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Abstract

Recent work has highlighted the importance of the
constraint-based mining paradigm in the context of frequent
itemsets, associations, correlations, sequential patterns,
and many other interesting patterns in large databases.
In this paper, we study constraints which cannot be han-
dled with existing theory and techniques. For example,�����	��

����� , ������� ������
������ , ����� ��
������ ( 
 can con-
tain items of arbitrary values) ��� �"!$# %'&)(�� , are customar-
ily regarded as “tough” constraints in that they cannot be
pushed inside an algorithm such as Apriori. We develop a
notion of convertible constraints and systematically analyze,
classify, and characterize this class. We also develop tech-
niques which enable them to be readily pushed deep inside
the recently developed FP-growth algorithm for frequent
itemset mining. Results from our detailed experiments show
the effectiveness of the techniques developed.

1. Introduction

It has been well recognized that frequent pattern min-
ing plays an essential role in many important data mining
tasks. However, frequent pattern mining often generates a
very large number of frequent itemsets and rules, which re-
duces not only the efficiency but also the effectiveness of
mining since users have to sift through a large number of
mined rules to find useful ones.

Recent work has highlighted the importance of the
paradigm of constraint-based mining: the user is allowed
to express his focus in mining, by means of a rich class of
constraints that capture application semantics. Besides al-
lowing user exploration and control, the paradigm allows
many of these constraints to be pushed deep inside mining,
thus pruning the search space of patterns to those of interest
to the user, and achieving superior performance.

Itemset constraints have been incorporated into associ-
ation mining [10]. A systematic method for the incorpo-
ration of two large classes of constraints—anti-monotone*

The work was supported in part by grants from the Natural Sciences
and Engineering Research Council of Canada, and the Networks of Centres
of Excellence of Canada (NCE/IRIS-3).

and succinct—in frequent itemset mining is presented in
[7, 6]. A method for mining association rules in large,
dense databases by incorporation of user-specified con-
straints that ensure every mined rule offers a predictive ad-
vantage over any of its simplifications, is developed in [2].
Constraint-based mining of correlations, by exploration of
anti-monotonicity and succinctness, as well as monotonic-
ity, is studied in [4].

While previous studies cover a large class of useful
constraints, many other useful and natural constraints re-
main. For example, consider the constraints ���+�,�-
��.�/� ,�0�+��� �����-
��1�2� , and �+�3� �-
��)�2�2�-�4�5!$# %'&6(7� . The first
two are neither anti-monotone, nor monotone, nor succinct.
The last one is anti-monotone when � is & and all items
have non-negative values. If 
 can contain items of arbi-
trary values, �+�3� �-
���&8� is rather like the first two con-
straints. Intuitively, this means these constraints are hard
to optimize. In this paper, we investigate a whole class of
constraints that subsumes these examples. The main idea
is that constraints that exhibit no nice properties do so in
the presence of certain item orders. We make the following
contributions.

9 We introduce (Section 3) the concept of convert-
ible constraints and classify them into three classes:
convertible anti-monotone, convertible monotone, and
strongly convertible. This covers a good number
of useful constraints which were previously regarded
tough, including all the examples above.9 We characterize (Section 3) the class of convertible
constraints using the notion of prefix monotone func-
tions, and study the arithmetical closure properties of
such functions. As a byproduct, we can show that large
classes of constraints involving arithmetic are convert-
ible, e.g., � ��:;��

�=<$���+�,�-
��>& � is convertible anti-
monotone and �0�+��� �����-
��@? �0� ���-
A�B#C� is convert-
ible monotone.9 We show that convertible constraints cannot be pushed
deep into the basic Apriori framework. However, they
can be pushed deep into the frequent pattern growth
mining. We thus develop (Section 4) algorithms for
fast mining of frequent itemsets satisfying the various
constraints.9 We report our results from a detailed set of experi-



ments, which show the effectiveness of the algorithms
developed(Section 5); and finally, we conclude the
study in Section 7.

2. Problem Definition: Frequent Itemset Min-
ing with Constraints

Let
��� ! ��� % ��� %����	� % ��
 ( be a set of all items, where an

item is an object with some predefined attributes (e.g., price,
weight, etc.). A transaction � ��
�� �-� % ����� is a tuple, where� �-� is the identifier of the transaction and

�������
. A transac-

tion database � consists of a set of transactions. An itemset
 ���
is a subset of the set of items. A � -itemset is an

itemset of size � . We write itemsets as 
 � ����� ���! #"	"�" ���%$ ,
omitting set brackets.

An itemset 
 is contained in a transaction � �&
�� �-� % ����� ,
if and only if 
 ����� . The support �+�(' �-
�� of an itemset 
 in
a transaction database � is the number of transactions in �
containing 
 . Given a support threshold ) ��* & ) &,+ � + � ,
an itemset 
 is frequent provided �+�-' �-
�� # ) .

A constraint . is a predicate on the powerset of the set
of items

�
, i.e., .0/214365 ! �%7 ��� %!83�(9 �+� ( . An itemset 


satisfies a constraint . if and only if . ��
�� is true. The set
of itemsets satisfying a constraint . is � � �!: � � � � !7
;+@
 ��=< . �-
�� � true ( . We call an itemset in � � � : � � � valid.

Problem definition. Given a transaction database � , a
support threshold ) , and a set of constraints > , the prob-
lem of mining frequent itemsets with constraints is to find
the complete set of frequent itemsets satisfying > , i.e., find?2@A� !7
;+ 
�� � � � : � � � < ���(' ��
�� # ) ( .

Many kinds of constraints can be associated with fre-
quent itemset mining. Two categories of constraints, suc-
cinctness and anti-monotonicity, were proposed in [7, 6];
whereas the third category, monotonicity, was studied in
[3, 4, 8] in the contexts of mining correlated sets and fre-
quent itemsets. We briefly recall these notions below.

