Fault-Tolerant Frequent Pattern Mining: Problems and Challenges*

Jian Pei

Anthony K.H. Tung

Jiawel Han

School of Computing Science, Simon Fraser University
{peijian, khtung, han}Qcs.sfu.ca

Abstract

Real-world data tends to be dirty. Discovering knowledge
over large real-world data calls for fault-tolerant data
mining, which is a fruitful direction for future data
mining research. Fault-tolerant extensions of data mining
techniques would gain useful insights into the data.

In this paper, we introduce the problem of fault-
tolerant frequent pattern mining. With fault-tolerant
frequent pattern mining, many kinds of novel, interesting
and practically useful knowledge can be discovered. For
example, one can discover the following fault-tolerant
association rules: 85% of students doing well in three
out of the four courses: “data structure”, “algorithm”,
“artificial intelligence”, and “database”, will receive high
grades in “data mining”.

We extend Apriori and develop FT-Apriori for efficient
fault-tolerant frequent pattern mining. Our experimental
results show that FT-Apriori is a solid step towards
fault-tolerant frequent pattern mining, however, it is
still challenging to develop efficient fault-tolerant mining
methods. The extensions and implications of related fault-
tolerant data mining tasks are also discussed in the paper.

1 Introduction

Real-world data tends to be diverse and dirty. Usu-
ally, there are few non-trivial frequent patterns and
rules with both high support and confidence in real
datasets. Knowledge discovery from large real-world
datasets calls for fault-tolerant data mining, as shown
in the following example.

Example 1 To study students’ performance in courses,
one may find a rule as follows.

R, : good(z,data structure) A Agood(z,algorithm)

good(z, AI) A good(z, DBM S) — good(z,data mining) (1)

*The work was supported in part by Natural Sciences and
FEngineering Research Council of Canada, and the Networks
of Centres of Excellence of Canada (NCE/IRIS-3). Also, we
thank Joyce Lam and Helen Pinto for their comments on the
early version of this paper.

The rule could have high prediction accuracy (i.e.,
high confidence), but it may cover only a very small
subset of cases (i.e., low support), since there are not
that many students who do well in all of the four
courses on the left hand side of the rule.

On the other hand, one may find that another rule,
Rs @ “A student good in at least three out of four
courses: data structure, algorithm, Al and DBMS, 1is
also good at data mining’, also has high confidence.
Rule Ry is fault-tolerant in the sense that it requires
the data to match only part of its left hand side.

Rule R5 is more general than R since every student
satisfying R also satisfies Rs, but not true vice versa.
Thus, Ry may have dramatically higher support than
Ry does. In the case that both rules have high
confidence, we may expect R is more interesting and
more useful. a

Situations similar to that in Example 1 happen in
many real applications. To discover more general,
more interesting and more useful knowledge, we
motivate the study of fault-tolerant data mining:
Instead of finding exact patterns in data, one may
look for approximate and more general fault-tolerant
patterns. We argue that fault-tolerant patterns are
more interesting and more applicable, since they cover
more cases and the implication becomes stronger.

It has been well recognized, such as in [1, 2, 3, 4,
5, 6], that frequent pattern mining plays an essential
role in discovering associations correlations, causal-
ity, sequential patterns, episodes, multi-dimensional
patterns, max-patterns, partial periodicity, emerg-
ing patterns, and many other important data mining
tasks. However, frequent pattern mining often gen-
erates a large number of frequent itemsets and rules,
which reduces not only the efficiency but also the ef-
fectiveness of mining since users have to sift through
a large number of mined rules to find useful ones.

To improve the effectiveness of frequent pattern
mining, we focus this study to fault-tolerant frequent
pattern mining and organize the paper as follows. The
concept of fault-tolerant frequent pattern mining is
introduced in Section 2. In Section 3, the Aprior:
method is extended to FT-Aprior: for mining fault-
tolerant frequent patterns. The performance study
on FT-Aprior: is reported in Section 4, which shows
the effectiveness, efficiency, as well as the bottleneck
of FT-Apriori. The extensions, implications and
challenges of fault-tolerant frequent pattern mining
as well as fault-tolerant data mining are discussed in
Section 5.

