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Abstract—Incorporating constraints into frequent itemset mining not only improves data mining efficiency, but also leads to concise

and meaningful results. In this paper, a framework for closed constrained gradient itemset mining in retail databases is proposed by

introducing the concept of gradient constraint into closed itemset mining. A tailored version of CLOSET+, LCLOSET, is first briefly

introduced, which is designed for efficient closed itemset mining from sparse databases. Then, a newly proposed weaker but

antimonotone measure, top-X average measure, is proposed and can be adopted to prune search space effectively. Experiments

show that a combination of LCLOSET and the top-X average pruning provides an efficient approach to mining frequent closed gradient

itemsets.

Index Terms—Data mining, frequent closed itemset, association rule, gradient pattern.
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1 INTRODUCTION

FREQUENT pattern mining is a well-studied data mining
problem; however, it is still unsatisfactory in the sense

that its traditional problem formulation is unsuitable to
answer comparative analysis queries, such as: “What items
are frequently sold together with some brands of TV which can
make 20 percent more profit than the average profit of all kinds of
TV?” Recently, there have been many studies dedicated to
constraint-based frequent-itemset mining [5], [6], which
demonstrates a promising direction for solving the above
problem. A typical such example is DualMiner [1], which
uses both monotone and antimonotone constraints to prune
the search space and answer questions like “find all frequent
itemsets where the total price is at least $50.” However,
although pushing some monotone or antimonotone con-
straints into frequent itemset mining often generates
compact and interesting result sets, not all constraints have
the monotone or antimonotone property so that they can be
used directly to prune search space.

Take our previous query, “What items are frequently sold

together with some brands of TV which can make 20 percent more

profit than the average profit of all kinds of TV?” as an example.

An itemset that is frequently sold with some highly

profitable brands of TV does not imply that any of its

superitemsets or subitemsets can also do so, that is, the

constraint in the query is neither monotone nor antimono-

tone. However, this kind of constraints can make the result

set more interesting from the application point of view. For

example, a typical frequent itemset mining algorithm will

usually mine from a retail database many such frequent

itemsets sold together with a TV as fTV;VCRg,
fTV;DVDg, and so on. Assume the average profit of a TV

is $10. When a TV is sold with a VCR, its average profit is

$8; however, when it is sold with a DVD, its average profit

is $20 (here, we assume some highly profitable brands of TV

will be sold together with a DVD with a high probability). If

we want to mine the frequent itemsets sold with a TV which

can make 50 percent more profit than the average, the

itemset fTV;VCRg will not be included in the result set

because it cannot make 50 percent more profit than average.
In this paper, we introduce several constraints related to

gradient computation into frequent closed itemset mining.

These constraints include 1) the support threshold (which is a

typical antimonotone constraint), 2) the probe itemset (such

as TV in the above example) that is used as the basis for

comparison among various potential gradient itemsets

(such as fTV;VCRg and fTV;DVDg), and 3) the gradient

threshold (such as 150 percent in the above example), which

can be used to remove the nongradient itemsets (such as

fTV;VCRg which cannot make 50 percent more profit than

average). Differently from the traditional frequent closed

itemset mining, we call this framework frequent closed

constraint-based gradient itemset mining. Our solution to this

problem consists of two parts: an efficient closed itemset

mining method, LCLOSET (stands for Lightweight frequent

CLOsed itemSET mining), and an effective gradient prun-

ing method, Top-X average, by converting the gradient

threshold into a weaker but antimonotone attribute.
In the rest of this paper, we describe the problem

definition in Section 2 and introduce the closed gradient

mining algorithm by focusing on the Top-X average

method in Section 3. Then, we present the performance

study in Section 4 and conclude the study in Section 5.
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2 PROBLEM FORMULATION

A retail database RDB consists of a set of retail transactions
and a retail transaction RT is a triple htid; I;mi, where tid is
the corresponding transaction identifier, I ¼ fi1; i2; . . . ; ilg is
a set of items (we call it an l-itemset if it contains l items) and
m is a measure such as profit in dollars. A retail transaction
htid; I;mi contains an itemset X if X � l. The number of
transactions containing X in RDB is called the support of
itemset X, denoted as supðXÞ. The sum of measures of the
transactions containing X is called the total measure of X,
denoted by sum mðXÞ, and ðsum mðXÞ=supðXÞÞ is called
the average measure of X, denoted by avg mðXÞ.