Definition 2.1 (Anti-monotone, Monotone, and Succinct
Constraints) A constraint .CB is anti-monotone if and only
if whenever an itemset 
 violates .=B , so does any superset
of 
 . A constraint . 
 is monotone if and only if when-
ever an itemset 
 satisfies . 
 , so does any superset of 
 .
Succinctness is defined in steps, as follows.

9 An itemset
�EDF���

is a succinct set, if it can be ex-
pressed as GIH � � � for some selection predicate ' , whereG is the selection operator.95
#J � 1K3 is a succinct powerset, if there is a fixed
number of succinct sets

� � % � � %��	��� % �!LM�N�
, such that
#J can be expressed in terms of the strict powersets

of
� � %	���	�=% ��L using union and minus.9 Finally, a constraint . D is succinct provided � � � :PO � � �

is a succinct powerset.

We can show the following result.

Theorem 2.1 A constraint . is both anti-monotonic and
monotonic if and only if . �-
��RQ �%7 ��� for all itemset 
 , or. �-
��SQT8��-9 ��� for all itemset 
 .

Theorem 2.2 Every succinct constraint involving only ag-
gregate functions can be expressed using conjunction
and/or disjunction of monotone and anti-monotone con-
straints.

These three categories of constraints cover a large class
of popularly encountered constraints. However, there are
still many useful constraints, such as �����	��

� � � and����� ��
��2�/� where ��� !@& % #)( (shown in the table) that
belong to none of the three classes.

Example 1 Let Table 1 be our running transaction database� , with a set of items
�U� !7��%%V7%!W7% � % � %%8�% �	%!X,( . Let the sup-

Transaction ID Items in transaction
10 Y[Z�\EZ^]�Z�_[Z�`
20 \�Z�]�Za_[Zb`cZadIZ�e
30 Y[Z�]�Z^_[Z�fKZ�`
40 ]�Z�fKZ�`cZ�d

Table 1. The transaction database � in Example 1.

port threshold be ) � 1 . Itemset 
 � �[W � is frequent since
it is in transactions *	g and h g , respectively. The complete
set of frequent itemsets are listed in Table 2.

Length i Frequent i -itemsets
1 Y[Z�\EZ^]�Z�_[Z�fKZ�`[Zad
2 YK]�Z�YK_[Z�Y-`[Z�\�]�Z�\�_[Z�\!`[Z�]!_[Z�]%f4Z�]�`[Za]�d[Z�_�`[Zaf	`[Z�`(d
3 YK]%_[Z�YK]�`[ZaYK_^`cZ�\�]!_[Z�\�]�`[Za\�_�`[Z�]!_^`cZ�]!f	`[Za]�`(d
4 YK]%_�`[Za\�]!_�`

Table 2. Frequent itemsets with support threshold) � 1 in transaction database � in Table 1.

Let each item have an attribute value (such as profit),
with the concrete value shown in Table 3. In all constraints
such as ����� ��
�� �6� , we implicitly refer to this value.

Item a b c d e f g h
Value j�k k lnm�k o!k lSp	k p	k mEk lRo!k

Table 3. The values (such as profit) of items in Ex-
ample 1.

The constraint
7 ��� � � �-
�� &q*�r requires that for an

itemset 
 , the value range of the items in 
 must be no
greater than *�r . It is an anti-monotone constraint, in the
sense that if an itemset, say �IV , violates the constraint,
any of its supersets will violate it; and thus �[V can be re-
moved safely from the candidate set during an Apriori-like
frequent itemset mining process [7]. However, the con-
straint .RB!s�t Q �����	��

� # 1 r is not anti-monotone (nor
monotone, nor succinct, which can be verified by read-
ers). For example, ���+�,� � 8�� � �u*	gwv h g@� < 1yxz1 r , vio-



lates the constraint. However, upon adding one more item� , �����	�-� � 8�� � � � gRvT*	gRv h g$�=< h # 1 r , � � 8 satisfies .RB�s�t .
This example scratches the surface of a large class of

useful constraints involving ���+� , ������� ��� , etc. as well as
arithmetic. Exploiting them in mining calls for new tech-
niques, which is the subject of this paper.

3. Convertible Constraints and Their Classifi-
cation

Before introducing the concept of convertible constraint,
we motivate it with an example.

Example 2 Suppose we wish to mine frequent itemsets
over transaction database � in Table 1, with the support
threshold ) � 1 and with constraint . Q �����	�-
�� # 1 r .

The complete set of frequent itemsets satisfying . can be
obtained by first mining the frequent itemsets without using
the constraint (i.e., Table 2) and then filtering out those not
satisfying the constraint. Since the constraint is neither anti-
monotone, nor monotone, nor succinct, it cannot be directly
incorporated into an Apriori-style algorithm. E.g., itemset8�� satisfies the constraint, while its subset � and its superset� 8�� do not.

If we arrange the items in value-descending order,
 ��%%8�% �	% � %%V7%!X %%W7% � � , we can observe an interesting property,
as follows. Writing itemsets w.r.t. this order leads to a no-
tion of a prefix. E.g., �[8 � has �[8 and � as its prefixes.
Interestingly, the average of an itemset is no more than that
of its prefix, according to this order.

3.1. Convertible Constraints

The observation made in Example 2 motivates the fol-
lowing definition. We will frequently make use of an order1

over the set of all items and assume itemsets are written ac-
cording to this order.

Definition 3.1 (Prefix itemset) Given an order � over the
set of items

�
, an itemset 
�� � � � � � "�"	" ��� is called a prefix of

itemset 
 � � � � � "�"�" � 
 w.r.t. � , where ��9 & � � and items
in both itemsets are listed according to order � . 
�� is called
a proper prefix of 
 if ��9 x � � .

