data. Then, in the second step, we
can check for each subspace cluster whether it is a subspace
cluster in genomic data. Similarly, when clustering in the union
space is feasible, we can first find all clusters in the union space
with the constraint that the subspace of each cluster must contain
at least one attribute from each clustering space. Then, we can
check each cluster against the mutual clustering criteria.

However, such a two-step, generate-and-test method is pro-
blematic. Finding the complete set of possible subspace clusters
in the clinical space or the union space of clinical data and
genomic data is often very costly or even infeasible. For example,
in the partitioning model (e.g., [1,2,25]), it is impossible to find all
possible subspace clusterings. In some other models where
clusters are not exclusive, there may be many subspace clusters
in a large, high dimensional data set. Enumerating all possible
subspace clusters explicitly and checking them one by one is
often computationally expensive. In some models such as den-
sity-based clustering [3] and pattern-based clustering [24,20],
enumerating all possible clusters is NP-hard.

1.2. Problem outline

While we will discuss the models of mutual subspace clustering
in Sections 3.1 and 4.1, the problem can be generally described as
follows.

We model a data source as a set of points in a clustering space.
Let S1 and S2 be two clustering spaces where S1 \ S2 ¼ |, and O be a
set of points in space S1 [ S2 on which the subspace clustering
analysis is applied. It is up to users to choose clustering spaces.
The only requirement here is that each point appears in both
clustering spaces.

A mutual subspace cluster is a triple ðC,U,VÞ such that CDO,
UDS1, V DS2, and C is a cluster in both U and V, respectively. U and
V are called the signature subspaces of C in S1 and S2, respectively. To
keep our discussion simple, we consider only two clustering spaces
in this paper. However, our model can be easily extended to
situations where more than two clustering spaces present.

What is the critical difference between mutual subspace
clustering on multiple spaces and traditional subspace clustering
in one space? Technically, one may think that we can find
subspace clusters in the union space S1 [ S2 with the constraint
that the subspaces must contain attributes from both S1 and S2.
Suppose C is a cluster in subspace WDS1 [ S2. Then, we can
assign U ¼W \ S1 and V ¼W \ S2 as the signature subspaces of C.
Does this straightforward extension work?

Example 1 (Mutual clustering). Fig. 1 shows a synthetic data set.
Let the clustering space S1 be X and the clustering space S2 be Y.
The union space is the two-dimensional space as shown. There
are three clusters (annotated as A, B and C in the figure) in the
union space.

Mutual clustering from the clustering spaces S1 and S2 can help

us to understand how the two attributes agree with each other in

clusters. For example, cluster C is a good mutual cluster, since its

projections on both S1 and S2 are also clusters. However, although
clusters A and B are clusters in the union space, each of them is

not a distinguishing cluster in subspace S2 (i.e., Y). They are mixed

together in S2. Thus, A and B are not good mutual clusters. &

Moreover, in real applications, different similarity measures
and even clustering criteria may be adopted in different clustering
spaces. In such a case, it is very difficult or even impossible to
define an appropriate similarity measure and clustering criteria in
the union space. Clustering in the union space becomes infeasible.

From the above example, we can see that mutual subspace
clustering from multiple clustering spaces is critically different from
subspace clustering in one (union) clustering space. A mutual cluster
must be a cluster in a signature subspace of each clustering space.
Mutual subspace clustering finds the common clusters agreed by
subspace clustering in both clustering spaces, which cannot be
handled by the traditional subspace clustering analysis.

In this paper, we study the mutual subspace clustering problem
and make the following contributions. First, we identify the novel
mutual subspace clustering problem, and elaborate its potential
applications. Second, we develop two interesting models and the
corresponding methods for mutual subspace clustering. The density-
based model identifies dense regions in subspaces as clusters. The
bottom-up method searches for density-based mutual subspace
clusters systematically from low-dimensional subspaces to high-
dimensional ones. Information from multiple sources is used to
guide the search. The partitioning model divides points in a data set
into k exclusive clusters and a signature subspace is found for each
cluster, where k is the number of clusters desired by a user. The top-
down method interleaves the well-known k-means clustering
procedures in multiple sources. Third, we use experimental results
on synthetic data sets and real data sets to report the effectiveness
and the efficiency of the methods.

The rest of the paper is organized as follows. The related work is
reviewed in Section 2. The density-based, bottom-up method and the
partitioning, top-down method are developed in Sections 3 and 4,
respectively. The experimental results are reported in Section 5.
Section 6 discusses the related issues and concludes the paper.
2. Related work

Our work is generally related to subspace clustering, clustering
from multiple sources, and multiview learning. In this section, we
review those areas briefly.

2.1. Subspace clustering

Subspace clustering has attracted substantial interest due to
its successful applications in some new domains such as
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bioinformatics and image processing. Parsons et al. [18] provided
a nice concise survey of the existing subspace clustering methods.

There are two major categories of subspace clustering methods,
namely the top-down methods and the bottom-up methods. The
top-down methods find an initial clustering in the full space, and
then iteratively discover subspaces for the clusters and improve
the clustering. PROCLUS [1], ORCLUS [2], FINDIT [25], d-clusters
[28], and COSA [11] are examples of the top-down methods.

The bottom-up methods identify dense regions in low-dimen-
sional subspaces and extend those dense regions to form clusters.
CLIQUE [3], ENCLUS [6], MAFIA [16], CBF [4], CLTree [13], DOC [21],
and pattern-based clustering [24,20] are some examples.

In addition, some other clustering algorithms tackle the problem
from different angles. For example, Ng et al. [17] developed a spectral
clustering method base on the top eigenvectors derived from the
pair-wise distance matrix among clustering objects. Zhou and Tao
[29] proposed a fast gradient clustering approach by transforming
the problem into a maximum eigenvalue minimization problem.

2.2. Clustering from multiple sources

Jointly mining clusters from multiple data sources has been
emerging as a novel direction in the domain of clustering analysis.
Some examples include [23,19,12,8,5]. Particularly, in [19], clus-
ters on graphs are mined from multiple graphs. In [12], clustering
is conducted in a space S1, while some constraints specified in
another space S2 must be satisfied. Ester et al. [8] studied the
problem of mining clusters in an integrated space consisting of
both attribute data and relationship data (e.g., a graph). More
recently, [5] studies the problem of clustering from multiple
views (of the same set of objects), by projecting the data in each
view to a lower dimensional subspace using Canonical Correlation
Analysis (CCA).

