Online Analytical Processing Stream Data: Is It Feasible?-

Yixin Chent!, Guozhu Dong?, Jiawei Han'?, Jian Pei®, Benjamin W. Wah?, Jianyong Wang'+*

! University of lllinois at Urbana-Champaign, U.S.A.
2 Wright State University, U.S.A.
3 Simon Fraser University, Canada
*+ Beljing University, China

ABSTRACT

Real-time surveillance systems and other dynamic environ-
ments often generate tremendous (potentially infinite) vol-
ume of stream data: the volume is too huge to be scanned
multiple times. However, much of such data resides at rather
low level of abstraction, whereas most analysts are interested
in dynamic changes (such as trends and outliers) at rela-
tively high levels of abstraction. To discover such high level
characteristics, one may need to perform on-line multi-level
analysis of stream data, similar to OLAP (on-line analytical
processing) of relational or data warehouse data.

With limited storage space and the demand for fast re-
sponse, is it realistic to promote on-line, multi-dimensional
analysis and mining of stream data to alert people about
dramatic changes of situations at multiple-levels of abstrac-
tion?

In this paper, we present an architecture, called stream_cube,
which, based on our analysis, is feasible for successful on-
line, multi-dimensional, multi-level analysis of stream data.
By successful, we mean that the system will provide analyti-
cal power and flexibility, derive timely and quality responses,
and consume limited memory space and other resources.

The general design of the stream_cube architecture is de-
scribed as follows. First, a tilt time frame model is taken
as the default model for time dimension. Such a model re-
duces the amount of data to be retained in memory or stored
on disks but still achieves flexibility and analysis power. Sec-
ond, a small number of critical layers are maintained for
flexible analysis. Consider that the stream data resides at
the primitive layer. It is desirable to identify two critical
higher layers in applications: the minimal interest layer, and
the observation layer. These two layers can be used as the
basis for stream_cube construction and for multi-level on-

Work supported in part by grants from NSERC and
NCE of Canada, the University of Illinois, and Microsoft
Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2002 ACM DMKD’02:6/03/02 ...$5.00.

line analysis. Third, instead of computing a complete data
cube based on the notion of critical layers, one may compute
only the layers along a popular path and leave others for
query-driven, on-line computation. Our analysis shows that
this architecture provides a good time-space trade-off: it
decreases substantially the demand for memory usage and
reduces the overall response time. Other possible designs
for OLAPing stream data are also discussed in the paper.

1. INTRODUCTION

With years of research and development of data warehouse
and OLAP technology [8, 5], a large number of data ware-
houses and data cubes have been successfully constructed
and deployed in applications, and data cube has become an
essential component in most data warehouse systems and
in some extended relational database systems and has been
playing an increasingly important role in data analysis and
intelligent decision support.

The data warehouse and OLAP technology is based on the
integration and consolidation of data in multi-dimensional
space to facilitate powerful and fast on-line data analysis.
Data are aggregated either completely or partially in mul-
tiple dimensions and multiple levels, and are stored in the
form of either relations or multi-dimensional arrays [1, 14].
The dimensions in a data cube are of categorical data, such
as products, region, time, etc., and the measures are numer-
ical data, representing various kinds of aggregates, such as
sum, average, and variance of sales or profits, etc.

The success of OLAP technology naturally leads to its
possible extension from the analysis of static, pre-integrated,
historical data to that of current, dynamically changing data
streams, including scientific and engineering data, time-series
data, and data produced in other dynamic environments,
such as power supply, network traffic, stock exchange, tele-
communication data flow, Web click streams, weather or
environment monitoring, etc.

A fundamental difference in the analysis of stream data
from that of relational and warehouse data is that the stream
data is generated in huge volume, flowing in-and-out dynam-
ically, and changing rapidly. Due to limited memory or disk
space and processing power to handle such huge volumes of
data, most data streams may only be examined in a single
pass. These characteristics of stream data have been em-
phasized and investigated by many researchers [3, 7, 6, 9],
and efficient stream data querying, clustering and classifi-
cation algorithms have been proposed recently (such as [13,

10, 7, 6, 9]). However, there is another important character-
istic of stream data that has not drawn enough attention:
Most of stream data resides at rather low level of abstrac-
tion, whereas an analyst is often more interested in higher
and multiple levels of abstraction. Similar to OLAP analysis
of static data, multi-level, multi-dimensional on-line analysis
should be performed on stream data as well.