We next formalize convertible constraints as follows.

Definition 3.2 (Convertible Constraints) A constraint .
is convertible anti-monotone provided there is an order �
on items such that whenever an itemset 
 satisfies . , so
does any prefix of 
 . It is convertible monotone provided
there is an order � on items such that whenever an item-
set 
 violates . , so does any prefix of 
 . A constraint
is convertible whenever it is convertible anti-monotone or
monotone.

1Unless otherwise stated, every order used in this paper is assumed to
be total over the set of items.

Note that any anti-monotone (resp., monotone) con-
straint is trivially convertible anti-monotone (resp., convert-
ible monotone): just pick any order on items.

Example 3 We show �����	�-
��2�.� where �"� !@& % #)( is a
convertible constraint.

Let � be the value-descending order. Given an item-
set 
 � � � � ��"	"�" � � satisfying the constraint ���+�,�-
���# � ,
where items in 
 are listed in the order � . For each prefix
 � � � � "�"	" � L of 
 ��*)& � &;9�� , since � L # � L�� � # "	"�" #� �
	 � # � � , we have ���+�,�-
��-� # �����	��
��
��!7� L�� � (7� # "	"�" #���+�	��
���# � . This implies 
�� also satisfies the constraint.
So, constraint �����	��

� # � is convertible anti-monotone.
Similarly, it can be shown that constraint ���+�	��
��"& � is
convertible monotone.

Interestingly, if the order � 	 � (i.e., the reversed order
of � ) is used, the constraint ���+�,�-
�� #C� can be shown
convertible monotone. For lack of space, we leave this as
an exercise to the reader.

In summary, constraint ���+�	��
��0�"� is convertible con-
straint. Furthermore, there exists an order � such that the
constraint is convertible anti-monotone w.r.t. � and con-
vertible monotone w.r.t. � 	 � .

As another example, let us examine the constraints with
function �+�3� �-
�� .
Example 4 Constraint �+�3� �-
�� &C� is anti-monotone if
items are all with non-negative values. However, if items
are with negative, zero or positive values, the constraint be-
comes neither anti-monotone, nor monotone, nor succinct.

Curiously, this constraint exhibits a “piecewise” con-
vertible monotone or anti-montone behavior. If � # g in
the constraint, the constraint is convertible anti-monotone
w.r.t. item value ascending order. Given an itemset 
 �
� � � � "�"	" � � such that �+�3� �-
��.&8� , where items are listed
in value ascending order. For a prefix 
�� � � � � � "	"�" � ���* &�� & 9-� , if � � & g , that means � � & � � & "�"	" &� ��	 � & � � &�g . So, �+�3� �-
��-� & g & � . On the other hand,
if � ��� g , we have g x � � & � � � � & "	"�" & � � . Thus,����� ��
��-� � �+��� �-
�� ? ����� ��� � � � "�"	" � � � x � . Therefore,����� ��
��-�2&8� in both cases, which means 
�� satisfies the
constraint.

If ��& g in the constraint, it becomes convertible mono-
tone w.r.t. item value descending order. We leave it to the
reader to verify this.

Similarly, we can also show that, if items are with nega-
tive, zero or positive values, constraint �+�3� �-
�� # � is con-
vertible monotone w.r.t. value ascending order when � #�g ,
and convertible anti-monotone w.r.t. value descending order
when � &�g .

The following lemma can be proved with a straightfor-
ward induction.

Lemma 3.1 Let . be a constraint over a set of items
�
.

1. . is convertible anti-monotone if and only if there ex-
ists an order � over

�
such that for every itemset 




and item �2� � such that
� :.� 
�% : � � , . ��
 � !�� (��

implies . �-
�� .
2. . is convertible monotone if and only if there exists

an order � over
�

such that for every itemset 
 and
item �5� �

such that
� : � 
�% : � � , . �-
�� implies. �-
 ��!�� (7� .

The notion of prefix monotone functions, introduced be-
low, is helpful in determining the class of a constraint. We
denote the set of real numbers as � .

Definition 3.3 (Prefix monotone functions) Given an or-
der � over a set of items

�
, a function 8 / 1-3 5 �

is a prefix (monotonically) increasing function w.r.t. � if
and only if for every itemset 
 and its prefix 
�� w.r.t. � ,8;��
���� & 8;��

� . A function � / 143;5 � is called a prefix
(monotonically) decreasing function w.r.t. � if and only if
for every itemset 
 and its prefix 
�� w.r.t. � , �	��
��-� #��,�-
�� .

We have the following lemma on the determination of
prefix monotone functions. The proof is similar to that of
Lemma 3.1.

Lemma 3.2 Given an order � over a set of items
�
.

1. A function 8 /-143 5 � is a prefix decreasing function
w.r.t. � if and only if for every itemset 
 and item �
such that

� :���
�% : � � , 8 �-
�� #y8 �-
 ��!�� (7� .
2. A function � /-14365 � is a prefix increasing function

w.r.t. � if and only if for every itemset 
 and item �
such that

� :���
�% : � � , �	��
�� & �	��
 ��!7� (7� .
It turns out that prefix monotone functions satisfy inter-

esting closure properties with arithmetic. An understanding
of this would shed light on characterizing a whole class of
convertible functions involving arithmetic. The following
theorem establishes the arithmetical closure properties of
prefix monotone functions. We say a function 8 /(1-3 5 �
is positive, provided

� 
 ��� / 8;��
�� � g .
Theorem 3.1 Let 8 and 8 � be prefix decreasing functions,
and � and � � be prefix increasing functions w.r.t. an order
� , respectively. Let W be a positive real number.

1. Functions ?C8 �-
�� , �������� , W " �	��

� and �,�-
�� v � �=�-
�� are

prefix increasing functions. Functions ? �	��
�� , �t ����� , W "8;��
�� and 8;��
��%v 8 � ��
�� are prefix decreasing functions.