Critically different from [23,19,12,8,5], mutual subspace clus-
tering proposed in this paper searches clusters in different

signature subspaces of multiple sources.

2.3. Multiview learning

Data with multiple representations from different feature spaces
(also known as views) is inherent in various data mining applica-
tions, such as bioinformatics, computer vision, and social network
analysis. Learning from multiview data has attracted extensive
interests from research community. Long et al. [14] developed a
mapping function that makes different feature spaces comparable
and proposes a general framework for unsupervised learning from
data with multiple views. Muslea et al. [15] presented an active
learning framework from multiview data. Xia et al. [26] considered
spectral embedding from multiple views. Xie et al. [27] studied
multiview stochastic neighbor embedding that integrates hetero-
geneous features into a unified representation.

Our study in this paper falls into the category of unsupervised
learning from multiple views. The general framework developed
in [14] cannot be directly applied to the problem of mutual
subspace clustering studied in this paper, since a clustering in the
joint space of two feature spaces is critically different from
mutual subspace clustering as explained in Example 1.
3. A density-based method

As indicated by the previous studies (e.g., [9,10]), a cluster can
be modeled as a dense region in space. In this section, we present
a density-based model for mutual subspace clusters, and develop
a bottom-up method to find such clusters.
3.1. A density-based model

To keep our discussion simple, we assume that each attribute
has the same range. As it will become clear soon, our method can
be straightforwardly extended to the general case by setting one
locality threshold for each attribute. By default we consider a set
of points O. For a point xAO and an attribute D, let x: D be the
projection of x on D.

First of all, which distance/similarity measure should be used?
The extensively used Euclidian distance [9,10] or any l-norm
distance lo1 may not be appropriate since it biases towards
low-dimensional subspaces. Suppose two points x and y are of the
same distance d in each dimension, the Euclidian distance
between x and y in an l-d subspace is

ffiffi
l
p
� d, which becomes

larger and larger as the dimensionality increases. It is unfair to fix
a distance/density threshold for subspaces of different dimen-
sionality to identify dense regions.

Interestingly, the Chebyshev distance can avoid this problem.
The Chebyshev distance between two points x and y in space

U ¼ ðD1, . . . ,DnÞ is defined as distUðx,yÞ ¼maxn
i ¼ 1f9x:Di�y:Di9g.

It is well known that distUðx,yÞ ¼ limk-1ð
Pn

i ¼ 1 9x:Di�y:Di9
k
Þ
ð1=kÞ.

From the definition, it is easy to see that the Chebyshev distance
does not bias in favor of any subspaces, and thus is suitable for the
subspace cluster mining. However, our model also generally
works for other unbias distance measures.

We measure the local density of a point using a user-defined
locality threshold g40. For a point x and a subspace U ¼ ðDi1 , . . . ,Dil Þ,
we define the g-neighborhood of x in U as Ngðx,UÞ ¼ fyAO9distU

ðx,yÞrgg. When g is clear from context, we also write Nðx,UÞ.
Clearly, our model can be easily extended to the general case

where different dimensions have different ranges by simply
setting one locality threshold for each attribute.

Let a40 be a user-specified density threshold. A point x is
called dense in subspace U if 9Ngðx,UÞ9Za. Two points x and y are
called a-connected in subspace U if they are connected by a series
of dense points, i.e., there exist dense points z1, . . . ,zq in U such
that xANðz1,UÞ, ziANðziþ1,UÞ ð1r ioqÞ, and yANðzq,UÞ.

A subset CDO is a density-based subspace cluster with respect
to locality threshold g and density threshold a, if (1) for any
x,yAC, x and y are a-connected, and (2) there does not exist any
points z=2C and pAC such that z and p are a-connected. In other
words, a cluster is a maximal dense region that cannot be
extended anymore. We also write the cluster as ðC,UÞ.

The above density-based model of subspace clusters is an
extension of the density-based full-space clusters in [9,10]. Now,
let us consider how mutual subspace clusters are formed.

Ideally, if ðC,U,VÞ is a mutual subspace cluster in clustering
spaces S1 and S2, then ðC,UÞ and ðC,VÞ should be subspace clusters
in S1 and S2, respectively. However, the ideal case may not always
happen in practice. Instead, we have to tolerate some noise in the
cluster.

Consider subspace clusters ðC1,UÞ in S1 (i.e., UDS1) and ðC2,VÞ
in S2 (i.e., V DS2). If C1 and C2 are almost identical, then we can
regard ðC1 \ C2,U,VÞ as a mutual subspace cluster. Technically,
we can define the purity of C1 \ C2 as r¼ 9C1 \ C29=9C1 [ C29.
A user can set a purity threshold R to control the purity of mutual
clusters.

Now, we are ready to define the problem of density-based
mutual subspace clustering.

The density-based model: Given a set of points O in clustering
spaces S1 and S2 ðS1 \ S2 ¼ |Þ, a locality threshold g, a density
threshold a, a purity threshold R, and a population threshold x, we
want to find the mutual subspace clusters ðC,U,VÞ such that there
exist subspace clusters ðC1,UÞ and ðC2,VÞ such that UDS1, V DS2,
C ¼ C1 \ C2, rðCÞZR, and 9C9Zx. The population threshold is to
filter out insignificant clusters. &
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3.2. Finding one-dimensional clusters

Density-based clusters have the following properties.

Lemma 1 (Monotonicity). If C is a density-based cluster in subspace

U ¼ ðDi1 , . . . ,Dil Þ, then for each attribute Dij ð1r ir lÞ, there exists a

subspace cluster ðC0,Dij Þ such that C0+C. &

An essential step to find density-based subspace clusters is to
find 1-d clusters. The following conditional transitivity property
of a-connectivity helps the search.

Lemma 2 (Conditional transitivity). On attribute D, suppose x and y

are a-connected, andy and z are also a-connected. Then, x and z are

a-connected provided that y is dense. &

We can find all 1-d subspace clusters in an attribute D as
elaborated in the following example.

Example 2 (Finding 1-d clusters). Consider the set of points in
Fig. 2. Let the locality threshold g¼ 10 and the density threshold
a¼ 3. Let us find the 1-d clusters on attribute Y.
Fig. 2. A set of points as an example of finding clusters.