2 Problem Definition

Let I ={i1,...,i,} be aset of items. An itemset X
is a non-empty subset of I, i.e.; X C I. For brevity, we
write itemsets as X = ¢;, - - - 4;,, omitting set brackets.
An itemset having k items is called a k-itemset. A
transaction T = (tid, X) is a 2-tuple, where #id is
a transaction-id and X an itemset. A transaction
T = (tid, X) is said to contain itemset Y iff Y C X.

A transaction database T'DB is a set of trans-
actions. The number of transactions in transaction
database T DB containing itemset X is called the
support or support count of X, denoted as sup(X).
Given a transaction database TDB and a support
threshold min_sup > 0, an itemset X is a frequent
pattern iff sup(X) > min_sup'. The problem of
frequent pattern mining is to find the complete set
of frequent patterns in a given transaction database
with respect to a given support threshold.

Example 2 (Frequent pattern mining) Table 1
shows the transaction database T'DB as our running
example. There are 5 transactions in the database
T DB. Let the support threshold be 2, 1.e., min_sup =
2. Since itemset X = {b,e, f}, or X = bef in short, is
contained in transaction 10 and 50, respectively, 1.e.,

sup(X) = 2, X is a frequent pattern. m|
| Transaction 1D | Items |
10 bc,e, f
20 d,e,g
30 a,b,c,e
40 a,d, f
50 a,be, f

Table 1: A transaction database T DB.

In this paper, we assume that all thresholds are positive
integers. We adopt the notion of absolute threshold instead of
relative (ratio) threshold as used in some studies.

For the transaction database T' DB as shown above,
if support threshold min_sup is set to 3, there exists
no pattern with more than two items. That is, there
are many short patterns with low support counts. To
get generalized knowledge, people may like to find
longer patterns with higher support count. Can we
observe any longer “approzimate” frequent patterns
in the database with support 3 or more?

A close look at the transaction database would
suggest that three transactions, transaction 10, 30,
and 50, contain four out of five items: a, b, ¢, e and
f. This frequent phenomenon is interesting in terms
of that it captures features of the database concisely
by slightly relaxing the notion of frequent pattern.

Can we generalize and develop systematic method
to find such kind of knowledge? This motivates the
notion of fault-tolerant frequent patterns as follows.

Definition 2.1 (Fault-tolerant frequent pattern)
Given a fault tolerance § (§ > 0). Let P be an item-
set such that |P| > §. A transaction T = (tid, X) is
said to FT-contain itemset P iff there exists P’ C P
such that P’ C X and |P/| > (|P|—4).2 The number
of transactions in a database FT-containing itemset P
is called the FT-support of P, denoted as sip(P).

Let B(X) be the set of transactions FT-containing
itemset X. Tt is called the FT-body of X. Given (1)
a frequent-item support threshold min_sup'*®™
and (2) an FT-support threshold min_sup™™ . An
item set X is called a fault-tolerant frequent
pattern, or FT-pattern in short, iff

1. sup(X) > min_sup”™; and
2. for each item z € X, supB(X)(m) > min_sup'te™,
where SUPB (x) (z) is the number of transactions in

B(X) containing item z. O

The above definition has two support thresholds.
The frequent-item support threshold is used to fil-
ter out infrequent item, since users may want to see
patterns consisting of only items with statistic sig-
nificance. On the other hand, FT-support threshold
is used to capture frequent patterns in the sense of
allowing at most ¢ (the fault tolerance) mismatches.

Example 3 (FT-patterns) Let uslook at the trans-
action database T'DB in Table 1 again. Suppose the
frequent-item support threshold min_sup'**™ = 2 and
the FT-support threshold min_sup” = 3.