The requirement for multi-level, multi-dimensional on-line
analysis of stream data, though desirable, raises a challeng-
ing research issue: “Is it feasible to perform OLAP analysis
on huge volumes of stream data since a data cube is usually
much bigger than the original data set, and its construction
may take multiple database scans?’

In this paper, we examine this issue and present an inter-
esting architecture for on-line analytical analysis of stream
data. Before presenting our architecture, let’s first examine
an example.

Example 1. Suppose that a Web server, such as Yahoo.com,
receives a huge volume of Web click streams, requesting
various kinds of services and information. Usually, such
stream data resides at rather low level, consisting of time
(down to subseconds), Web page address (down to concrete
URL), user ip address (down to detailed machine IP ad-
dress), etc. However, an analyst may often be interested
in changes, trends, and unusual patterns, happening in the
data streams, at certain high levels of abstraction. For ex-
ample, it is interesting to find that the Web clicking traffic
in North America on sports in the last 15 minutes is 40%
higher than the last 24 hours’ average.

From the point of view of a Web analysis provider, given
a large volume of fast changing Web click streams, and with
limited resource and computational power, it is only realistic
to analyze the changes of Web usage at certain high levels,
discover unusual situations, and drill down to some more
detailed levels for in-depth analysis, when needed, in order
to make timely responses.

Interestingly, both the analyst and analysis provider share
a similar view on such stream data analysis: instead of bog-
ging down to every detail of data stream, a demanding re-
quest is to provide on-line analysis of changes, trends and
other patterns at high levels of abstraction, with low cost
and fast response time. |

In this study, we take Example 1 as a typical scenario and
study how to perform efficient and effective multi-dimensional
analysis of stream data, with the following contributions.

1. For on-line stream data analysis, both space and time
are critical. In order to avoid imposing unrealistic de-
mand on space and time, instead of computing a fully
materialized cube, we suggest to compute a partially
materialized data cube, with a tilt time frame as its
time dimension model. In the tilt time frame, time
is registered at different levels of granularity. The most
recent time is registered at the finest granularity; the
more distant time is registered at coarser granularity;
the level of coarseness depends on the application re-
quirements and on how old the time point is. This
model is sufficient for most analysis tasks, and at the
same time it also ensures that the total amount of data
to retain in memory or to be stored on disk is small.

2. Due to limited memory space in stream data analysis,
it is often too costly to store a precomputed cube, even

with the tilt time frame. We propose to compute and
store only two critical layers (which are essentially
cuboids) in the cube: (1) an observation layer, called
o-layer, which is the layer that an analyst would like to
check and make decisions for either signaling the ex-
ceptions or drilling on the exception cells down to lower
layers to find their corresponding lower level excep-
tions; and (2) the minimal interesting layer, called m-
layer, which is the minimal layer that an analyst would
like to examine, since it is often neither cost-effective
nor practically interesting to examine the minute de-
tail of stream data. For example, in Example 1, we
assume the o-layer is user-region, theme, and quarter,
while the m-layer is user, sub-theme, and minute.

3. Storing a cube at only two critical layers leaves a lot
of room at what to compute and how to compute for
the cuboids between the two layers. We propose one
method, called popular-path cubing, which rolls up
the cuboids from the m-layer to the o-layer, by fol-
lowing one popular drilling path, materializes only the
layers along the path, and leave other layers to be com-
puted only when needed. We show that this method
represents a reasonable trade-off between space, com-
putation time, and flexibility, and has both quick ag-
gregation time and exception detection time.

The rest of the paper is organized as follows. In Section
2, we present an architectural design for on-line analysis of
stream data by defining the problem and introducing the
concepts of tilt time frame and critical layers. In Section
3, we present a popular-path cubing method. A feasibility
analysis of the proposed approach is conducted in Section
4. Related work and possible extensions of the method are
discussed in Section 5. Our study is concluded in Section 6.

2. ARCHITECTURE FOR ON-LINE ANAL-
YSIS OF DATA STREAMS

In this section, we first introduce the research problem
and then present an architecture design for on-line analysis
of data streams.

