
Efficient Skyline and Top-k Retrieval
in Subspaces

Yufei Tao, Xiaokui Xiao, and Jian Pei, Senior Member, IEEE

Abstract—Skyline and top-k queries are two popular operations for preference retrieval. In practice, applications that require these

operations usually provide numerous candidate attributes, whereas, depending on their interests, users may issue queries regarding

different subsets of the dimensions. The existing algorithms are inadequate for subspace skyline/top-k search because they have at

least one of the following defects: 1) They require scanning the entire database at least once, 2) they are optimized for one subspace

but incur significant overhead for other subspaces, or 3) they demand expensive maintenance cost or space consumption. In this

paper, we propose a technique SUBSKY, which settles both types of queries by using purely relational technologies. The core of

SUBSKY is a transformation that converts multidimensional data to one-dimensional (1D) values. These values are indexed by a

simple B-tree, which allows us to answer subspace queries by accessing a fraction of the database. SUBSKY entails low maintenance

overhead, which equals the cost of updating a traditional B-tree. Extensive experiments with real data confirm that our technique

outperforms alternative solutions significantly in both efficiency and scalability.

Index Terms—Skyline, top-k, subspace, B-tree.

Ç

1 INTRODUCTION

A multidimensional point p dominates another p0 if the
coordinate of p on each axis does not exceed that of p0

and is strictly smaller on at least one dimension. Given a set
of points, the skyline consists of all of the points that are not
dominated by others. Fig. 1 shows a data set with
dimensionality d ¼ 2. The x-dimension represents the price
of a hotel, and the y-axis captures its distance to the beach.
Hotel p1 dominates p2 because the former is cheaper and
closer to the beach. The skyline includes p1, p4, and p5,
which offer various trade-offs between price and distance: p4

is the nearest to the beach, p5 is the cheapest, and p1 may be
a good compromise of the two factors.

The notion of skyline is generalized to “skyband” in [22].
Specifically, the k-skyband of a data set includes all of the
points that are dominated by fewer than k points. For
instance, the 2-skyband of the data set in Fig. 1 contains all
the objects except p7 and p8. Clearly, the skyline is the
1-skyband. In general, for any k and k0 satisfying k0 < k, the
k0-skyband is a subset of the k-skyband.

Skylines have been extensively studied in the literature
due to their close relationship to preference search. A
preference is usually formulated through a monotone1

preference function g, which returns a score gðpÞ for every
point p. Given such a function, a top-k query retrieves the

k points in a data set with the lowest scores. For example,
for gðpÞ ¼ 3p½x� þ p½y�, the top-1 hotel in Fig. 1 is p1

(score 0.8). Regardless of the choice of g, the top-1 object
always lies in the skyline. Furthermore, every skyline point
is the top-1 object for a certain function (that is, a skyline
does not contain any redundant point for the top-1 search
[5]). Similarly, the k-skyband contains all and only the objects
retrieved by top-k queries.

The motivation of this work is that, in practice, a skyline/
preference search application typically provides numerous
candidate attributes, whereas a user chooses only a small
number of them in his/her query. Assume that in addition
to the dimensions in Fig. 1, the database also stores the
distances of each hotel to several other locations (for
example, the town center, the nearest supermarket, the
subway station, and so forth), the ratings of security, air
quality, traffic status in the neighborhood, and so on. It is
unlikely that a customer would consider all the attributes in
selecting his/her hotel. Instead, he/she would take into
account only some of them, that is, a subspace of the
universe. Alternative customers may have different con-
cerns. Therefore, the system must be prepared to perform
skyline/top-k retrieval in a variety of subspaces. Unfortu-
nately, this observation has been ignored by the previous
research. As discussed later, the existing skyline/top-k
algorithms are optimized for the whole universe but entail
expensive cost for subspace queries.

This paper presents the first study on indexes for

efficient skyline and top-k computation in arbitrary

subspaces. We develop SUBSKY, a novel technique that

settles both problems by using purely relational technol-

ogies and hence can be incorporated into a conventional

database system immediately.2 The core of SUBSKY is a

transformation that converts each multidimensional point

1072 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

. Y. Tao and X. Xiao are with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong.
E-mail: {taoyf, xkxiao}@cse.cuhk.edu.hk.