Suppose one mismatch is allowed, i.e., fault toler-
ance § = 1. For itemset X = abcef, B(X) includes

2 An equivalent condition is |[P N X | > (|P| — §).

transaction 10, 30 and 50, since each of them FT-
contains X. On the other hand, it is easy to check
that each item in X, i.e., a, b, ¢, e and f, appears in
at least two transactions in B(X), respectively. Thus,
itemset abeef 1s an FT-frequent pattern. a

An item z is called a global frequent item
iff sup(x) > min_sup'™®™, ie., item z appears in
at least min_sup’®™ transactions. Clearly, an FT-
pattern contains only global frequent items. To avoid
triviality, an FT-pattern must have at least (§ + 1)
items, where § is the fault tolerance. About length-
(0 4+ 1) FT-patterns, we have the following lemma.

Lemma 2.1 (Length-(6 + 1) FT-patterns) Let X
be an itemset containing (6 + 1) global frequent items.
X is an FT-pattern iff sip(X) > min_sup”™T.

Proof. Let X = z;, ---z;,,, be an itemset containing
(6 + 1) global frequent items, ie., sup(z;,) >
min_sup’*®™ (1 < j < § +1). B(X) is the set of
transactions FT-containing itemset X. A transaction
t is in B(X) iff ¢+ contains at least one item in X,
since up to d mismatches to X are allowed. So, we
have B(X) = Ujii P(z;,), where P(zy) is the set
of transactions containing item z;. Thus, for item
z;; € X, its support in B(X) is exactly the same as
that in the whole database T DB, i.e., SUP G (x) (x5,) =
sup(x;;) > min_sup't®™. Therefore, provided that X
passes the FT-support threshold min_sup®™”, X is an
FT-pattern. a

Lemma 2.1 says that a (6 + 1)-itemset consisting
of global frequent items is an FT-pattern provided
it passes FT-support threshold. In practice, there
could be a large number of length-(d+ 1) FT-patterns.
For example, 100 global frequent items and a fault-

100) = 161,700

tolerance of 2 may lead to up to

3
length-3 FT-patterns. In sequel, there could be a large
number of length-(6+ k) FT-patterns when k is small,
eg. k=1or2.

Note that short FT-patterns, i.e., length-(§ + k)
patterns with a small k£, may not be interesting since
too many mismatches usually lead to uninteresting
results. Therefore, in general, fault tolerance J is
a small positive number. Furthermore, we apply a
length threshold min_{ (min. >) such that only
FT-patterns having at least min_l items are output.

Given a transaction database, a fault tolerance,
a frequent-item support threshold, an FT-support
threshold, and a length threshold, the problem of
fault-tolerant frequent pattern mining is to find
the complete set of FT-patterns passing the length
threshold.

To verify whether FT-patterns can capture more
general (i.e., more frequent) features in databases, we
have the following lemma.

Lemma 2.2 (Effect of FT-patterns) For any item-
set X, stup(X) > sup(X).

Proof. For each transaction containing itemset X, it
also (trivially) FT-contains X and thus contributes 1
to sip(X). So we have the lemma. O

Lemma 2.2 implies that fault-tolerant frequent
pattern mining leads to longer and more frequent
patterns.

3 FT-Apriori

All previously proposed efficient frequent pattern
mining methods are directly or indirectly based on
the Apriori heuristic [1], which is an anti-monotone
property: if a k-itemset is not frequent, any of
its superset cannot be frequent. Based on this
heuristic, a candidate-generation-and-test approach,
Apriori, iteratively generates the set of candidate
patterns of length (k£ 4+ 1) from the set of frequent
patterns of length k& (k > 1), and checks their
corresponding occurrence frequencies in the database
[1]. This method achieves good reduction on the size
of candidate sets.

Can we extend the Apriori heuristic to attack fault-
tolerant frequent pattern mining problem? Fortu-
nately, we have the following theorem.

Theorem 3.1 (Fault-tolerant Aprior:) If X (|X]| >
d) is not an FT-pattern, then none of its supersets is
an FT-pattern, where § is the fault tolerance. a

Based on this heuristic, a candidate generation-
and-test method can be developed for computing
fault-tolerant frequent patterns, as shown in the
following example.