Fig. 3. Finding 1-d su
First, we sort the projections of all the points in Y in the value

ascending order. The sorted list is a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,

p, q, r.

We scan the sorted list. We find the first dense point b, and

assign b to the first cluster C1. We also include the points preceding

b of distance up to g¼ 10, i.e., a in this example, into C1. We set the

state of C1 to open meaning later points can be added into the

cluster.

The next point, c, is dense and 3-connected to b, we add it to C1

as well. Similarly, we add points d and e into C1. Now, we consider

point f, which is dense but not 3-connected to e, the point just

added to C1. This indicates that f as well as any points following f

in the sorted list do not belong to C1. Thus, we set the state of C1

to closed meaning it cannot be extended further, and initiate a

new cluster C2 for f.

Points g,h,i,j,k,l,m,n,o,p,q are dense and 3-connected to the ones

preceding them. They are added to C2 in sequence. Point r is not

dense, but is in Nðq,YÞ, and thus is also added to C2. The state of C2 is

set to closed. Since there are no more points, the search terminates.

After all, we find two clusters on Y: C1 ¼ fa,b,c,d,eg and

C2 ¼ ff ,g,h,i,j,k,l,m,n,o,p,qg. We can apply the above procedure to

find 1-d clusters on attribute X. Three clusters can be found:

C3 ¼ fb,e,d,a,cg, C4 ¼ fn,q,g,l,o,r,p,f g, and C5 ¼ fk,h,i,m,jg. &

The algorithm is summarized in Fig. 3. The correctness of the
algorithm follows with the density-based model. Limited by
space, we omit the formal proof.

The complexity of finding all 1-d clusters in all attributes is
Oðð9S19þ9S29Þn log nÞ where n is the total number of points in the
data set and 9S19 and 9S29 are the dimensionality of the two
clustering spaces. Due to the population threshold, we can prune
the clusters that contain less than x points.

3.3. Finding all subspace clusters

A straightforward, generate-and-test method for mining
mutual subspace clusters is to firstly find all subspace clusters
bspace clusters.



Fig. 4. A subspace enumeration tree of four attributes.
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in S1 and S2, respectively. Then, for each pair of clusters ðC1,UÞ and
ðC2,VÞ where UDS1 and V DS2, we check the purity of C1 \ C2 to
identify the mutual clusters. The second step is straightforward.
In this section, we discuss how to find all subspace clusters in one
clustering space.

First, let us consider how to find 2-d clusters. According to
Lemma 1, only the points in an intersection of two 1-d clusters on
two attributes may form a 2-d cluster.

Example 3 (Finding 2-d clusters). As shown in Example 2, C2 and
C4 are 1-d clusters on Y and X, respectively. We check whether
some points in C2 \ C4 form a 2-d cluster. Let C ¼ C2 \ C4 ¼ ff ,g,
l,n,o,p,q,rg. We can start with an arbitrary point in the intersec-
tion. Suppose o is picked in this example. We first check whether
o is dense. With the sorted lists on X and Y, this can be done
easily. We only need to check whether 9Nðo,XÞ \ Nðo,YÞ9Za. Since
Nðo,XÞ \ Nðo,YÞ ¼ fp,q,lg, o is dense.

We assign o to a new cluster C6 with signature subspace ðX,YÞ.

All points in Nðo,XÞ \ Nðo,YÞ are also assigned to the cluster. Then,

we check those points in Nðo,XÞ \ Nðo,YÞ one by one. For each

point, if it is dense, then the common points in its neighborhoods

on X and Y are added to the cluster. For example, when point q is

checked, it is dense. Moreover, n is in Nðq,XÞ \ Nðq,YÞ and thus

should be added to cluster C6. This procedure continues until no

more points can be added. Then, the cluster is output.

It can be verified that C6 ¼ fl,n,o,p,q,rg. Points f and g are not

connected to o, and thus are not added into C6. After C6 is output,

we pick one arbitrary point, say f, from the remainder, and

conduct the search procedure as described above. f is not dense

and is not in the neighborhood of any dense point. Thus, it is not

in any 2-d cluster. Similarly, we can determine that g does not

belong to any 2-d cluster. &

One major operation in finding clusters in a subspace is to
compute the neighborhood and the density of a point. The sorted
lists of points in single dimensions help due to the following
result.

Lemma 3. For a point x in a subspace U ¼ ðDi1 , . . . ,Dil Þ, Nðx,UÞ ¼
Tl

j ¼ 1 Nðx,Dij Þ. &

The Chebyshev distance defines the distance between two
points in subspace U as the maximum distance between them in
each dimension of U. Therefore, if a point is a neighbor of x in U, it
must be x’s neighbor in each dimension Dij AU.

Generally, let ðC1,UÞ be an l-d subspace cluster and ðC2,DÞ be a
1-d cluster such that D=2U and 9C1 \ C29Zx. Then, we need to
check whether some points in C1 \ C2 can form a cluster in
subspace U [ fDg. The method is a straightforward extension of
the method illustrated in Example 3. We start with an arbitrary
point x in C1 \ C2. If x is dense, then a new cluster is initialized. x

and the points in Nðx,U [ fDgÞ are added to the new cluster. We
extend the new cluster by including the neighborhoods of the
dense points in the cluster, until the cluster cannot be enlarged
anymore. Then, the cluster is output and those dense points in the
cluster are removed. The procedure repeats until no new clusters
can be formed.

When searching a cluster in one subspace, the above proce-
dure resembles the framework in [9,10]. However, a critical
difference is that we use Lemma 3 to compute the neighborhoods
in high dimensional subspaces efficiently.

A multidimensional subspace cluster may be generated multi-
ple times if the subspaces are not searched in a systematic way.
For example, A cluster ðC,ðD1,D2,D3ÞÞ may be generated by com-
bining a 2-d cluster in subspace ðD1,D2Þ and a 1-d cluster in D3, or
combining a 2-d cluster is subspace ðD2,D3Þ and a 1-d cluster in D1.
To avoid the redundancy, we can enumerate clusters by their
signature subspaces using a set enumeration tree [22].

Fig. 4 shows a set enumeration tree of four attributes. Each
node in the tree is a subspace. We conduct a depth-first search of
the tree and find the subspace clusters in each subspace in the
tree nodes. Clearly, a subspace cluster belongs to one and only
one tree node which is the signature subspace.