2.1 Problem Definition

In this study, we consider stream data as huge volume, in-
finite flow of data records, such as Web click streams, tele-
phone calls, on-line transactions, etc. The data is collected
at the most detailed level in a multi-dimensional space, which
may represent time, location, user, theme, and other seman-
tic information.

To perform multi-dimensional, multi-level analysis, we need
to introduce the basic terms related to data cubes.

Let D be a relational table, called the base table, of a given
cube. The set of all attributes A in D are partitioned into
two subsets, the dimensional attributes DIM and the measure
attributes M (so DIM UM = A and DIM N M = (). The
measure attributes functionally depend on the dimensional
attributes in D and are defined in the context of data cube
using some typical aggregate functions, such as COUNT,
SUM, AVG, or some regression related measures to be stud-
ied here.

A tuple with schema A in a multi-dimensional space (i.e.,
in the context of data cube) is called a cell. Given three
distinct cells ¢1, c2 and c3, ¢1 is an ancestor of ¢z, and ¢z a

descendant of c; iff on every dimensional attribute, either
c1 and c2 share the same value, or ci1’s value is a general-
ized value of c2’s in the dimension’s concept hierarchy. ca
is a sibling of c3 iff ¢ and c3 have identical values in all
dimensions except one dimension A where c2[A] and c3[A]
have the same parent in the dimension’s domain hierarchy.
A cell which has k non-* values is called a k-d cell. (We
use “x¥” to indicate “all”, i.e., the highest level on any di-
mension.)

A tuple ¢ € D is called a base cell. A base cell does not
have any descendant. A cell c is an aggregated cell iff it
is an ancestor of some base cell. For each aggregated cell
¢, its values on the measure attributes are derived from the
complete set of descendant base cells of c.

Our task is to perform high-level, on-line, multi-dimensional
analysis of data streams in order to find unusual (exceptional)
changes of trends, according to users’ interest. This may in-
volve construction of a data cube, if feasible, to facilitate
on-line, flexible analysis.

2.2 A stream_cube architecture

To facilitate on-line, multi-dimensional analysis of data
streams, we propose a stream_cube architecture with the fol-
lowing features: (1) tilt time frame, (2) two critical layers: a
minimal interesting layer and an observation layer, and (3)
partial computation of data cubes. The stream data cubes so
constructed are much smaller than those constructed from
the raw stream data but will still be effective for usual multi-
dimensional stream data analysis tasks.

2.2.1 Tilttimeframe

In stream data analysis, people are usually interested in
recent changes at a fine scale, but long term changes at a
coarse scale. Naturally, one can register time at different
levels of granularity. The most recent time is registered at
the finest granularity; the more distant time is registered at
coarser granularity; and the level of coarseness depends on
the application requirements and on how old the time point
is (from the current time).

‘ 7 days 24 hours 4qtrs 15 minutes
Lttt looof ffpftftllllll| eoe |||

Time Now

Figure 1: A tilt time frame model

Example 2. For Ex. 1, a tilt time frame can be constructed
as shown in Figure 1, where the time frame is structured
in multiple granularities: the most recent 15 minutes, then
the last 4 quarters, 24 hours, and 7 days. Based on this
model, one can compute measures in the last 15 minutes
with the precision of minute, the last one hour with the
precision of quarter, the last day with the precision of hour,
and so on, until the whole week with the precision of day.
This model registers only 15 + 4 + 24 + 7 = 50 units of
time instead of 7 x 24 x 60 = 10,080 units, a saving of
about 200 times. Notice that with this model, it is easy
to answer queries like “comparing the average Web traffic
(or any measure registered) in the last minute against that
in the last hour, last 24 hours, and last 7 days. However,
it is difficult to compare the average traffic in this minute
with that of any particular minute in the last seven days.
Nevertheless, it is an acceptable trade-off between efficiency
and the grain of granularity at a distant time. |

This model is sufficient for usual time-related queries, and
at the same time it ensures that the total amount of data to
retain in memory and/or be computed is small.