Example 4 (Fault-tolerant Apriori) Let’s mine FT-
patterns in Table 1. Suppose the frequent-item sup-
port threshold min_sup’®*™ = 2, the FT-support
threshold min_sup™ = 3, fault tolerance § = 1, and
length threshold min_l = 4. The complete set of FT-
patterns can be mined as follows.

1. The first scan of the database derives the set of
global frequent items, i.e., the items appearing in
at least min_sup'®™ transactions: {a,b,c,d, e, f}.

2. The shortest FT-pattern must be of length (J +
1) = 2. According to Lemma 2.1, all length-2

combinations of global frequent items are length-2
candidates. There are 15 length-2 candidates: ab,
ac, ..., af, be, ..., ef. Scanning the database
T'DB the second time collects FT-support counts
for them. Based on Lemma 2.1, there is no need
to check against frequent-item support threshold.
It happens that every candidate is an FT-pattern.
However, since their length is only 2 and does not
pass the length threshold, they are not output.

3. Based on fault-tolerant Aprior:, length-3 candi-
dates are generated from length-2 FT-patterns.
The rule of candidate generation is that a length-
(k+1) candidate is generated iff its every length-k
subset is an F'T-pattern. For example, abe is quali-
fied as a length-3 candidate since ab, ac, and be are
length-2 FP-patterns. In total, 20 length-3 candi-
dates are generated: abe, abd, ..., abf, acd, ...,

aef, bed, ... def.

The database T'DB is then scanned the third time
to check these candidates, which derives 12 length-
3 FT-patterns: abe, abe, abf, ace, acf, ade, aef,
bee, bef, bef, cef and def.

Note that although some candidates, such as abd,
pass the FT-support threshold, some items within
the candidate, such as item d in candidate abd,
cannot pass the frequent-item threshold in the
corresponding FT-body. Such candidates cannot
be qualified as FT-patterns. We do not output
any of length-3 FT-patterns since they still cannot
pass the length threshold.

4. From length-3 FT-patterns, we generate 5 length-
4 candidates: abce, abef, abef, acef and beef. By
scanning the database T'DB the fourth time, the
candidates are checked against the database, and
are verified as FT-patterns. They pass the length
threshold and thus are output.

5. From length-4 FT-patterns, we generate only one
length-5 candidate: abcef. It is checked in the
fifth database scan and is identified as an FT-
pattern. It is also output.

6. Since no length-6 candidate can be generated, the
mining process terminates.

The above mining process finds the complete set
of 33 FT-patterns from the database, among which
6 FT-patterns are output. It scans the database 5
times. a

Based on the above example, we have the FT-Aprior:
algorithm as follows.

Algorithm 1 (FT-Apriori)

Input: Transaction database T DB, frequent-item
support threshold min_sup**®™, FT-support thresh-
old min_sup®™ fault tolerance & and length
threshold min_l.

Output: The complete set of FT-patterns.
Method:

1. Scan T'DB once, find the set F; of global
frequent items. An item z is global frequent
iff sup(z) > min_sup™™;

2. Let Csy1 be the set of all length-(d + 1) subsets
of Fi. Let : =4 + 1.

3. Do {

(a) Scan T'DB, check candidate itemsets in Cj;

(b) Let F; be the set of FT-patterns in Cj; If
(i > min_l) then output patterns in Fj;

(c) If F; is not empty, generate C;4q from F;. A
length-(7 + 1) itemset X is in Cj4q iff every
length-7 subset of X is in Fj;

(d) 1=1+1;

} until either F;_; or C; is empty;

Analysis. The initialization of candidate-generation
(Step 1 and 2) is based on Lemma 2.1. The rest of
the algorithm is based on Theorem 3.1. So, we show
the algorithm is correct and complete. a

Based on the above analysis, we have the following
theorem.

Theorem 3.2 Algorithm 1 finds the complete set of
FT-patterns without duplication. a

In the next section, we will examine the efficiency
as well as the effectiveness of fault-tolerant frequent
pattern mining using FT-Aprior:.

4 Performance Evaluation

In this section, we present a performance evaluation of
FT-Apriori and discuss the efficiency and effectiveness
of fault-tolerant frequent pattern mining.