. J. Pei is with the School of Computing, Simon Fraser University, Burnaby,
BC Canada V5A 1S6. E-mail: jpei@cs.sfu.ca.

Manuscript received 9 May 2006; revised 30 Nov. 2006; accepted 6 Apr. 2007;
published online 24 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0241-0506.
Digital Object Identifier no. 10.1109/TKDE.2007.1051.

1. Monotonicity means that gðpÞ > gðp0Þ for two arbitrary points p and p0,
which share the same coordinates on d� 1 dimensions, and p has a larger
coordinate on the remaining dimension.

2. Including a nonrelational method into a commercial database
management system (DBMS) is difficult because it requires fixing complex
issues related to concurrency control, recovery, and so forth.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

to a one-dimensional (1D) value. The converted values are

indexed by a B-tree, which can be used to handle all types

(that is, skyline, skyband, and top-k) of queries effectively.

In the presence of tuple insertions/deletions, the tree can

be maintained at the same cost of updating a traditional B-

tree. Extensive experiments confirm that the proposed

solutions significantly outperform the state-of-the-art sky-

line/top-k algorithms.
The rest of the paper is organized as follows: Section 2

reviews the previous work related to ours. Section 3 adapts
the existing algorithms for subspace skyline/top-k proces-
sing and elaborates their deficiencies. Section 4 presents the
basic SUBSKY optimized for skyline search on uniform
data, and Section 5 generalizes the technique to arbitrary
data distributions. Section 6 discusses skyband and top-k
processing. Section 7 contains an experimental evaluation
that demonstrates the efficiency of SUBSKY. Section 8
concludes the paper with directions for future work.

2 RELATED WORK

Section 2.1 surveys the algorithms for computing skylines in
the whole universe. Then, Section 2.2 discusses the “sky-
cube” that is highly relevant to subspace skylines. Finally,
Section 2.3 reviews the previous work on top-k search.

2.1 Skyline Retrieval in the Universe

The existing algorithms can be classified in two categories.
The first one involves solutions that do not assume any
preprocessing on the underlying data set, but they retrieve
the skyline by scanning the entire database at least once.
The second category reduces query cost by utilizing an
index structure. In the sequel, we survey both categories,
focusing on the second one, since it also involves our
solutions.

2.1.1 Algorithms Requiring No Preprocessing

The first skyline algorithm in the database context is block
nested loop (BNL) [5], which simply inspects all pairs of
points and returns an object if it is not dominated by any
other object. Sort filter skyline (SFS) [10] is based on the

same rationale, but improves the performance by sorting
the data according to a monotone function. The perfor-
mance of BNL and SFS is analyzed in [25]. Divide and
conquer [5] (D&C) divides the universe into several
regions, calculates the skyline in each region, and
produces the final skyline from the regional skylines.
When the entire data set fits in memory, this algorithm
produces the skyline in Oðn logd�2 nþ n lognÞ time, where
n is the data set cardinality, and d is its dimensionality.
Bitmap [26] converts each point p to a bit string, which
encodes the number of points having a smaller coordinate
than p on every dimension. The skyline is then obtained
using only bit operations. Linear elimination sort for skyline
(LESS) [14] is an algorithm that has good worst-case
asymptotical performance. Specifically, when the data
distribution is uniform, and no two points have the same
coordinate on any dimension, LESS computes the skyline
in Oðd � nÞ time in expectation.

2.1.2 Algorithms Based on Sorted Lists

Index [26] organizes the data set into d lists. The ith list ð1 �
i � dÞ contains points p with the property p½i� ¼ mindj¼1 p½j�,
where p½i� is the ith coordinate of p. Fig. 2a shows the d ¼ 2
lists for the data set in Fig. 1. For example, p5 is assigned to
list 1 because its x-coordinate 0.1 is smaller than its
y-coordinate 0.9. If a point has identical coordinates on both
dimensions, the list containing it is decided arbitrarily (in
Fig. 2a, p2 and p1 are randomly assigned to lists 1 and 2,
respectively). The entries in list 1 (list 2) are sorted in
ascending order of their x-coordinates (y-coordinates). For
example, entry p5 : 0:1 indicates the sorting key 0.1 of p5.