2. If 8 and � are positive functions, then 8;��
��
	�8 � �-
�� is
prefix decreasing, and �,�-
���	.� � �-
�� is prefix increas-
ing.

3. A constraint X �-
�� # � (resp., X;��

� & � ) is convertible
anti-monotone (resp., monotone) if and only if X prefix
decreasing. Similarly, X �-
���# � (resp., X;��
���& � )
is convertible monotone (resp., anti-monotone) if and
only if X is prefix increasing.

Example 5 As an illustration, notice that ���+�,�-
�� is a pre-
fix decreasing function w.r.t. value-descending order, and���+�	��
��2# 1 g is convertible anti-monotone w.r.t. the same
order. Also, � ��: �-
�� is a prefix increasing2 function w.r.t.
this order. From Theorem 3.1, it follows that *�<@���+�	��
��
is prefix increasing and hence � ��:;��
�� <$�����	�-
�� is prefix
increasing.3 Consequently, we immediately deduce that� ��: �-
�� <@�����	��

� & � is convertible anti-monotone w.r.t.
this order.

We know from Theorem 2.2 that a succinct constraint
can be expressed in terms of conjunction and/or disjunction
of anti-monotone and monotone constraints. By definition,
every monotone/anti-monotone is convertibly so. A natural
question is, what is the relationship between succinct con-
straints and convertible constraints? The following theorem
settles this question.

Theorem 3.2 Every succinct constraint is either anti-
monotone, or monotone, or convertible.
Proof Sketch. The proof of the theorem is constructed by
induction on the structure of � � �!: � � � of a succinct con-
straint . , according to the definition of succinctness.

3.2. Strongly convertible constraint

Some convertible constraints have the additional desir-
able property that w.r.t. an order � they are convertible anti-
monotone, while w.r.t. its inverse � 	 � they are convertible
monotone. E.g., ���+�,�-
�� & � is convertible monotone
w.r.t. value ascending order and convertible anti-monotone
w.r.t. value descending order (see also Example 3). This
property provides great flexibility in data mining query op-
timization.

Definition 3.4 (Strongly convertible constraint) A con-
straint . D
� is called a strongly convertible constraint, pro-
vided there exists an order � over the set of items such that. D
� is convertible anti-monotone w.r.t. � and convertible
monotone w.r.t. � 	 � .

Notice that �0�+��� ������

� � � ( � � !@& % #)( ) is also
strongly convertible. Clearly, not every convertible con-
straint is strongly convertible. E.g., � ��: �-
��=<$���+�,�-
��1& � 4

is convertible anti-monotone w.r.t. value descending order,
when all items have a non-negative value. However, it is not
convertible monotone w.r.t. value ascending order.

The following lemma links strongly convertible con-
straints to prefix monotone functions.

Lemma 3.3 Constraint 8;��

�1� � is strongly convertible, if
and only if there exists an order � over the set of items such
that 8 is a prefix decreasing function w.r.t. � and a prefix
increasing function w.r.t. � 	 � .

2It is also prefix decreasing w.r.t. this order.
3Assuming all items have non-negative values.
4It says the proportion of the max price of any item in the itemset over

the average price of the items in the set cannot go over certain limit.



For example, ���+�,�-
�� and ������� �����-
�� are both prefix de-
creasing w.r.t. value descending order and prefix increasing
w.r.t. value ascending order.

There still exist some constraints that cannot be pushed
by item ordering. For example, the constraint ���+�,�-
��)?�0�+��� �����-
�� � g 5 does not admit any natural ordering on
items w.r.t. which it is convertible. We call such constraints
inconvertible.

3.3. Summary: a classification on constraints

As a general picture, constraints (only involving aggre-
gate functions) can be classified into the following cate-
gories according to their interactions with the frequent item-
set mining process: anti-monotone, monotone, succinct and
convertible, which in turn can be subdivided into convert-
ible anti-monotone and convertible monotone. The inter-
section of the last two categories is precisely the class of
strongly convertible constraints (which can be treated either
as convertible anti-monotone or monotone by ordering the
items properly). Figure 1 shows the relationship among the
various classes of constraints.

anti-monotone monotone

convertible
strongly

convertible
anti-monotone

convertible
monotone

succinct

inconvertible

Figure 1. A classification of constraints and their re-
lationships

Some commonly used convertible constraints are listed
in Table 4.

4. Mining Algorithms

In this section, we explore how to mine frequent itemsets
with convertible constraints efficiently. The general idea is
to push the constraint into the mining process as deep as
possible, thereby pruning the search space.

In Section 4.1, we first argue that the
������� ���	�

algorithm
cannot be extended to mining with convertible constraints
efficiently. Then, a new method is proposed by examining
an example. Section 4.2 presents the algorithm

?�
 >
� for
mining frequent itemsets with convertible anti-monotone
constraints. Algorithm

?�
 >�� , which computes the com-
plete set of frequent itemsets with convertible monotone
constraint, is given in Section 4.3. Section 4.4 discusses
mining frequent itemsets with strongly convertible con-
straints.

5The constraint requires the median item in the itemset is with the av-
erage value.

4.1. Mining frequent itemsets with convertible con-
straints: An example

We first show that convertible constraints cannot be
pushed deep into the

������� ���	�
-like mining.

Remark 4.1 A convertible constraint that is neither mono-
tone, nor anti-monotone, nor succinct, cannot be pushed
deep into the

������� �����
mining algorithm.

Rationale. As observed earlier for such a constraint (e.g.,���+�	��
��.&8� ), subsets (supersets) of a valid itemset could
well be invalid and vice versa. Thus, within the levelwise
framework, no direct pruning based on such a constraint
can be made. In particular, whenever an invalid subset is
eliminated without support counting, its supersets that are
not suffixes cannot be pruned using frequency.