In the search, apparently we can use the population x thresh-
old to prune. If a cluster has less than x points, any subset of it
cannot form a significant cluster and thus can be pruned.

3.4. Mutual pruning

In practice, not every density-based subspace cluster is mutual.
In fact, many of them may not be mutual. Therefore, a major
drawback of the straightforward, generate-and-test approach is that
we have to find all subspace clusters in both clustering spaces before
we can find the mutual ones. To overcome this, we need to let the
clustering procedures in both clustering spaces interact to each
other so that only those subspace clusters that may lead to mutual
ones are computed. In this section, we present such an approach.

A mutual cluster must satisfy both the population requirement
and the purity requirement. The central idea of our method is to
use these two requirements to prune the search of subspace
clusters in each clustering space.

The population requirement indicates that, for a mutual
cluster ðC,U,VÞ ðUDS1,V DS2Þ, there are two subspace clusters
ðC1,UÞ and ðC2,VÞ such that 9C9¼ 9C1 \ C29Zx. For a subspace
cluster ðC1,UÞ ðUAS1Þ, if there does not exist a subspace cluster
ðC2,VÞ ðV AS2Þ such that 9C1 \ C29Zx, then any subset of C1 cannot
lead to a mutual cluster. C1 can be pruned.

To implement the pruning using the population requirement,
we do not need to check ðC1,UÞ against all subspace clusters in S2.
Instead, we only need to check ðC1,UÞ against the 1-d subspace
clusters in S2 due to the following rule.

Lemma 4. For a subspace cluster ðC1,UÞ ðUDS1Þ, if there does not

exist a 1-d subspace cluster ðC2,DÞ such that DAS2 and 9C1 \ C29Zx,
then any subset of C1 cannot form a mutual cluster.

Proof. We prove the lemma by contradiction. Let us assume that
a subset C01DC1 forms a mutual cluster, then there must be a
subspace cluster ðC02,VÞ such that V � S2 and C01DC02. According to
Lemma 1, there exists a superset C2+C02 such that ðC2,DÞ is a 1-d

cluster for DAV DS2. A contradiction. &

To use Lemma 4 in pruning, we first compute all 1-d clusters in
S1 and S2, respectively. Then, for each cluster ðC1,UÞ in S1, we collect
the set OCðC1Þ of 1-d clusters in S2 that have an intersection with C1

of at least x points. If the set is empty, then C1 should be pruned.
Moreover, when combining ðC1,UÞwith another 1-d cluster ðC2,DÞ in
S1 to generate clusters in subspace U [ fDg, C1 \ C2 should be
compared with the 1-d subspace clusters in OCðC1Þ \ OCðC2Þ only.
The correctness can be proved easily. Simultaneously, we also use
the 1-d subspace clusters in S1 to prune the subspace clusters in S2.
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Now, let us consider how to use the purity requirement to help
the pruning.

Lemma 5 (Purity upper bound). Consider subspace clusters ðC1,U1Þ

and ðC2,U2Þ such that U1 �U2DS1 and C2DC1. Let ðC3,DÞ ðDAS2Þ

be the 1-d subspace cluster in S2 that maximizes 9C1 \ C39. For any

mutual cluster ðC,U0,V 0Þ such that C2DCDC1 and U1DU0DU2, we

have rðCÞr9C1 \ C39=9C29. Generally, let ðC3,VÞ be a subspace

cluster in S2. For any mutual cluster ðC,U0,V 0Þ such that C2D
CDC1, U1DU0DU2, and V 0*V , we have rðCÞr9C1 \ C39=9C29

Proof sketch. The lemma follows with Lemma 1. The upper
bound of the purity is obtained when all the points in C1 \ C3

are retained in the high-dimensional subspace clusters in both
S1 and S2. &

Recall that we conduct a depth-first search of the subspace
enumeration tree. Thus, in some situations, the clusters in sub-
space U0*U may be already found. For example, in Fig. 4, clusters
in subspace ðD1,D2,D3,D4Þ are searched before those in subspace
D2. Therefore, we can use Lemma 5 to prune the clusters in some
subspaces if the upper bound of their purity cannot pass the
purity threshold R.

The above pruning rules work well when many subspace
clusters are not mutual. In such a situation, the above pruning
rules can quickly prune the search of those non-mutual clusters
using the population and purity requirements.

In addition to the pruning using the mutual subspace require-
ment, we can also reduce the redundancy in the clustering results.
Consider two mutual clusters ðC,U,VÞ and ðC,U0,V 0Þ such that
U0DUDS1 and V 0DV DS2. Let ðC1,UÞ, ðC01,U0Þ, ðC2,VÞ and ðC02,V 0Þ
be the corresponding subspace clusters in S1 and S2, respectively.
That is, C ¼ C1 \ C2 ¼ C01 \ C02. According to Lemma 1, C01+C1 and
C02+C2. That is, rðC,U,VÞZrðC,U0,V 0Þ. Therefore, cluster ðC,U,VÞ is
purer. That means the U and V agree better than U0 and V 0 on C as
a mutual cluster. ðC,U0,V 0Þ is redundant given ðC,U,VÞ.

To reduce the redundant clusters, we have the following.

Lemma 6. Let ðC,U,VÞ be a mutual cluster. For a subspace cluster

ðC1,U0Þ ðU0 �UDS1Þ, if for every 1-d cluster ðC2,DÞ ðDAVÞ,
C1 \ C2 ¼ C, then C is the only subset in C1 that can form a mutual

cluster in subspaces U00 such that U0 �U00 �U, and those clusters

cannot have a purity higher than ðC,U,VÞ. Moreover, if ðC1,U0Þ does

not have an intersection of at least x points with any 1-d cluster on

dimensions D=2V , then any subset of C1 cannot lead to any non-

redundant mutual subspace cluster given ðC,U,VÞ. &

To apply the rule, for each subspace cluster ðC1,U0Þ in S1, we
maintain the set of 1-d clusters in S1 that have an intersection
with C of at least x points. Then, once the condition in Lemma 6
becomes true, the cluster can be pruned.