2.2.2 Critical layers

Even with the tilt time frame model, it could still be too
costly to dynamically compute and store a full cube since
such a cube may have quite a few dimensions, each contain-
ing multiple levels with many distinct values. Since stream
data analysis has only limited memory space but requires
fast response time, a realistic arrangement is to compute
and store only some mission-critical cuboids in the cube.

In our design, two critical cuboids are identified due to
their conceptual and computational importance in stream
data analysis. We call these cuboids layers and suggest to
compute and store them dynamically. The first layer, called
m-layer, is the minimally interesting layer that an analyst
would like to study. It is necessary to have such a layer since
it is often neither cost-effective nor practically interesting to
examine the minute detail of stream data. The second layer,
called o-layer, is the observation layer at which an analyst
(or an automated system) would like to check and make
decisions of either signaling the exceptions, or drilling on
the exception cells down to lower layers to find their lower-
level exceptional descendants.

(*, theme, quarter)

)
- 2//74A\\\\V:

o—layer (observation)

- NIREN

’
/. -

(user—group, URL—group, minute)

m-layer (minimal interest)

(individual-user, URL, second)

(primitive) stream data layer
Figure 2: Two critical layers in the stream cube

Example 3. Assume that “(individual_user, URL, second)”
forms the primitive layer of the input stream data in Ex. 1.
With the tilt time frame as shown in Figure 1, the two crit-
ical layers for power supply analysis are: (1) the m-layer:
(user_group, URL_group, minute), and (2) the o-layer: (x,
theme, quarter), as shown in Figure 2.

Based on this design, the cuboids lower than the m-layer
will not need to be computed since they are beyond the mini-
mal interest of users. Thus the minimal regression cells that
our base cuboid needs to be computed and stored will be
the aggregate cells computed with grouping by user_group,
URL group, and minute. This can be done by aggrega-
tions (1) on two dimensions, user and URL, by rolling
up from individual_user to user_group and from URL to
URL_group, respectively, and (2) on time dimension by
rolling up from second to minute.

Similarly, the cuboids at the o-layer should be computed
dynamically according to the tilt time frame model as well.
This is the layer that an analyst takes as an observation
deck, watching the changes of the current stream data by
examining the slope of changes at this layer to make deci-
sions. The layer can be obtained by rolling up the cube (1)
along two dimensions to * (which means all user_category)
and theme, respectively, and (2) along time dimension to
quarter. If something unusual is observed, the analyst can
drill down to examine the details and the exceptional cells
at low levels. []

2.2.3 Partial materialization of stream cube

Materializing a cube at only two critical layers leaves much
room for how to compute the cuboids in between. These
cuboids can be precomputed fully, partially, not at all (i.e.,
leave everything computed on-the-fly), or precomputing ex-
ception cells only. Let us first examine the feasibility of each
possible choice in the environment of stream data. Since
there may be a large number of cuboids between these two
layers and each may contain many cells, it is often too costly
in both space and time to fully materialize these cuboids,
especially for stream data. Moreover, for the choice of com-
puting ezception cells only, the problem becomes how to set
up an exception threshold. A too low threshold may lead
to computing almost the whole cube, whereas a too high
threshold may leave a lot of cells uncomputed and thus not
being able to answer many interesting queries. On the other
hand, materializing nothing forces all the aggregate cells to
be computed on-the-fly, which may slow down the response
time substantially. Thus, it seems that the only viable choice
is to perform partial materialization of a stream cube.

Partial materialization of data cubes has been studied
substantially in previous work [12, 5]. With the concern
of both space and on-line computation time, we propose
a “popular path” approach, which computes and maintains
a single popular aggregation path from m-layer to o-layer
so that queries directly on those (layers) along the popular
path can be answered without further computation, whereas
those deviating from the path can be answered with mini-
mal computation from those reachable from the computed
layers.

The details of this approach and its feasibility for stream
data analysis will be examined in the next two sections.

3. STREAM CUBE COMPUTATION

Based on the above discussion, we examine the design
and implementation of the popular-path approach for effi-
cient computation of stream cubes.

First, based on the notion of m-layer, i.e., the minimal
interesting layer, and the tilt time frame, stream data can
be directly aggregated to this layer according to the tilt time
scale. Then the data can be further aggregated following the
popular path to reach the observation layer.