For example, itemset � 8 in our running example violates
the constraint ���+�,�-
��.# 1 r . However, an

�����	� �����
-like al-

gorithm cannot prune such itemsets. Otherwise, its superset� � 8 , which satisfies the constraint, cannot be generated.

Before giving our algorithms for mining with convertible
constraints, we give an overview in the following example.

Example 6 Let us mine frequent itemsets with con-
straint . Q �����	��

� # 1 r over transaction database �
in Table 1, with the support threshold ) � 1 . Items
in every itemset are listed in value descending order � :
 ��� � g$�'%%8 � h g$� % �	� 1 g@� % � �u*	g@� %!V7��g@� %!X;� ? *�g$�'%�W7� ? 1 g$� % � � ? h g@� � .
It is shown that constraint . is convertible anti-monotone
w.r.t. � . The mining process is shown in Figure 2.

fg-proj. DB
dbc
ce
freq. items: c
C(fgc)=false

af-proj. DB
dc
dc

freq. items: d, c
C(afd)=true
C(afc)=false

ad-proj. DB
c
c
freq. items: c
C(adc)=false

a-proj. DB
fdbc
fdce

freq. items: f, d, c
C(af)=true

f-proj. DB
dbc
gdbc
dce
gce
freq. items: g, d, b, c, e
C(fg)=true

C(ad)=true
C(ac)=false

C(fd)=false

R: a-f-g-d-b-c-e

Tran. DB
afdbc
fgdbc
afdce
fghce

C(a)=true
freq. items: a, f, g, d, b,c, e

C(f)=true
C(g)=false

Figure 2. Mining frequent itemsets satisfying con-
straint ���+�,�-
�� # 1 r .
By scanning � once, we find the support counts for ev-

ery item. Since X appears in only one transaction, it is an
infrequent items and is thus dropped without further con-
sideration. The set of frequent 1-itemsets are � , 8 , � , � , V , W
and � , listed in order � . Among them, only � and 8 satisfy



Constraint Convertible Convertible Strongly
anti-monotone monotone convertible

Y � d ������� � ���
	���
 Z���� � yes yes yes� f�_�� Y�� ������� � ���
	���
 Z���� � yes yes yes����� ������
 � � � � k(Z��IY 	�� ZuY��[k-Z � Z � 	���
 Z���� � yes no no����� ������
 � � � 
 k(Z��IY 	�� ZuY��[k-Z � Z � 	���
 Z���� � no yes no����� ����� � � � � � k(Z��IY 	�� ZuY��[k-Z � Z � 	���
 Z���� � no yes no����� ����� � � � � 
 k(Z��IY 	�� ZuY��[k-Z � Z � 	���
 Z���� � yes no no` ����� � � ( ` is a prefix decreasing function) yes ! !` ����� � � ( ` is a prefix increasing function) ! yes !` �����"
 � ( ` is a prefix decreasing function) ! yes !` �����#
 � ( ` is a prefix increasing function) yes ! !

Table 4. Characterization of some commonly used, SQL-based convertible constraints. ( � means it depends on the
specific constraint.)

the constraint6. Since . is a convertible anti-monotone con-
straint, itemsets having � , � , V , W or � as prefix cannot satisfy
the constraint. Therefore, the set of frequent itemsets satis-
fying the constraint can be partitioned into two subsets:

1. The ones having itemset � as a prefix w.r.t. � , i.e.,
those containing item � ; and

2. The ones having itemset 8 as a prefix w.r.t. � , i.e.,
those containing item 8 but no � .

The two subsets form two projected databases [5] which are
mined respectively.

1. Find frequent itemsets satisfying the constraint and
having � as a prefix. First, � is a frequent itemset
satisfying the constraint. Then, the frequent itemsets
having � as a proper prefix can be found in the sub-
set of transactions containing � , which is called � -
projected database. Since � appears in every transac-
tion in the � -projected database, it is omitted. The � -
projected database contains two transactions: VEW � 8 andW ��� 8 . Since items V and � is infrequent within this pro-
jected database, neither �[V nor � � can be frequent. So,
they are pruned. The frequent items in the � -projected
database is 83% � %%W , listed in the order � . Since �[W does
not satisfy the constraint, there is no need to create an�[W -projected database.

To check what can be mined in the � -projected
database with �[8 and � � , as prefix, respectively, we
need to construct the two projected databases and mine
them. This process is similar to the mining of � -
projected databases. The �[8 -projected database con-
tains two frequent items � and W , and only �[8 � satisfy
the constraint. Moreover, since �[8 � W does not satisfies
the constraint, the process in this branch is complete.
Since �[8 W violates the constraint, there is no need to
construct �[8 W -projected database. The � � -projected
database contains one frequent item W , but � � W does
not satisfy the constraint. Therefore, the set of fre-
quent itemsets satisfying the constraint and having �
as prefix contains � , �[8 , �[8 � , and � � .

6The fact that itemset $ does not satisfy the constraint implies none of
any 1-itemsets after $ in order % can satisfy the constraint &('�$ .

2. Find frequent itemsets satisfying the constraint and
having 8 as a prefix. Similarly, the 8 -projected
database is the subset of transactions containing 8 ,
with both � and 8 removed. It has four transactions:V�W � , V�W � � , W ��� and W � � . The frequent items in the pro-
jected database are �,% � %!V7%!W7% � , listed in the order of � .
Since only itemsets 8 � and 8 � satisfy the constraint,
we only need to explore if there is any frequent item-
set having 8�� or 8 � as a proper prefix which satisfies
the constraint. The projected 8�� -database contains no
frequent itemset with 8 � as a proper prefix that sat-
isfies the constraint. Since V is the item immediately
after � in order � , and 8 � V violates the constraint, any
itemset having 8 � as a proper prefix cannot satisfy the
constraint. Thus, 8 and 8 � are the only two frequent
itemsets having 8 as a prefix and satisfying the con-
straint.