The above two pruning techniques and the redundancy
removal technique can be integrated to the procedure of search-
ing all subspace clusters described in Section 3.3. That is, we
interleave the search of subspace clusters in the two clustering
spaces. We start with computing all 1-d clusters in both cluster-
ing spaces. Mutual subspace clusters can be searched system-
atically using subspace enumeration trees. For each pair of 1-d

clusters ðC1,A1Þ and ðC2,B2Þ where 9C1 \ C29Zx, A1AS1 and
A2AS2, we explore the subspace clusters of subsets of C1 in
super-spaces of A1 in S1 using the subspace enumeration tree in
S1. Symmetrically, we explore the subspace clusters of subsets of
C2 in super-spaces of B1 in S2 using the subspace enumeration tree
in S2. If some nodes of paths of a tree are computed before, they
are just reused. The pruning rules are applied to a clustering space
using the information from the other clustering space.
4. A partitioning method

In this section, we present a partitioning, top-down method for
mutual subspace clustering. The method is appropriate for the
situations where major mutual subspace clusters exist. That is,
most points in the data set belong to one mutual subspace cluster.
We first analyze the goal of partitioning mutual subspace cluster-
ing. Then, we present the technical approach.

4.1. A partitioning model

Arguably, the partitioning model of clustering is the most
classical and the most well accepted. Given a set of points O in
space S and a parameter k of the number of clusters desired, the k-
means clustering model is to find k centers c1, . . . ,ck in S and
partition O into k exclusive subsets C1, . . . ,Ck accordingly such
that a point oAO is in cluster Ci if distðo,ciÞ ¼min1r jrkfdistðo,cjÞg

and the partitioning minimizes
Pk

i ¼ 1

P
oACi

distðo,ciÞ, where
distðx,yÞ is the distance between two points x and y. The intuition
is to partition the points into k clusters such that the similarity
within clusters is maximized.

Our partitioning mutual clustering model inherits the theme of
partitioning clustering model. However, we need to address the
concerns on multiple clustering spaces and signature subspaces of
clusters.

Consider a set of points O in clustering spaces S1 and S2 where
S1 \ S2 ¼ |. Our goal is to find k centers ðc1,U1,V1Þ, y, ðck,Uk,VkÞ,
where U1, . . . ,UkDS1 and V1, . . . ,VkDS2 are the signature sub-
spaces of the clusters in S1 and S2, respectively. The points in O are
divided into exclusive subsets C1, . . . ,Ck accordingly. Ideally, a
point oAO is assigned to cluster Ci if distUi

ðo,ciÞ ¼min1r jrk fdistUj

ðo,cjÞg and distVi
ðo,ciÞ ¼min1r jrkfdistVj

ðo,cjÞg, where distUðx,yÞ is
the distance between two points x and y in space U. In the best
case, the partitioning minimizes

Pk
i ¼ 1

P
oACi

distUi
ðo,ciÞ and

Pk
i ¼ 1P

oACi
distVi

ðo,ciÞ simultaneously.
Generally, the ideal case may not happen on a large real data

set. Due to the structural differences of the two clustering spaces,
partitioning minimizing both distance sums may not exist at all
on some data sets. As an extreme example, consider the four
points in 2-d space: að0;10Þ, bð10;10Þ, cð0;0Þ and dð10;0Þ. If k¼2,
then fa,bg and fc,dg are the optimal partitioning in clustering
space Y; and fa,cg and fb,dg are the optimal in clustering space X.
It is impossible to partition the four points into two clusters
minimizing the distance sums in both clustering spaces simulta-
neously. This counter example shows that the optimization goal
may not always be feasible for mutual subspace clustering.

Moreover, even if the optimal partitioning exists, finding the
exact optimal partitioning is computationally prohibitive on large
data sets. The partitioning mutual subspace clustering optimiza-
tion model can be viewed as a generalization of the k-means
problem, which is known NP-hard.

Based on the above analysis, in the rest of this section, we will
explore a heuristic method for the partitioning mutual subspace
clustering.

4.2. Finding signature subspaces

A critical issue is to find the signature subspace for a cluster.
Given a set of points C that are assigned to a cluster in space S, we
want to find a subspace UDS that manifests the similarity
between points in C.

Again, let us assume that the attributes are normalized. Ideally,
if we have a proper similarity measure simUðx,yÞ which measures
the similarity between points x and y in subspace U, then we can
calculate

P
x,yACsimUðx,yÞ straightforwardly for every non-empty
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subspace UDS, and pick the subspace maximizing the sum of
similarities as the signature subspace.

However, such a method is often impractical for two reasons.
First, finding a proper similarity measure is often difficult. Many
similarity or distance measures bias towards low-dimensional
subspaces dramatically. Similarities in different subspaces are
often incomparable directly. Second, if S has m dimensions, then
we need to check 2m

�1 subspaces. When the dimensionality is
high, enumerating all subspaces and calculating the sums of
similarities in them are often very costly.

If U is the signature subspace of C which manifests the
similarity among points in C, then the points must be similar in
every attribute in U. Moreover, the points must be substantially
dissimilar in attributes not in U. Technically, the average pairwise

distance (APD for short), i.e., the average distance between two
points in C, can be used to measure the compactness of the
cluster. That is

APDðC,DÞ ¼

P
x,yACdistDðx,yÞ

9C9 � ð9C9�1Þ

2

¼
2
P

x,yACdistDðx,yÞ

9C9 � ð9C9�1Þ
:

Since the attributes are normalized, the average pairwise
distance can be used as the measure of how well the points in C

are clustered on an attribute. The attributes in the signature
subspace of C should have a small average pairwise distance,
while the attributes not in the signature subspace should have a
large average pairwise distance.

We can sort all attributes in the average pairwise distance
ascending order. The first attribute is the best to manifest the
similarity. Now, the problem is how to select other attributes that
manifest the similarity of the cluster together with the first one.

Hypothetically, the attributes are in two sets: the ones in the
signature subspace and the ones not in the subspace. The ones in
the signature subspace should share a similar average pairwise
distance. We can apply the Chebyshev’s inequality to confidently
select the attributes in the signature subspace.

Let D1, . . . ,Dn be the attributes in the average pairwise distance
increasing order. Suppose D1, . . . ,Di ð1r irnÞ form the signature
subspace. The expectation of average pairwise distance is
EðAPDÞ ¼ ð1=iÞ

Pi
j ¼ 1 APDðC,DjÞ. Let s be the standard deviation of

APDðC,D1Þ, y, APDðC,DiÞ. Then, we require that for any attribute Dj

ð1r jr iÞ, 9APDðC,DjÞ�EðAPDÞ9rt � s, where t is a small integer
(typically between 3 to 5). ð1�ð1=t2ÞÞ is the confidence level of the
selection.