To facilitate efficient computation and storage of stream
cube, a compact data structure needs to be designed so that
the space taken in the computation of aggregations is min-
imized. A data structure, called H-tree, a hyper-linked tree
structure introduced in [11], is revised and adopted here to
ensure that a compact structure is maintained in memory for
efficient computation of multi-dimensional and multi-level
aggregations.

We present these ideas using an example.

Example 4. Suppose the stream data to be analyzed con-
tains 3 dimensions, A, B and C, each with 3 levels of ab-
straction (excluding the highest level of abstraction “+”), as
(A1, Az, A3), (B1, B2, Bs), (C1,C2,C3), where the ordering
of “¢« > Ay > Ay > A3” forms a high-to-low hierarchy, and
so on. The minimal interesting layer (the m-layer) is (A,
B,, C,), and the o-layer is (A1,%,C1). From the m-layer
(the bottom cuboid) to the o-layer (the top-cuboid to be
computed), there are in total 2 X 3 X 2 = 12 cuboids, as
shown in Figure 3.

(AL, *, C1)

(A2 B1, C2)

(A2,B2,C2)

Figure 3: Cube structure from the m-layer to the o-layer

Suppose that the popular drilling path is given (which
can usually be derived based on domain expert knowledge,
statistical analysis or experiments). Assume that the given
popular path is ((A;,C1)—B1 —By—A;—C5), shown as
the dark-line path in Figure 3, where {A1, C1} means that
the ordering of A; or C; is unimportant. Then each path
of an H-tree from root to leaf is ordered the same as the
popular path.

This ordering generates a compact tree because the set of
low level nodes that share the same set of high level ancestors
will share the same prefix path using the tree structure.
Each tuple, which represents the currently in-flow stream
data, after being generalized to the m-layer, is inserted into
the corresponding path of the H-tree. An example H-tree
is shown in Fig 4. In the leaf node of each path, we store
relevant measure information of the cells of the m-layer. The
upper level measures are computed using the H-tree and its
associated links.

An obvious advantage of the popular path approach is
that the nonleaf nodes represents the cells of those layers
(cuboids) along the popular path. Thus these nonleaf nodes
naturally serves as the cells of the cuboids along the path.
That is, it serves as a data structure for intermediate compu-
tation as well as the storage area for the computed measures
of the layers (i.e., cuboids) along the path.

Furthermore, the H-tree structure facilitates the compu-
tation of other cuboids or cells in those cuboids. When a
query or drill-down clicking requests to compute cells outside
the popular path, one can find the closest lower level com-
puted cells and use such intermediate computation results to
compute the measures requested, because the corresponding
cells can be found via a linked list of all the corresponding
nodes contributing to the cells. |

Based on this example, the popular path partial cube com-
putation algorithm can be presented as follows.

ROOT
.-

o (all, c12)

(AL, C1) (a13 gn -

b13

7623

Figure 4: H-tree structure for cube computation

ALGORITHM 1
the popular-path between the m-layer and the o-layer.

Input. (1) multi-dimensional multi-level stream data, (2) the
m and o-layer specifications, and (8) a given popular drilling
path.

Output. All the aggregated cells of the cuboids along the
popular path (and between the m- and o-layers).

Method.

1. Each tuple, which represents a minimal addressing unit
of multi-dimensional multi-level stream data, is scanned
once and generalized to the m-layer. The generalized
tuple is then inserted into the corresponding path of the
H-tree, increasing the count and aggregating the mea-
sure values of the corresponding leaf node.

2. Since each branch of the H-tree is organized in the
same order as the specified popular path, aggregation
is performed from the m-layer all the way up to the o-
layer by aggregating along the popular path. The step-
by-step aggregation is performed while inserting every
new generalized tuple.

8. The aggregated cells are stored in the nonleaf nodes
in the H-tree, forming the computed cuboids along the
popular path.