In summary, the complete set of frequent itemsets satis-
fying the constraint contains 6 itemsets: � , 8 , �[8 , � � , �[8 � ,8�� . Our new method generates and tests only a small set of
itemsets.

4.2.
?�
 >�� : Mining frequent itemsets with convert-
ible anti-monotone constraint

Now, let us justify the correctness and completeness of
the mining process in Example 6.

First, we show that the complete set of frequent itemsets
satisfying a given convertible anti-monotone constraint can
be partitioned into several non-overlapping subsets. It leads
to the soundness of our algorithmic framework.

Lemma 4.1 Consider a transaction database � , a support
threshold ) and a convertible anti-monotone constraint .
w.r.t. an order � over a set of items

�
. Let � � % � � %����	�=% � 


be the items satisfying . . The complete set of frequent item-
sets satisfying . can be partitioned into � disjoint subsets:
the �

��)
subset ��* & �0& � � contains frequent itemsets sat-

isfying . and having � � as a prefix.

We mine the subsets of frequent itemsets satisfying
the constraint by constructing the corresponding projected
database.



Definition 4.1 (Projected database) Given a transaction
database � , an itemset � and an order � .

1. Itemset
�

is called the max-prefix projection of trans-
action


a� ��� % � � � � � w.r.t. � , if and only if (1) � � � �
and

� �y� �
; (2) � is a prefix of

�
w.r.t. � ; and (3) there

exists no proper superset � of
�

such that � � � �
and

� also has � as a prefix w.r.t. � .

2. The � -projected database is the collection of max-
prefix projections of transactions containing � , w.r.t.
� .

Remark 4.2 Given a transaction database � , a support
threshold ) and a convertible anti-monotone constraint . .
Let � be a frequent itemset satisfying . . The complete set
of frequent itemsets satisfying . and having � as a prefix
can be mined from the � -projected database.

The mining process can be further improved by the fol-
lowing lemma.

Definition 4.2 (Ascending and descending orders) An
order � over a set of items

�
is called an ascending order

for function X / 14365 � if and only if (1) for items �
and V , X �-��� x X ��V'� implies � � V , and (2) for itemsets� � !7� ( and � � ! V�( such that both of them have � as a
prefix and � � V , 8 ��� ��!�� (7�A&y8 ��� ��!KV+(�� . � 	 � is called
a descending order for function X .

For example, it can be verified that the value ascending
order is an ascending order for function ���+�,�-
�� and a de-
scending order for function � ��:;��
�� <$�����	�-
�� .
Lemma 4.2 Given a convertible anti-monotone constraint. Q 8 �-
��2�.�.�-�"�B!$& %'#)(�� w.r.t. ascending/descending
order � over a set of items

�
, where 8 is a prefix function.

Let � be a frequent itemset satisfying . and � � % � � %	����� % � 

be the set of frequent items in � -projected database, listed
in the order of � .

1. If itemset � ��!����=(6�u* & �#x � � violates . , for � such
that �#x � & � , itemset � ��!�� � ( also violates . .

2. If itemset � �"!�� � ( �u* & � x � � satisfies . , but � �!�� � % � � � � ( violates . , no frequent itemset having � �!�� � ( as a proper prefix satisfies . .

Based on the above reasoning, we have the algo-
rithm

?�
 >�� as follows for mining Frequent Itemsets with
Convertible Anti-monotone constraints.

Algorithm 1 (
?�
 >�� ) Given a transaction database � , a

support threshold ) and a convertible anti-monotone con-
straint . w.r.t. an order � over a set of items

�
, the algo-

rithm computes the complete set of frequent itemsets satis-
fying the constraint . .
Method: Call 8 � W B ��� % � � ;
function 8 � W B ��� % � + ��� 7

7 	 is the itemset as prefix and 
�� 
 is the 	 -projected database.

1. Scan � + � once, find frequent items in � + � . Let
� � be

the set of frequent items within � + � such that
� �B�� � % . ��� ��!�� (�� ���%7 �3� .

2. If
� � � � return, else

� � � � � , output � � !�� ( as a
frequent itemset satisfying the constraint.

3. If . is in form of 8 �-
�� �6� where 8 is a prefix function
and �B�>!$& %'#6( , using Lemma 4.2 to optimize the
mining by removing items V from

� � such that there
exists no frequent itemset satisfying . and having � �! V�( as a proper prefix.

4. Scan � + � once more,
� � � � + � , generate ���5!�� ( -

projected database � + ����� B�� .
5. For each item � in

� + � , call 8 � W B ��� ��!�� (�% � + ����� B�� � .
Rationale. The correctness and completeness of the algo-
rithm has been reasoned step-by-step in this section. The
efficiency of the algorithm is that it pushes the constraint
deep into the mining process, so that we do not need to gen-
erate the complete set of frequent itemsets in most of cases.
Only related frequent itemsets are identified and tested. As
shown in Example 6 and in the experimental results, the
search space is decreased dramatically when the constraint
is sharp.

4.3.
?�
 >�� : Mining frequent itemsets with mono-
tone constraints

In the last two subsections, an efficient algorithm for
mining frequent itemsets with convertible anti-monotone
constraints is developed. Under similar spirit, an algorithm
for mining frequent itemsets with convertible monotone
constraints can also be developed. Due to lack of space,
instead of giving details of formal reasoning, we illustrate
the ideas using an example and then present the algorithm.

Example 7 Let us mine frequent itemsets in transaction
database � in Table 1 with constraint . Q �����	�-
��4& 1 g .
Suppose the support threshold ) � 1 . In this example, we
use the value descending order � exactly as is used in Ex-
ample 6. Constraint . is convertible monotone w.r.t. order
� .