Algorithmically, we initialize the signature subspace U with D1,
the first attribute in the sorted list. Then, we add the attributes one
by one in the average pairwise distance ascending order. For each
attribute added, we check whether the confidence level is main-
tained. Once the confidence level is violated, then the attribute just
Fig. 5. Computing the s
added should be removed, and the selection procedure terminates.
The pseudo-code of the procedure is given in Fig. 5.

4.3. The top-down algorithm

Almost all top-down partitioning clustering methods such as
k-means for full space clustering and PROCLUS [1] for subspace
clustering adopt an iterative greedy search. The central idea of our
top-down mutual subspace clustering method is to interleave the
iterative k-means clustering procedures in the clustering spaces.

We start with arbitrary k points c1, . . . ,ck in the clustering
space S1 as the temporary centers of clusters C1,y, Ck, respec-
tively. The k centers do not necessarily belong to O. We assign the
points in O to the clusters according to their distances to the
centers in space S1: a point oAO is assigned to the cluster of
the center closest to o. This is the first step of the classical k-
means clustering procedure.

In order to find mutual subspace clusters, we use the information
in the clustering space S2 to refine the clusters. We need to find the
signature subspaces in S2 and also improve the cluster assignment.

For each cluster Ci, we find a subspace ViDS2 as the signature
subspace of Ci in S2 using the method discussed in Section 4.2, and
calculate the center of Ci in Vi.

To improve the cluster assignment, for each point oAO, we
check distVi

ðo,ciÞ for 1r irk, and assign o to the cluster of the
closest center in the signature subspace. This generates the
refined clustering.

The clustering in S2 is fed into the refinement using the
information in S1. That is, we compute the signature subspaces
and the centers of the clusters in S1, and adjust the cluster
assignment. As the iteration continues, we use the information
in the clustering spaces to form mutual subspace clusters.

A cluster can become stable if the signature subspaces in the
clustering spaces agree with each other on the cluster assign-
ment. That is, in the clustering spaces the centers attract the
approximately same set of points to the cluster. On the other
hand, for a temperate cluster, if the signature subspaces do not
agree with each other, then the centers change substantially due
to the substantial change of the cluster members.

When should the iteration terminate? If mutual subspace
clusters exist, then the above iterative refinement can greedily
approach the mutual subspace clusters. This is because the
refinement in S1 and S2 iteratively reduces variance of clusters
in S1 and S2. The exact termination (no points changing clusters)
may require a large number of iterations. In practice, we define
the mis-assignment rate as the portion of points in O that are
assigned to a different cluster in each iteration. The clustering is
stable if the signature subspaces of the clusters become stable and
the mis-assignment rate is low. The iterative refinement stops if
the signature subspaces in the clustering spaces do not change,
ignature subspace.



Fig. 6. The framework of the top-down algorithm.

Table 1
The mutual subspace clusters found in the housing data set.

Cluster id Size Purity (%) Space 1: house information Space 2: environment information

RM Age MEDV Signature CRIM DIS LSTAT Signature

6.28 68.6 22.5 subspace 3.6 3.8 12.7 space

1 139 56 6.1 95.2 18.1 (RM, age) 7.8 2.09 17.1 (CRIM, DIS, LSTAT)

2 290 67 6.1 72.1 18.5 (RM, MEDV) 5.1 2.98 14.6 (CRIM, LSTAT)
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and the mis-assignment rate is lower than y% in two consecutive
rounds of refinement, where y is a user-specified parameter, and
in each round both the signature subspaces in both clustering
spaces S1 and S2 are refined.

On the other hand, as elaborated before, some points may not
belong to any mutual clusters. Then, the iterative refinement may
fall into an infinite loop, since the two clustering spaces do not
agree with each other on those points. To detect the potential
infinite loop, we compare the cluster assignments in the two
clustering spaces in two consecutive rounds. For each mis-
assigned point which is assigned to different clusters in different
clustering spaces, if it is repeatedly assigned to the same cluster in
the same clustering space, and the cluster centers are stable, then
the point does not belong to a mutual cluster and should be
removed. Such a point is called a conflict point. After such conflict
points are removed, the centers and the cluster assignment
become stable. Then, the mutual subspace clusters can be derived.

The top-down algorithm is summarized in Fig. 6.
5. Experimental results

In this section, we report a systematic empirical study using
real data sets and synthetic data sets. All the experiments are
conducted on a PC computer running the Microsoft Windows XP
Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU,
1.0 GB main memory, and a 160 GB hard disk. Our algorithms are
implemented in Microsoft Visual Cþþ V6.0.
2 http://www.ics.uci.edu/�mlearn/MLRepository.html
3 http://sports.yahoo.com/nba/players
5.1. Results on real data sets

Two real data sets are used to illustrate the effectiveness of
mutual subspace clustering on real applications.
The Boston Housing Database from the UCI Machine Learning
Database Repository2 contains 506 tuples about the house values
in suburbs of Boston. There are 14 numerical attributes that can
be partitioned into two groups. The first group contains the
information about the housing regions, including RM (average
number of rooms per dwelling), Age (proportion of owner-
occupied units built prior to 1940) and MEDV (Median value of
owner-occupied homes in $1000s). The other group describes the
environment around the houses, such as the crime rate by town,
the weighted distance to five Boston employment centers and so
on. Thus, we have the two clustering spaces, house information

and environment information. We want to find the clusters agreed
by both clustering spaces.

We apply both the top-down and the bottom-up methods on
the data set. The results are consistent. Two interesting clusters
and their signature subspaces are listed in Table 1 as an example.
For example, cluster 1 contains the older houses (on average 95%
of the units are built before 1940) with fewer rooms in the house

information clustering space. The signature subspace in the
environment clustering space indicates that the criminal rate in
cluster 1 is much higher than the average, while the distance to
the employer centers is shorter and the percentage of the lower
status population is much higher.

We also conduct the traditional subspace clustering on the
data set and the clusters are not as explainable as the ones listed
above. The detailed results are omitted due to the limit of space.