Given a probe itemset, P , a support threshold min sup,
and a gradient threshold min grad, our algorithm will mine
frequent closed constrained gradient itemsets defined as
follows:

Definition 1 (Projected database). Given a retail transaction
RT, htid; I;mi, which contains P , htid; I � P;mi is called a
projected transaction with regard to P . The set of all such
projected transactions in RDB with regard to P is called the
projected database, denoted by RDBjP .

Definition 2 (Frequent closed itemset). If the support of an
itemset X in RDB is no less than min sup, we call it a
frequent itemset in RDB and, if there is no proper superset of
X with the same support as X, X is called a frequent closed
itemset in RDB.

Definition 3 (Frequent closed constrained gradient). If
itemset X is a frequent itemset in RDBjP and avg mðXÞ �
ðavg mðP Þ �min gradÞ holds, where � 2 f�;�; <;>g (in
this paper we use “� ” as an illustration). We call X a
frequent constrained gradient. If a frequent constrained
gradient X is a closed itemset, it is called a frequent closed
constrained gradient.

The following property shows that all frequent gradient
itemsets can be derived from the set of frequent closed
gradient itemsets:

Property 1 (Nonredundancy and completeness). For any
frequent gradient itemset X, there exists a closed gradient Y
such that X � Y , supðXÞ ¼ supðY Þ, and

avg mðXÞ ¼ avg mðY Þ:

Proof. If X itself is a closed itemset, the property naturally
holds. If X is a nonclosed itemset, there must exist a
closed itemset, Y , such that X � Y and supðXÞ ¼ supðY Þ.

X � Y means the set of transactions containing X is a

superset of the set of transactions containing Y , thus, if

X � Y and supðXÞ ¼ supðY Þ hold in the mean time, X

and Y must appear in the same set of retail transactions

and have the same average measure, i.e., avg mðXÞ ¼
avg mðY Þ also holds. tu

Example 1. Table 1 shows a sample retail data set RDB that

will be used as the running example in this paper. Here,

we suppose the probe itemset contains only one item “e,”

min sup ¼ 2, and min grad ¼ 1:2. Table 2 shows the

projected database with regard to “e.” The third column

in Table 2 is the set of items sorted in item frequency

descending order. It can be seen that avg mðeÞ ¼ 37 and

the associated gradient threshold is 44.4.

2.1 Discussion of the Database Model

In the above retail transaction model, there is a measure
associated with each transaction. Depending on the
applications of the closed gradient mining algorithm, its
measure may be different. The following are several
possible cases:

1. The measure can be the profit of probe item “e.” In
this case, we want to mine which itemsets can make
the probe item more profitable. Sometimes, for a
certain probe item, it may have different prices (or
profits) in different transactions. For example, item
TV may have tens of brands and each brand usually
has a different price (or profit).

2. It can also be the average profit of each item in the
projected retail transaction; in this case, we want to
mine the itemsets sold together with probe item “e,”
whose support is no less than min sup and, on
average, each item in these itemsets can gain no less
than (avg mðeÞ �min grad) profit. This is a usual
case: In some stores, some promotion items are
intentionally priced low to attract customers and
promote the sales of some other highly profitable
items. Here, the set of promotion items can be used
as the probe itemset.

3. Our database model also covers multidimensional
transaction data sets. We can treat each dimension
value as a virtual item identifier and use our model
to mine gradients on multidimensional data sets. In
such a way, we can use our algorithm to answer
such questions: In which city is TVs sold more
profitable than the average? In this case, closed
gradient mining can perform similar functions as
Cube gradient mining [2].
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3 FREQUENT CLOSED GRADIENT MINING

Our strategy to mine closed gradients is to push the
gradient constraint into an efficient closed itemset mining
algorithm. However, most previously proposed closed
itemset mining methods are not specially designed for
retail transaction data sets, which are usually very sparse
and contain a large number of distinct items. We first briefly
introduce LCLOSET, a tailored version of the CLOSET+ [8]
algorithm for retail databases, then focus on how to use the
gradient constraint to speed up the mining process.