After one scan of transaction database � , the set of fre-
quent 1-itemsets is found. Among the 7 frequent 1-itemsets,� , � , V , W and � satisfy the constraint . . According to
the definition of convertible monotone constraints, frequent
itemset having one of these 5 itemsets as a prefix must also
satisfy the constraint. That is, the � -, � -, V -, W - and � -
projected database can be mined without testing constraint. , because adding smaller items will only decrease the
value of ����� . But � - and 8 -projected databases should be
mined with constraint . testing. However, as soon as its fre-
quent � -itemsets for any � satisfy the constraint, constraint
checking will not be needed for further mining of their pro-
jected databases.

We present the algorithm
?�
 > � for mining frequent

itemsets with convertible monotone constraint as follows.



Algorithm 2 (
?�
 > � ) Given a transaction database � , a

support threshold ) and a convertible monotone constraint. w.r.t. an order � over a set of items
�
, the algorithm com-

putes the complete set of frequent itemsets satisfying the
constraint . .
Method: Call 8 � W 
 ��� % � %�*�� ;
function 8 � W 
 ��� % � + � %!W�X � W � 8 9-� � � 8

1. Scan � + � once, find frequent items in � + � . IfW�X � W � 8 9-� � is 1, let
� �� be the set of frequent items

within � + � such that
� � � � �� % . ��� � !�� (�� � �%7 ��� ,

and
� 	� be the set of frequent items within � + � such

that
� V � � 	� % . ��� � ! V+(7� � 8��-9 ��� . If W�X � W � 8 9-� � is

0, let
� �� be the set of frequent items within � + � and� 	� be � .

2.
� � � � �� , output � � !�� ( as a frequent itemset satisfy-
ing the constraint.

3. Scan � + � once more,
� �4� � + �� � � + 	� , generate � � !7� ( -

projected database � + ����� B � .
4. For each item � in

� + �� , call 8 � W 
 ��� � !7� (�% � + ����� B�� %!g$� ;
For each item � in

� + 	� , call 8 � W 
 ��� � !7� (�% � + ����� B�� %�*�� ;
Rationale. The correctness and completeness of the algo-
rithm can be shown based on the similar reasoning in Sec-
tion 4.2. Here, we analyze the difference between

?�
 >
�
with an

������� �����
-like algorithm using constraint-checking as

post-processing.
Both

?�
 > � and
������� �����

-like algorithms have to gener-
ate the complete set of frequent itemsets, no matter whether
the frequent itemsets satisfy the convertible monotone con-
straint. The frequent itemsets not satisfying the constraint
cannot be pruned. That is the inherent difficulty of convert-
ible monotone constraint.

The advantage of
?�
 > � against Apriorix-like algo-

rithms lies in the fact that
?�
 > � only tests some of fre-

quent itemsets against the constraint. Once a frequent item-
set satisfies the constraint, it guarantees all of frequent item-
sets having it as a prefix also satisfy the constraint. There-
fore, all that testing can be saved. An

�����	� �����
-like algorithm

has to check every frequent itemset against the constraint.
In the situation such that constraint testing is costly, such as
spatial constraints, the saving over constraint testing could
be non-trivial. Exploration of spatial constraints is beyond
the scope of this paper.

4.4. Mining frequent itemsets with strongly convert-
ible constraints

The main value of strong convertibility is that the con-
straint can be treated either as convertible anti-monotone or
monotone by choosing an appropriate order. The main point
to note in practice is when the constraint has a high selec-
tivity (fewer itemsets satisfy it), converting it into an anti-
monotone constraint will yield maximum benefits by search

8 	 is the itemset as prefix, 
 � 
 is the 	 -projected database, and��������� �	� &�$ is the flag for constraint checking.

space pruning. When the constraint selectivity is low (and
checking it is reasonably expensive), then converting it into
a monotone constraint will save considerable effort in con-
straint checking. The constraint ���+�	��
��"& � is a classic
example.

5. Experimental Results

To evaluate the effectiveness and efficiency of the algo-
rithms, we performed an extensive experimental evaluation.

In this section, we report the results on a synthetic trans-
action database with 100K transactions and 10K items. The
dataset is generated by the standard procedure described in
[1]. In this dataset, the average transaction size and aver-
age maximal potentially frequent itemset size are set to 25
and 20, respectively. The dataset contains a lot of frequent
itemsets with various length. This dataset is chosen since it
is typical in data mining performance study.

The algorithms are implemented in C. All the exper-
iments are performed on a 233MHz Pentium PC with
128MB main memory, running Microsoft Windows/NT.

To evaluate the effect of a constraint on mining frequent
itemsets, we make use of constraint selectivity, where the
selectivity 
 of a constraint . on mining frequent itemsets
over transaction database � with support threshold ) is de-
fined as


 � # of frequent itemsets NOT satisfying .
# of frequent itemsets

Therefore, a constraint with g	� selectivity means every fre-
quent itemset satisfies the constraint, while a constraint with*	g(g	� selectivity is the one cannot be satisfied by any fre-
quent itemset. The selectivity measure defined here is con-
sistent with those used in [7, 6].

To facilitate the mining using projected databases, we
employ a data structure called FP-tree in the implementa-
tions of

?�
 > � and
?�
 > � . FP-tree is first proposed in [5],

and also be adopted by [8, 9]. It is a prefix tree structure to
record complete and compact information for frequent item-
set mining. A transaction database/projected database can
be compressed into an FP-tree, while all the consequent
projected databases can be derived from it efficiently. We
refer readers to [5] for details about FP-tree and methods
for FP-tree-based frequent itemset mining.