Analysis. The H-tree ordering is based on the popular drilling
path given by users or experts. This ordering facilitates the
computation and storage of the cuboids along the path. The
aggregations along the drilling path from the m-layer to the
o-layer are performed during the generalizing of the stream
data to the m-layer, which takes only one scan of stream
data. Since all the cells to be computed are the cuboids
along the popular path, and the cuboids to be computed are
the nonleaf nodes associated with the H-tree, both space and
computation overheads are minimized. |

Notice that the process discussed in the algorithm is es-
sentially an incremental computation method, using the tilt
time frame of Figure 1. Assuming that the memory contains
the previously computed m and o-layers, plus the cuboids
along the popular path, and stream data arrive every sec-
ond. The new stream data are accumulated (by generaliza-
tion) in the corresponding H-tree leaf nodes. Since the time
granularity of the m-layer is minute, the aggregated data
will trigger the cube computation once every minute, which
rolls up from leaf to the higher level cuboids. When reach-
ing a cuboid whose time granularity is quarter, the rolled
measure information remains in the corresponding minute
slot until it reaches the full quarter (i.e., 15 minutes) and
then it rolls up to even higher levels, and so on.

(Popular-path). Computing cuboids along

Notice in this process, the measure in the time interval of
each cuboid will be accumulated and promoted to the cor-
responding coarser time granularity, when the accumulated
data reaches the corresponding time boundary. For exam-
ple, the measure information of every four quarters will be
aggregated to one hour and be promoted to the hour slot,
and in the mean time, the quarter slots will still retain suffi-
cient information for quarter-based analysis. This design en-
sures that although the stream data flows in-and-out, mea-
sure always keeps up to the most recent granularity time
unit at each layer.

4. FEASIBILITY ANALYSIS

Here we present a brief feasibility analysis of our proposed
approach, which shows that the total memory and compu-
tation time taken is small, in comparison with several other
alternatives, and it is realistic to compute such a partially
aggregated cube, and such precomputed cube will benefit
OLAP analysis of stream data.

Limited by space, we report only two studies with syn-
thetic data streams of various characteristics (see below);
the records have a varied number of non-* dimension values
and these values are at different levels.

The data stream is generated by a data generator similar
in spirit to the IBM data generator [2] designed for testing
data mining algorithms. The convention for the data sets is
as follows: D3L3C'10T400K means there are 3 dimensions,
each dimension contains 3 levels (from the m-layer to the
o-layer, inclusive), the node fan-out factor (cardinality) is
10 (i.e., 10 children per node), and there are in total 400K
merged m-layer tuples.

All experiments were conducted on a 750MHz AMD PC
with 512 megabytes memory, running Microsoft/Windows-
2000 Server. All the methods were implemented using Mi-
crosoft/Visual C++ 6.0.

Our design framework has some obvious performance ad-
vantages over some alternatives in a few aspects, including
(1) talt time frame vs. full non-tilt time frame, (2) using min-
imal interesting layer vs. examining stream data at the raw
data layer, and (3) computing the cube up to the apex layer
vs. computing it up to the observation layer. Consequently,
our feasibility study will not compare the design that does
not have such advantages since they will be obvious losers.

Since a data analyst needs fast on-line response, and both
space and time are critical in processing, we examine both
time and space consumption. In our study, besides pre-
senting the total time and memory taken to compute and
store such a stream cube, we compare the two measures
(time and space) of the popular path approach against two
alternatives: (1) the all-cuboids approach, i.e., materializing
all the cuboids between the m- and o- layers, and (2) the
exception-cells approach, i.e., materializing only the excep-
tion cells of the cuboids between the m- and o- layers, and
we set exception threshold to be 1%, i.e., only top 1% cells
will be considered as exceptions at each layer (cuboid).

The performance results are reported in Figures 5—6.

Figure 5 shows processing time and memory usage used
for the three approaches, with increasing size of the data
set. Since all-cuboids computes all the cells from the m-
layer all the way up to the o-layer, the total processing time
is much higher than popular-path. However, since the ex-
ception rate is set to only 1% in our test, the exception-cells
approach may take less memory than popular-path (but fails

1024 T T 512

‘popu\ar-path ‘—»7
al-cubing --%-~""
exceptpg;qdls‘f *-

~
&
T

Runtime (in seconds)