We implemented the FT-Apriorialgorithm as stated
in Section 3, using Microsoft Visual C++6.0. All the
experiments were conducted on a PC with an Intel
Pentium IIT 500MHz CPU and 128M main memory,
running Microsoft Windows/NT.

We designed a synthetic dataset generator. Tt
generates transaction databases with many potential

fault-tolerant frequent patterns. We conducted ex-
periments on various datasets generated by our gen-
erator. The results are consistent in trend. Limited
by space, we report only results on one such dataset
D. In this dataset, a transaction contains 10 items on
average, while the average length of potential fault-
tolerant patterns is 6. There are 10,000 transaction
in total.

Figure 1 shows the scalability of FT-Aprior: with
respect to item support threshold, where the FT
support threshold is set to 3%, 5%, 8% and 10%,
respectively. We set the fault tolerance § = 1.

55 ;
50 P
45
40
35
30
25
20
15
10

T
min_sup=3% —+—
min_sup=5% —*—
min_sup=8% —&— |

min_sup=10% —e—

Runtime (second)

2 25 3 35 4
Item support threshold %

Figure 1: Scalability of FT-Aprioriw.r.t. item support
threshold.

As can be seen from Figure 1, the runtime increases
as the frequent-item support threshold min_sup'te™
goes down. When min_sup'®™ is low, the number of
patterns as well as candidates increase exponentially,
and thus the cost would increase dramatically. In this
sense, the trend of FT-Apriori is consistent with that
of Aprior:.

FT-Apriori scales better when FT-support thresh-
old is high, since FT-support threshold prunes both
the FT-patterns and candidates. Figure 2 shows the
scalability of FT-Aprior: with respect to FT-support
threshold, where min_sup™*™ are set to 2%, 2.5% and
4%, respectively. Again, we set the fault tolerance
6=1.

We do not directly compare the performance of
FT-Apriori and Apriori, since they are computing
different things. However, with similar support
threshold, Aprior: can finish within 5 seconds on
this dataset. In general, Aprior: is 10 to 100
times faster than FT-Aprior: with similar support
threshold settings. FT-Aprior: also generates much
more candidates than Aprior: does.

Interestingly, with similar support threshold set-
tings, FT-Aprior: can find much longer patterns.

55

=+ mianup_i¥2% L
50 min_sup_i=2.5% —%—
45 + min_sup_i=4% —&— |

Runtime (second)
w
S

3 4 5 6 7 8 9 10
FT-support threshold %

Figure 2: Scalability of FT-Aprior: w.r.t. FT-support
threshold.

In this dataset, the length of the longest pattern
that FT-Aprior: finds is up to twice that found by
Apriort with a similar support threshold. That means
FT-Apriori can find more general knowledge, which is
the power of fault-tolerant frequent pattern mining.

We tried FT-Apriorifor higher fault tolerance, such
as § = 2. Unfortunately, FT-Apriori does not scale
well. Tt is much slower (about 100 times or even more)
than it does when § = 1.

From the experimental results, we have the follow-
ing observations.

e Fault-tolerant frequent pattern mining finds more
general knowledge. With similarsetting, FT-Aprior:
finds longer patterns. However, FT-Aprior: can
find patterns with much higher support count. In
other words, the patterns that FT-Aprior: finds
are more popular and general.

e Fuault-tolerant Apriori property reduces the number
of candidates dramatically. As shown in Example
4, FT-Aprior: property helps reduce the number

of length-4 candidates from < 2 > = 15 to only

e A major cost in FT-Apriori is that it might have to
handle a huge number of candidates. To discover a
FT-pattern having 100 items, such as ay - - - aygg, it
must generate 2190 — 1 & 103 candidates in total.
Also, it is tedious to repeatedly scan the database
and check a large set of candidates by pattern
matching, which is especially true for mining long
patterns.

o The first candidate set, Csy1 in Step 2 wn the
algorithm, could be very large. For example, 1if
fault tolerance § = 2 and there are 1,000 frequent

items, C3 contains all length-3 itemsets assembled

1000 _
5 =
166, 167,000 candidates! The cost of checking such

a large set of candidates is non-trivial.

by frequent items and thus has

5 Discussion and Conclusions

We have introduced the fault-tolerant data min-
ing problem and extended the Apriori method to
FT-Apriori for mining fault-tolerant frequent pat-
terns. It is worth noting the following findings from
analysis and performance evaluation of fault-tolerance
frequent pattern mining and FT-Aprior:.