To compute the skyline, Index scans the two lists in a
synchronous manner. In the beginning, the algorithm
initializes pointers ptr1 and ptr2 referencing the first entries
p5 and p4, respectively. Then, at each step, Index processes
the referenced entry with a smaller sorting key. Since both
p5 and p4 have the same key 0.1, Index randomly picks one
for processing. Assume that p5 is selected. It is added to the
skyline Ssky, after which ptr1 is moved to p6. As p4 has a
smaller key (than p6), it is the second point processed. p4 is
not dominated by any point in Ssky and hence is inserted in
Ssky. Pointer ptr2 is then shifted to p1. Similarly, p1 is
processed next and included in the skyline, after which ptr2

is set to p3. At this stage, Ssky ¼ fp1; p4; p5g.
Both coordinates of p1 are smaller than the x-coordinate

0.3 of p6 (referenced by ptr1), in which case all the not-yet
inspected points p in list 1 can be pruned. To understand
this, observe that both coordinates of p are at least 0.3,
indicating that p is dominated by p1. Due to the same
reasoning, list 2 is also eliminated because both coordinates
of p1 are lower than the y-coordinate of p3 (referenced by
ptr2). The algorithm finishes with fp1, p4, and p5g as the
result.

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1073

Fig. 2. Illustration of algorithms leveraging sorted lists. (a) The sorted lists used by Index. (b) The sorted lists used by TA.

Fig. 1. A data set with hotel records.

Borzsonyi et al. [5] developed an algorithm, TA,3 which
deploys a different set of sorted lists. For a d-dimensional
data set, the ith list ð1 � i � dÞ enumerates all the objects in
ascending order of their ith coordinates. Fig. 2b demon-
strates the two lists for the data set in Fig. 1. TA scans the
d lists synchronously and stops as soon as the same object
has been encountered in all lists. For instance, assume that
TA accesses the two lists in Fig. 2b in a round-robin
manner. It terminates the scanning after seeing p1 in both
lists. At this moment, it has retrieved p5, p4, and p1. Clearly,
if a point p has not been fetched so far, p must be dominated
by p1 and thus can be safely removed from further
consideration. On the other hand, p5, p4, and p1 may or
may not be in the skyline. To verify this, TA obtains the
y-coordinate of p5 (notice that the scanning discovered only
its x-coordinate) and the x-coordinate of p4. Then, it
computes the skyline from fp5; p4; p1g, which is returned
as the final skyline.

2.1.3 Algorithms Based on R-Trees

Nearest neighbor (NN) [18] and branch-and-bound skyline
(BBS) [22] find the skyline by using an R-tree [2]. The
difference is that NN issues multiple NN queries [15],
whereas BBS performs only a single traversal of the tree. It
has been proved [22] that BBS is I/O optimal; that is, it
accesses the least number of disk pages among all
algorithms based on R-trees (including NN). Hence, the
following discussion concentrates on this technique.

Fig. 3 shows the R-tree for the data set in Fig. 1, together
with the minimum bounding rectangles (MBRs) of the
nodes. BBS processes the (leaf/intermediate) entries in
ascending order of their minimum distance (mindist) to the
origin of the universe. In the beginning, the root entries are
inserted into a min-heap H ð¼ fN5; N6gÞ by using their
mindist as the sorting key. Then, the algorithm removes the
top element N5 of H, accesses its child node, and enheaps
all the entries there. H now becomes fN1; N2; N6g.

Similarly, the next node visited is leaf N1, where the data
points are added to H ð¼ fp1; p2; N2; N6gÞ. Since p1 tops H, it
is taken as the first skyline point and used for pruning in the
subsequent execution. Point p2 is deheaped next but is
discarded because it falls in the dominant region of p1 (the
shaded area). BBS then visits N2 and inserts only p4 into
H ¼ fN6; p4g (p3 is not inserted, as it is dominated by p1).
Likewise, accessing N6 adds only one entry N3 to H ð¼
fN3; p4gÞ because N4 lies completely in the shaded area.