Since FP-growth [5] is the FP-tree-based algorithm
mining frequent itemsets and is much faster than

������� ���	�
,

we include it in our experiment. Comparison among
?�
 >
� ,?�
 > � and FP-growth makes more sense than using pure������� ���	�

as the only reference method.

5.1. Evaluation of
?�
 > �

To test the efficiency of
?�
 >�� w.r.t. constraint selec-

tivity in mining frequent itemsets with convertible anti-
monotone constraints, we run a test over the dataset with



Figure 3. Scalability with
constraint selectivity.

Figure 4. Scalability with
support threshold.

Figure 5. Scalability with
number of transactions.

support threshold ) � g � * � . The result is shown in Fig-
ure 3. Various settings are used in the constraint for various
selectivities.

As can be seen from the figure,
?�
 > � achieves an al-

most linear scalability with the constraint selectivity. As
the selectivity goes up, i.e., fewer itemsets satisfy the con-
straint,

?�
 >�� cuts more search space, since one frequent
itemset not satisfying the constraint means all frequent
itemsets having it as a prefix can be pruned.

We compare the runtime of both
������� ���	�

and
FP-growth in the same figure. All these two methods
first compute the complete set of frequent itemsets, and
then use the constraint as a filter. So, their runtime is
constant w.r.t. constraint selectivity. However, only when
the constraint selectivity is g � , i.e., every frequent itemset
satisfies the constraint, does

?�
 > � need the same runtime
as FP-growth. In all other situations,

?�
 > � always
requires less time.

We also tested the scalability of
?�
 > � with support

threshold and the number of transactions, respectively. The
corresponding results are shown in Figure 4 and Figure 5.
From these figures, we can see that

?�
 >
� is scalable in
both cases. Furthermore, the higher the constraint selectiv-
ity, the more scalable

?�
 >�� is. That can be explained by
the fact that

?�
 >�� always cuts more search space using
constraints with higher selectivity.

5.2. Evaluation of
?�
 >��

As analyzed before, convertible monotone constraint can
be used to save the cost of constraint checking, but it cannot
cut the search space of frequent itemsets. In our experi-
ments, since we use relatively simple constraints, such as
those involving ���+� and ����� , the cost of constraint check-
ing is CPU-bound. However, the cost of the whole frequent
itemset mining process is I/O-bound. This makes the effect
of pushing convertible monotone constraint into the mining
process hard to be observed from runtime reduction. In our
experiments,

?�
 > � achieves less than h � runtime benefit

in most cases.
However, if we look at the number of constraint tests

performed, the advantage of
?�
 > � can be evaluated objec-

tively.
?�
 >�� can save a lot of effort on constraint testing.

Therefore, in the experiments about
?�
 > � , the number of

constraint tests is used as the performance measure.
We test the scalability of

?�
 >�� with constraint selec-
tivity in mining frequent itemsets with convertible mono-
tone constraint. The result is shown in Figure 6. The fig-
ure shows that

?�
 >�� has a linear scalability. When the
constraint selectivity is low, i.e., most frequent itemsets can
pass the constraint checking, most of constraint tests can be
saved. This is because once a frequent itemset satisfies a
convertible monotone constraint, every subsequent frequent
itemset derived from corresponding projected database has
that frequent itemset as a prefix and thus satisfies the con-
straint, too.

We also tested the scalability of
?�
 > � with support

threshold. The result is shown in Figure 7. The figure shows
that

?�
 >�� is scalable. Furthermore, the lower the con-
straint selectivity, the better the scalability

?�
 > � is.

In summary, our experimental results show that the
method proposed in this paper is scalable for mining fre-
quent itemsets with convertible constraints in large transac-
tion databases. The experimental results strongly support
our theoretical analysis.

6. Discussions: Mining Frequent Itemsets with
Multiple Convertible Constraints

We have studied the push of single convertible con-
straints into frequent itemset mining. “Can we push mul-
tiple constraints deep into the frequent pattern mining pro-
cess?”

Multiple constraints in a mining query may belong to the
same category (e.g. all are anti-monotone) or to different
categories. Moreover, different constraints may be on dif-
ferent properties of items (e.g. some could be on item price,



Figure 6. Scalability with
constraint selectivity.

Figure 7. Scalability with
support threshold.

others on sales profits, the number of items, etc.).
As shown in our previous analysis, unlike anti-

monotone, monotone and succinct constraints, convertible
constraints can be mined only by ordering items properly.
However, different constraints may require different and
even conflicting item ordering. Our general philosophy is to
conduct a cost analysis to determine how to combine mul-
tiple order-consistent convertible constraints and how to se-
lect a sharper constraint among order-conflicting ones. The
details will not be presented here for lack of space.

7. Conclusions

Constraints involving holistic functions such as ������� ��� ,
algebraic functions such as ���+� , or even those involving dis-
tributive functions like �+�3� over sets with positive and neg-
ative item values are difficult to incorporate in an optimiza-
tion process in frequent itemset mining. The reason is such
constraints do not exhibit nice properties like monotonicity,
etc. A main contribution of this paper is showing that by im-
posing an appropriate order on items, such tough constraints
can be converted into ones that possess monotone behavior.
To this end, we made a detailed analysis and classification
of the so-called convertible constraints. We characterized
them using prefix monotone functions and established their
arithmetical closure properties. As a byproduct, we shed
light on the overall picture of various classes of constraints
that can be optimized in frequent set mining. While con-
vertible constraints cannot be literally incorporated into an
Apriori-style algorithm, they can be readily incorporated
into the FP-growth algorithm. Our experiments show the
effectiveness of the algorithms developed.

We have been working on a systematic implementation
of constraint-based frequent pattern mining in a data min-
ing system. More experiments are needed to understand
how best to handle multiple constraints. An open issue is
given an arbitrary constraint, how can we quickly check if
it is (strongly) convertible. We are also exploring the use of
constraints in clustering.
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