The second real data set is the NBA player career statistics.3

We collect the profile of 316 NBA players and their career
statistics. There are four numeric attributes about the profile:
Height, Weight, Age and Experience (i.e. the number of years as a

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://sports.yahoo.com/nba/players


Fig. 7. The parameters of the synthetic data generator.
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player in the NBA league), while the technical statistics include G

(number of games played), Min. (average number of minutes
played per game), 3PT (average number of 3-point throws per
game), FT (average number of free throws made per game),
Rebound (average number of rebounds per game), Ast (average
number of assists per game), TO (average number of turn-overs
per game), Stl (average number of steals per game), Blk (average
numbers of blocks per game), PF (average number of personal
fouls per game) and PPG (average points per game).

The profile and the technical statistics describe a player from
two different angles. We want to find the groups of players having
the similar performance in the game and also share similarity in
their profiles. Thus, we use the profile and the technical statistics as
two clustering spaces and apply the mutual subspace clustering.

We use the partitioning model introduced in Section 4 to
compute the mutual subspace clusters. The parameter k controls
the number of clusters we want. In the experiments, k varies
from 2 to 5. We only list two clusters of k¼5 in Table 2 due to the
limit of space. We list the attributes in the signature subspaces of
each cluster (below each attribute is the average value of that
attribute in the whole data set). Clusters 1 and 2 are described
using the average attribute value (mean) of the players in the
cluster.

The average values of attributes Height and Weight in cluster 1 are
smaller than the average values of the whole data set. Cluster
1 contains the relatively shorter players with less weight. Meanwhile,
the signature space of cluster 1 in space technical statistics is (rebound,
block) and the average values in those two attributes are lower than
the average values in the whole data set. In other words, the players
in cluster 1 performs relatively poor in rebound and block. The
signature subspaces of cluster 1 in the two signature subspaces
provide a good explanation of the cluster: it is easier for taller players
to make rebounds and blocks. Similarly, we find that cluster 2 contains
the relatively taller and heavier players, who perform worse than the
average in 3 point throws and assists. This also matches the knowl-
edge that taller players often lead the interior-line attack and have
less chances to make three point throws and assists.

The above results clearly show that mutual subspace cluster-
ing can detect meaningful mutual subspace clusters and their
signature subspaces.

Can mutual subspace clusters be found by simply clustering in
the union space? As a comparison, we combine the attributes from
the profile space and the technical statistics space, and compute the
traditional subspace clusters in the union space. Table 3 shows two
best clusters. The signature subspaces of the clusters do not contain
meaningful attributes from both clustering spaces. In other words,
Table 2
The 2 mutual subspace clusters found in the NBA data set.

Cluster id Size Space 1: profile

Height (cm) Weight (lbs) Signature

200.8 222.2 subspace

1 111 198.2 214.3 (Height, weig

2 127 208.7 245.4 (Height, weig

Table 3
The two subspace clusters found in the NBA data set.

Cluster id Size Height (cm) Weight (lbs) Min. 3PT

200.8 222.2 20 0.5

1 80 200.7 222.4 31.3 0.7

2 67 200.9 222 14.8 0.3
using the traditional subspace clustering may not find mutual
clusters properly.

5.2. Results on synthetic data sets

We further test the effectiveness and the efficiency of the
density based, bottom-up method and the partition based, top-
down method, as well as the mutual pruning strategy.

Generally, a synthetic data set O contains the points with two
set of attributes, S1 and S2. We generate two sets of clusters in S1

and S2, respectively. A pair of clusters CAS1 and C0AS2 are fully

mutual if all the points in C are contained in C0 and vice versa.
Similarly, CAS1 and C0AS2 are partially mutual if most of the
points in C also belongs to C0 and vice versa.

By default, each data set has 10,000 points. We generate the
synthetic data sets with different properties.

D1: All the clusters are fully mutual: There is a one-to-one
mapping between the clusters in S1 and S2 such that the two
mapped clusters contain the same set of points. Though this may
rarely happen in the real data sets, we can use this synthetic data
set to test the best accuracy our methods can achieve.

D2: All the clusters are partially mutual: In this data set, we only
require the clusters to be partially mutual. That is, for each cluster
C in S1, more than half of the points (the proportion is specified by
parameter R) are contained in the same cluster in S2 and vice
versa. We want to test the robustness of our methods using this
data set.

D3: Only a subset of the clusters are mutual: In this data set, only
a subset of the clusters are mutual. This better resembles the real
case and we can test whether the mutual pruning strategy will
take effect in this situation.

In order to generate a set of mutual subspace clusters in spaces
S1 and S2, we take the following parameters as shown in Fig. 7.
Space 2: technical statistics

3PT Rebound Ast Blk Signature

0.5 3.5 1.7 0.4 subspace

ht) 0.65 2.55 2.32 0.2 (Rebound, Blk)

ht) 0.25 4.5 0.9 0.6 (3PT, Ast)

FT Rebound Ast TO Blk PF Signature

1.5 3.5 1.7 1.2 0.4 2 subspace

2.9 5.5 3 2.1 0.66 2.7 (Min., TO, PF)

0.8 2.5 1 0.8 0.25 1.67 (FT, Blk)



Fig. 10. Accuracy of finding the mutual clusters.
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We first define d1 and d2, the dimensionality of the two clustering
spaces, and N1 and N2, the number of clusters. MrminðN1,N2Þ is
the number of mutual subspace clusters in S1 and S2. For each pair
of mutual clusters, R specifies the proportion of points appearing
in both clusters. The dimensionality of the signature subspaces in
S1 and S2 follows the normal distribution. The mean and the
variance is specified by (mU1

, sU1
) and (mU2

, sU2
), respectively. The

attributes in the signature subspaces are randomly picked. In order
to generate the points in a cluster, we first generate the center of the
cluster by randomly picking a value in each attribute. The attribute
values of each point in the signature subspace follow the normal
distribution. The mean is the attribute values of the center and the
variance is specified by (mV1

, sV1
). The values in the rest attributes

are randomly generated following the even distribution.
We test the bottom-up method and the top-down method on

data set D1, where all the 10 clusters are fully mutual. By default,
the parameter k in the top-down method is set to 5, the purity
threshold R of the bottom-up method is set to 0.5 and the
population threshold x is set to 1% of the data set size.