3.1 LCLOSET: A Lightweight Closed Itemset Mining
Algorithm

LCLOSET inherits most of the features of CLOSET+ except
those not designed for sparse data sets, like the bottom-up
physical tree projection method and the subset checking
method based on the two-level hash indexed result tree.
Specifically speaking, it adopts the prefix-tree structure [4],
[9], [8] to represent the original data set and mines frequent
itemsets under the divide-and-conquer and depth-first
search paradigm. It uses several pruning methods to prune
some unpromising search space, which have been popularly
used in many closed itemset mining algorithms [10], [8], [3],
[7]. Two salient features which are especially helpful for
sparse data sets, top-down pseudo-tree-projection and pseudo-
projection-based upward checking, are retained to build condi-
tional databases and check if an itemset is closed or not. Due
to limited space, we do not elaborate on most of these
techniques and refer the interested readers to [8] for more
details. However, as the FP-tree structure used in closed
gradient mining is a little different from the one in [8], we will
briefly introduce it in the context of gradient mining.

Example 2. The FP-tree of our running example is con-
structed as follows: Scan the database once to find the set
of frequent items and sort them in support descending
order to get the f list ¼ hf : 4; c : 4; a : 3; b : 3;m : 3; p : 3i.
To insert a transaction into the FP-tree, the infrequent
items are removed and the remaining items in the
transaction are sorted according to the item ordering in
f list. Fig. 1 shows the FP-tree structure.

When we use the FP-tree structure to mine the closed
gradients, the way of building the FP-tree is, to some extent,
different from that in [8]. First, as Fig. 1 shows, besides the
label and count, we also need to record for each item in the
tree nodes and header table the sum of the measures of the

transactions where the corresponding item appears. Second,
we can prune some nongradient items when we compute
the f list and build FP-tree by applying the Top-K average
Apriori property, which has been used to prune search
space in cube gradient computing [2]. The Top-K (where K
equals min sup) average is a weaker but antimonotonic
attribute: If an item appears in N transactions which are
sorted in measure descending order and the top k
transactions’ average measure cannot satisfy the gradient
threshold, any frequent closed itemsets containing this item
will fail in satisfying the gradient threshold, thus we can
safely remove it from the f list and the FP-tree. We can also
use the binning technique to compute the top-K average in
an efficient way. As to the details of the top-K average
property and the binning technique, please refer to [2].

3.2 Closed Constrained Gradient Mining

A naive method to mine closed gradients based on
LCLOSET may be like this: By scanning the subtrees and
finding the locally frequent items, we also compute the sum
of measures for each local item and record them in the
header table (as shown in the third row of the header table
in Fig. 1) in order to figure out the average measure for a
frequent closed itemset and judge if it satisfies the gradient
threshold. But, this method does not make full use of the
gradient constraint to improve the mining efficiency.

A straightforward thinking is to use the Top-K average
property [2] to prune the search space. But, in many cases,
the Top-K average property is too weak to prune the search
space: Although some items can pass the Top-K average
testing, finally, they cannot form any closed gradient
itemsets. As a result, we need to design some more effective
gradient pruning methods. Following, we will present a
newly proposed top-X average pruning method, which is
still a weak antimonotonic attribute, but is much stronger.

Given an FP-tree constructed according to the f list,
assume there are totally m leaf nodes labeled as I1, the
last item in f list, and the set of their supports is
SS ¼ fS1; S2; . . . ; Smg. By choosing any number (from 1 to
m) of such nodes and combining them, we can get a
combined support (i.e., the sum of the supports of the
corresponding nodes). The complete set of all the
combined supports is denoted by CSS, where

CSS ¼ fS1; . . . ; Sm; S1 þ S2; . . . ; Sm�1 þ Sm; . . . ;

S1 þ S2 þ 	 	 	 þ Smg:

For example, in Fig. 1, “p” is the last item in f list, there are
two nodes in the FP-tree labeled as “p,” here SS ¼ f2; 1g,
CSS ¼ f2; 1; 3g.
Lemma 1. The support of any frequent closed itemset containing

item I1 must belong to its combined support set CSS.