1. Fault-tolerant frequent pattern mining finds
more general and useful knowledge. Fault-
tolerant frequent pattern mining can find longer
and more frequent patterns. Using the frequent
item support threshold, fault-tolerant frequent
pattern mining focuses on patterns consisting of
only significant items. Thus, it avoids trivial data
items and captures general trends in the data.

2. FT-Apriori is an efficient and scalable fault-
tolerant frequent pattern mining algorithm
when support thresholds are not too low
and fault-tolerance is low. In many real appli-
cations, where the support thresholds are reason-
ably high and the fault-tolerance as 1 is enough,
FT-Aprior: is a feasible and even nice solution.
However, when the support thresholds are set low
and more faults are allowed, FT-Aprior: faces sig-
nificant challenges.

3. Efficient fault-tolerant frequent pattern min-
ing is very challenging. As shown by our ex-
perimental results, a minor increase of fault toler-
ance may blow up the mining process. Also, de-
creasing the support thresholds may increase the
runtime dramatically. Fault toleration usually in-
troduces a huge number of candidates. Efficient
fault-tolerant frequent pattern mining is still an
open problem.

As to related work, Yang, Fayyad, and Bradley [6]
proposed a method for efficient discovery of error-
tolerant frequent itemsets in high dimensions. Their
concept of error-tolerant frequent itemset is similar
to our fault-tolerant frequent pattern, however, since
we have introduced a few additional constraints,
such as items being considered confined to global
frequent items, patterns being considering confined
by a length threshold, and so on, it is easy for us
to develop more efficient methods for fault-tolerant

frequent pattern mining. In their study, they focus
on the development of random and approximate
algorithms; whereas according to our study, it 1s still
promising to develop reasonable mining algorithms to
find complete patterns if the faults are small and the
constraints are tight.

As an ongoing study, we are now exploring efficient
fault-tolerant frequent pattern mining in pattern-
growth methods. Motivated by the pattern-growth
methods in frequent pattern mining, we are inves-
tigating how to generate less or no candidates by
pattern-growth [3]. We are also considering other al-
ternative approaches, such as random algorithms [6].

The idea of fault-tolerant data mining can be
integrated into many other data mining tasks. We
consider the following two as future work.

e Fault-tolerant sequential pattern mining.
Though most of previous work on sequential pat-
tern mining requires exact match between the pat-
tern and the sequence data, many real applications
require fault-tolerant capability. A typical exam-
ple is DNA mining. When mining with DNA data,
dealing with mismatches including insertion, dele-
tion and mutation becomes essential.

e Mining fault-tolerant fascicles. A fascicle [4]
is a subset of records sharing a set of compact
attributes. Recent study shows that fascicles
are useful in database compression and pattern
extraction. It is interesting to see whether
fault-tolerant fascicles can further improve the
effectiveness of storage reduction and other tasks.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB’9/, pp. 487-499, Santiago,
Chile, Sept. 1994.

[2] R. J. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD’98, pp. 85-93, Seattle, WA,
June 1998.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD’00, pp. 1-
12, Dallas, TX, May 2000.

[4] H. V. Jagadish, J. Madar, and R. Ng.
compression and pattern extraction with fascicles. In
VLDB’99, pp. 186-197, Edinburgh, UK, Sept. 1999.

[5] H. Mannila, H Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1:259-289, 1997.

[6] C. Yang, U. Fayyad, and P. S. Bradley. FEfficient
discovery of error-tolerant frequent itemsets in high
dimensions. In Technical Report MSR-TR-00-20,
Microsoft Research, Feb. 2000.

Semantic