Memory Usage (in M-bytes)
=
® 8
T

k2 64 128 256 2 64 128 256
Size(inK tuples) Size(inK tuples)

a) Time vs. size b) Space vs. size

Figure 5: Feasibility study: Time and space vs. # tuples

at the m-layer for the data set D3L3C10T400K

10000 T T T T T T
popular-path —+— popular-path —+—,
all-cubing --%-7 1004 | al-cubing -7 |
exception-cells ---%<- -

exception-cells -~

25

A

Runtime (in seconds)
Memory Usage (in M-bytes)

s

3 3 4 45 5 55 6 65 7 3 35 4 45 5 55 6 65 7
Number of Levels Number of Levels

a) Time vs. # levels b) Space vs. # levels

Figure 6: Time and space vs. # of levels

to answer any queries which go beyond 1% exception rate).
Nevertheless, it still takes much longer time to evaluate such
cells since it has to compute almost the whole cube to de-
rive such exceptions (although there are some optimization
techniques which will not discussed here for lack of space).

Figure 6 shows the processing time and memory usage vs.
the number of levels from m- to o- layers, with cube structure
of D2C10T10K and the exception rate at 1%. In all the
approaches, with the growth of number of levels in the data
cube, both processing time and space usage grow rapidly.
However, popular-path grows much slower than ezception-
cells in both time and space and thus cost almost the same
space as exception-cells at 1% exception rate when number
of levels reaches 7.

From this study, one can see that popular-path is effi-
cient and feasible method for computing multi-dimensional,
multi-level stream cubes.

Finally, this performance study computes the cubes for
the whole set of stream data. In practice, one just need
to incrementally compute the newly generated stream data.
Thus, the computation time should be substantially shorter
than that shown here although the total memory usage may
not reduce due to the need to store data in the layers along
the popular path between two critical layers.

5. CONCLUSIONS

In this paper, we promote on-line analytical processing of
stream data and proposed a feasible method for on-line com-
putation of multi-dimensional, multi-level stream cube. The
method uses a tilt time frame, explores minimal interesting
and observation layers, and adopts an popular path approach
for efficient computation and storage of stream cube to fa-
cilitate OLAP analysis of stream data. Our feasibility study
shows that the method is cost-effective and is a realistic ap-
proach with current computer technology.

We believe this study is the first that proposes and ex-
plores on-line analytical processing of multi-dimensional, multi-
level stream data. There are a lot of issues to be explored
further. For example, we have implemented and studied
an H-tree structure-based algorithm for computing popular-
path stream cube. It is interesting to explore other cubing
techniques, such as [14, 4], at popular-path cubing, as well
as developing high performance algorithm for exploring the
non-precomputed cube space. Moreover, we believe that a
very important direction is to further develop data mining
methods to take advantage of multi-dimensional, multi-level
stream cubes for single-pass on-line mining for deep knowl-
edge in stream data.

6. REFERENCES

[1] S. Agarwal, et al. On the computation of
multidimensional aggregates. VLDB’96, pp. 506-521,
Bombay, India, Sept. 1996.

[2] R. Agrawal and R. Srikant. Mining sequential patterns.
ICDE’95, pp. 3-14, Taipei, Taiwan, Mar. 1995.

[3] S. Babu and J. Widom. Continuous queries over data
streams. ACM SIGMOD Record, 2001(3):109-120.

[4] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. SIGMOD’99,
pp- 359-370, Philadelphia, PA, June 1999.

[5] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. ACM SIGMOD
Record, 26:65-74, 1997.

[6] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continuous data streams.
SIGMOD’01, pp. 13-24, Santa Barbara, CA, May 2001.

[7] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries.
VLDB’01, pp. 79-88, Rome, Italy, Sept. 2001.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-totals. Data
Mining and Knowledge Discovery, 1:29-54, 1997.

[9] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summeries. SIGMOD’01, pp.
58-66, Santa Barbara, CA, May 2001.

[10] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. FOCS’00, pp. 359-366, 2000.

[11] J. Han, J. Pei, G. Dong, and K. Wang. Efficient
computation of iceberg cubes with complex measures.
SIGMOD’01, pp. 1-12, Santa Barbara, CA, May 2001.

[12] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. SIGMOD 96, pp.
205-216, Montreal, Canada, June 1996.

[13] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. KDD’01, pp. 71-80, San
Fransisco, CA, Aug. 2001.

[14] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
array-based algorithm for simultaneous
multidimensional aggregates. In SIGMOD’97, pp.
159-170, Tucson, Arizona, May 1997.