Proof. Because I1 is the last item in f list, all of its nodes
in the FPtree must be leaf nodes. Here, we use
mathematical induction to prove the lemma. If 1-
itemset P1 ¼ 00I 001 is a closed itemset, its node support
set is SS ¼ fS1; S2; . . . ; Smg, and its support equals
(S1 þ S2 þ 	 	 	 þ Sm), which belongs to its CSS. For any
closed 2-itemset P2 which contains I1 and another
item I2, assuming I2 appears together with I1 in
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Fig. 1. The FP-tree in the running example.



m2 branches, according to the construction of the FP-
tree, the set of their supports, SS2, must be a subset of
SS, P2’s support must be equal to the sum of all the
supports in SS2, which is also an element of CSS.

We assume, for any closed i-itemset containing I1, Pi,
the items in Pi appear together with I1 in mi branches,
the set of their supports, SSi, is a subset of SS, and Pi’s
support is an element of CSS. For any closed ðiþ
1Þ-itemset containing Pi and another item Iiþ1, Piþ1,
assuming Pi and Iiþ1 appear together in miþ1 branches,
let us prove SSiþ1 is a subset of SS, and its support is an
element of CSS. According to the construction of the
FP-tree and the Apriori property, SSiþ1 must be a subset
of SSi. Because SSi is a subset of SS, SSiþ1 must be also a
subset of SS. Its support equals the sum of the elements
in SSiþ1, which is also an element of CSS. tu

Definition 4 (Top-X average). For the m nodes labeled as I1,
sort them in average measure descending order. The Top-X
average, denoted as avgxðI1Þ, is the average measure of the top
X nodes, where X is the smallest number satisfying that the
sum of the top X nodes’ count is no smaller than min sup.

For example, in Fig. 1, avgxðpÞ ¼ ð45þ 64Þ=ð1þ 2Þ 

36:33 and here x equals 2.

Theorem 1. If the Top-X average for the last item I1 in f list

cannot satisfy the gradient threshold, there are no frequent
closed gradient itemsets containing I1.

Proof. Lemma 1 says the support of any frequent closed
itemsets containing item I1 must fall into set CSS, if I1’s
Top-X average fails to satisfy the gradient threshold, i.e.,
avgxðI1Þ < ðavg mðP Þ �min gradÞ, any frequent closed
itemset containing I1 either cannot pass the support
threshold or cannot pass the gradient threshold. tu

Let us look at the example in Fig. 1. According to
Theorem 1, item p can be pruned from the f list and the FP-
tree because avgxðpÞ cannot satisfy the gradient threshold.
Let us examine whether it is safe to prune item p. For item
“p,” there are three closed itemsets, “fcamp,” ”cbp,” and
“cp.” “fcamp” has a support 2 and an average measure 32
which fails the gradient threshold. “cbp” has an average
measure 45 which satisfies the gradient threshold, but its
support is lower than min sup. Also, the average measure
of “cp” cannot satisfy the gradient threshold. Thus, item “p”
can be safely pruned from the FP-tree. We can use Theorem
1 recursively to prune nongradient items from the FP-tree.
For example, in Fig. 1, after pruning item “p” from the
FP-tree, item “m” becomes the last item in f list and
avgxðmÞ ¼ 38, which still fails the gradient threshold, so all
the nodes labeled as “m” can also be removed from the
FP-tree safely.

It can be easily seen that the Top-X average is usually
smaller than the Top-K average, so it will be a stronger anti-
monotonic attribute in comparison with the Top-K average
and will be more effective in pruning search space. For
example, in Fig. 1 the Top-K average of item “m,”
avgkðmÞ ¼ ð50þ 39Þ=2 ¼ 44:5, can pass the gradient thresh-
old; however, as we analyzed above, its Top-X average
cannot satisfy the gradient threshold. Similarly to the

computing of the Top-K average in [2], we can also use
the binning technique to compute the Top-X average.