We first generate the synthetic data set with 10 dimensions in
S1 and S2, respectively. There are 10 clusters (each contains 1000
points) in S1 and S2. The dimensionality of the signature sub-
spaces of the clusters varies from 2 to 5. All the 10 clusters are
fully mutual. We add a certain amount of noise points to the data
set, ranging from 0 to 20% (i.e., from 0 to 2000 noise points).
Figs. 8 and 9 show the accuracy of finding the clusters and the
signature subspaces, respectively. The accuracy of a cluster is
measured by 9Coutput \ Creal9=9Coutput [ Creal9, where Coutput is the
cluster found by the algorithm and Creal is the real cluster matching
Coutput the best. The accuracy of the whole clustering is the average
of accuracy of all clusters. Similarly, the accuracy of a signature
subspace is measured by 9Uoutput \ Ureal9=9Uoutput [ Ureal9, where
Uoutput is the signature subspace found by the algorithm and Ureal

is the signature subspace of the corresponding real cluster. Again,
the average of signature subspaces of all clusters is reported.

The accuracy of both methods decreases as the noise rate
increases. The bottom-up method is always more accurate than the
top-down method when the noise rate is 5% or higher. Moreover, the
bottom-up method has a high accuracy in finding signature sub-
spaces. This is because the bottom-up method is based on the density
of points, and noise points with relatively low density do not affect
the accuracy. On the other hand, the top-down method is based on
Fig. 8. Accuracy of finding clusters.

Fig. 9. Accuracy of finding signature subspaces.
the partitioning model, which can be easily affected by noise points.
Those results show that the density-based model is more robust in
finding clusters and signature subspaces against noise.

Then, we test the bottom-up method and the top-down
method on the partially mutual data set D2. There are 5 clusters
with 2000 tuples in each cluster. For each cluster C in S1 and its
corresponding cluster C 0 in S2, R determines the proportion of
points in C \ C0. We vary R from 60% to 100% and the accuracy of
the clusters found are shown in Fig. 10.

The top-down method does not perform well when R is low. The
top-down method always tries to find the clusters agreed by both S1

and S2. If clusters in the two spaces are not consistent, the top-down
method may encounter the conflicting situation described at the end
of Section 4. For example, when R¼ 60%, the two spaces do not
agree with each other in clustering and there are 53% of the
conflicting points. The proportion of conflicting points is greater
than 1�R in this case. As R increases, the accuracy of both methods
improves. This results show that the density-based, bottom-up
method is more robust to handle mutual clusters of various quality.

Last, we test the effectiveness of the mutual pruning in the
bottom-up method. The algorithm MUSC is the bottom-up
method enhanced by the mutual pruning introduced in Section 3.

Data set D3 is used, where we vary the percentage of mutual
clusters from 20% to 100%. Since the bottom-up method and the
MUSC method adopt the same clustering parameter and output the
same results, we only report the accuracy of the bottom-up method
here.

Fig. 12 shows that the bottom-up method can correctly find the
mutual clusters and their signature subspaces, no matter how many
mutual clusters there are in the data set, but the top-down method
Fig. 11. The effectiveness of the mutual pruning.

Fig. 12. Accuracy w.r.t. the proportion of intersections.
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performs poorly since many clusters are not mutual. The runtime of
the bottom-up and the MUSC method is shown in Fig. 11. The mutual
pruning techniques improve the performance of MUSC substantially.
When there are only 20% of the mutual clusters, MUSC runs nearly
seven times faster than the bottom-up method. Most of the not
mutual clusters can be pruned using the mutual pruning strategy.
Even when all the clusters are mutual, MUSC still runs faster than the
bottom-up method, since there are some clusters sharing the same
intersections which can be detected by MUSC and pruned.

5.3. Scalability

We also evaluate the efficiency and the scalability of our
methods with respect to database size and dimensionality.

We generate the synthetic data sets with the dimensionality
varying from 10 to 30 and test the scalability of the top-down
method, the bottom-up method and the MUSC method. There are
10,000 tuples in the data set and the dimensionality of the
signatures subspaces is from 2 to 5. The results are shown in
Fig. 13.

The runtime of the top-down method increases substantially
as the number of attributes increases, because all the attributes
are checked in each round to determine the signature subspaces.
The runtime of the bottom-up method and the MUSC method
does not increase greatly, since the clusters only exist in lower
dimensional subspaces and thus most of the dimensions are
pruned using the density threshold.

We also test the scalability of the methods with respect to the
size of the data set. We set the dimensionality to 10, and increase
the number of tuples from 20,000 to 100,000. The number of
clusters is set to 10, five of which are fully mutual clusters. The
results are shown in Fig. 14.

The runtime of the bottom-up and the MUSC method increases
linearly as the cardinality of the data set goes up. But overall,
MUSC runs faster than the bottom-up method, since it can prune
the clusters with insufficient intersection size early. The runtime
of the top-down method increases dramatically, since the average
pairwise distance in each cluster in each attribute has to be
calculated in order to determine the signature subspaces.

The above results show that the bottom-up method, the top-
down method and the MUSC method are effective in finding the
mutual subspace clusters and their signature subspaces in various
situations. The top-down method works well when there are not
many points and most of the clusters are mutual. The bottom-up
Fig. 13. Runtime vs. dimensionality.

Fig. 14. Runtime vs. cardinality.
method based on the density model is more robust compared to
the top-down method, and works particularly well when many
clusters are not mutual, and there are many noise points. More-
over, the mutual pruning strategy is effective in reducing the
searching space and thus improving the efficiency and the
scalability of the bottom-up method.
6. Conclusions

In this paper, we identified and studied a novel data mining
problem: mining mutual subspace clusters from multiple sources.
We developed two interesting models and the corresponding
methods for mutual subspace clustering. We used both synthetic
data sets and real data sets to examine the effectiveness and the
efficiency of the methods.

In Section 4.1, we briefly mentioned one special case in which
the optimal partition based clustering does not exist. As future
work, we plan to systematically study the condition for optimal
partition based clustering from multiple data sources. Specifically,
we will try to answer the following questions: How to measure
the similarity of two data sources in term of clustering consis-
tency? How to derive the converge condition for partition based
clustering method in multiple data sources? What is the quality
bound of the greedy approximation algorithms?

Moreover, as jointly mining multiple data sources becomes an
interesting and promising research direction, we will also inves-
tigate the applications of mutual subspace clustering in bioinfor-
matics and health-informatics.
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