3.3 The FCCGM Algorithm

Both the LCLOSET algorithm and the Top-X average
pruning method are based on the FP-tree structure. It is
very natural to integrate the Top-X average pruning
method with LCLOSET in order to efficiently mine the
complete set of frequent closed constrained gradients. The
so-derived algorithm is called FCCGM (abbreviated for
Frequent Closed Constrained Gradient Mining). FCCGM
starts with scanning RDB once to build the projected
database RDBjP with regard to probe itemset P . In this
process, according to the projected transactions, it computes
avg mðP Þ and each projected item’s count and its Top-K
average using binning technique, which will be used to
remove the infrequent items and nongradient (i.e., its top-K
average cannot satisfy the gradient threshold) items. The
proj RDB is scanned once to build the FP-tree and the
Top-X average method is used to further prune some
nongradient items from the FP-tree. Then, FCCGM uses
LCLOSET to recursively mine the frequent closed gradient
itemsets.

4 PERFORMANCE EVALUATION

All of our experiments were performed on an Intel
Pentium IV processor computer with 256MB memory. We
first compare LCLOSET with DCI-CLOSED [3] and LCM
[7] using two real data sets, retail and big-market, then
evaluate the effectiveness of the Top-X average pruning
method and the scalability of the integrated algorithm,
FCCGM, using a set of synthetic data sets. DCI-CLOSED
and LCM are two of the most efficient closed itemset
mining algorithms in terms of sparse data sets, which can
be downloaded from http://fimi.cs.helsinki.fi/.

The retail data set contains 88,162 transactions and
16,471 distinct items, while Big-market is relatively much
larger and contains 838,466 transactions and 38,336 distinct
items. The synthetic data sets were generated using the IBM
generator and a measure ranging from 1 to 100 was
randomly generated and associated with each transaction.
Three synthetic data sets, T10I4D100K, T20I10D100K, and
T40I10D100K, were used to evaluate the Top-X method,
which all contain 100,000 transactions and 1,000 distinct
items but have different average transaction lengths, i.e., 10,
20, and 40, respectively. To test the scalability of the
algorithm, the T10I4Dx series of data sets were generated by
varying the base size from 200K to 1000K transactions and
fixing the average transaction length at 10 and average
itemset length at 4.

Our experimental results are presented as follows:

4.1 Evaluation of LCLOSET

Fig. 2 shows the runtime comparison results among
LCLOSET, DCI-CLOSED, and LCM. For a small retail data
set, we can get the relationship among the runtime of the
three algorithms: DCI-CLOSED < LCLOSET < LCM at a
high absolute support (e.g., 2,048), LCM < LCLOSET <
DCI-CLOSED at a low absolute support (e.g., 4), while all
three algorithms have similar runtime at a moderate
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support (e.g., 32 � min sup � 256). The big-market data set

is about 10 times larger than the retail data set. For this large

big-market data set, LCM aborted after some time of running

even at a high support of 2,048, thus there is no curve for it

in Fig. 2. This implies LCM may have some difficulty in

dealing with large data sets. Compared with DCI-CLOSED,

LCLOSET is significantly faster for big-market data set. Fig. 3

compares the number of frequent itemsets with that of

frequent closed itemsets for sparse data sets. It shows that,

at a low support, the number of frequent closed itemsets

can be an order of magnitude smaller, which implies that

mining closed itemsets for sparse data sets is still very

compelling.

4.2 Effectiveness of Top-X Average Pruning
Method

Fig. 4 and Fig. 5 evaluate the effectiveness of the Top-X

method by varying support threshold and fixing gradient

threshold at 2 for T10I4D100K and T20I10D100K, 2.2 for

T40I10D100K, and by varying gradient threshold and fixing

support threshold at 0.8 percent for T10I4D100K and

T20I10D100K, 2 percent for T40I10D100K, respectively.

We can see that, in both cases, the Top-X method is very

effective in accelerating the mining process and, in many

cases, it makes the FCCGM algorithm run several times

faster.

4.3 Scalability Test

The scalability test with the T10I4Dx series of data sets

shows that the FCCGM algorithm has very good scalability:

Given a support threshold and a gradient threshold, we

find a linear increase in the running time with the increase

of base size.

5 CONCLUSIONS

In this paper, we proposed a new problem formulation,

frequent closed constrained gradient mining, which incorpo-

rates the gradient constraint with the traditional frequent

closed itemset mining in order to generate some interesting

patterns. Under this model, we proposed the Top-X

method, which can be easily integrated with the properly

devised closed itemset mining algorithm LCLOSET, and

derived an efficient gradient mining algorithm FCCGM.

Our performance study clearly shows the effectiveness of

the algorithm design.
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