Following the same rationale, the remaining entries
processed are N3 (enheaping p5), p4, and p5, at which point
H becomes empty, and BBS terminates.

2.1.4 Retrieval of Skyline Variants

Balke et al. [1] consider skyline computation in distributed
environments. Also, in the distributed framework, the work
of Huang et al. [17] studies skyline search on mobile objects.
Lin et al. [19] investigate continuous skyline monitoring on
data streams. In [6], skylines are extended to partially
ordered domains. Chan et al. [8], [7] propose various
approaches to improve the usefulness of skylines in high-
dimensional spaces. The above methods, however, are
restricted to their specific scenarios and cannot be adapted
to the problem of this paper.

2.2 The Skycube

Pei et al. [23] and Yuan et al. [31] independently propose the
skycube, which consists of the skylines in all possible
subspaces. In the sequel, we explain this concept, assuming
that no two points have the same coordinate on any axis
(see [23], [31] for a general discussion overcoming the
assumption).

Suppose that the universe has d ¼ 3 dimensions x, y, and
z. Fig. 4 shows the seven possible nonempty subspaces. All
the points in the skyline of a subspace belong to the skyline
of a subspace containing additional dimensions. For
instance, the skyline of subspace xy is a subset of the
skyline in the universe, represented by an edge between xy

and xyz in Fig. 4. Specially, if a subspace involves only a
single dimension, then its skyline consists of the point
having the smallest coordinate on this axis.

The skycube can be computed in a top-down manner.
First, we retrieve the skyline of the universe. Then, a child
skyline can be found by applying a conventional algorithm
on a parent skyline (instead of the original database). For
example, the skyline of xyz can produce those of xy, xz, and
yz, whereas the skyline of x can be obtained from that of
either xy or xz. To reduce the cost, several heuristics are
proposed in [23], [31] to avoid the common computation in
different subspaces. Xia and Zhang [29] explain how a
skycube can be dynamically maintained after the under-
lying database has been updated.

2.3 Top-k Search in the Universe

There is a bulk of research on distributed top-k processing
(see [20] and the references therein). In that scenario, the
data on each dimension is stored at a different server, and
the goal is to find the top-k objects with the least network
communication. Our work falls in the category of centra-
lized top-k search, where all the dimensions are retained at
the same server, and the objective is to minimize queries’
CPU and I/O cost. Next, we concentrate on this category.

1074 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

3. This algorithm is called B-tree in [5]. We refer to it as TA to emphasize
its connection to Fagin’s threshold algorithm [12].

Fig. 3. Illustration of BBS.

Fig. 4. The lattice of the skycube.

Chang et al. [9] develop ONION, which answers only
top-k queries with linear preference functions. Hristidis and
Papakonstantinou [16] propose the PREFER system, which
supports a broader class of preference functions but requires
duplicating the database several times. Yi et al. [30] suggest
a similar approach with lower maintenance cost. Tsaparas
et al. [28] present a technique that can handle arbitrary
preference functions. This technique, however, is limited to
two dimensions and supports only top-k queries whose k
does not exceed a certain constant. The state-of-the-art
solution [27], [28] is based on “best-first traversal” [15] on an
R-tree. It enables top-k queries with any k and monotone
preference function on data of arbitrary dimensionality.

3 EXTENDING THE PREVIOUS ALGORITHMS TO

SUBSPACES

Without loss of generality, we assume a d-dimensional
universe where each axis has domain [0, 1]. Given a point p,
p½i� denotes its coordinate on the ith dimension ð1 � i � dÞ.
BNL, SFS, D&C, Bitmap, and LESS (in general, any
algorithm that does not demand preprocessing) can be
trivially extended to compute the skyline in a subspace by
ignoring the irrelevant coordinates of each point. However,
they entail expensive cost by scanning the entire data set
multiple times.

Index can be adapted for subspace skyline retrieval by
reconstructing the underlying data structure for every
query. Assume, for example, d ¼ 10. As mentioned in
Section 2.1, the preprocessing of Index creates 10 sorted lists
L1; . . . , and L10, where Li ð1 � i � 10Þ includes all points p
satisfying p½i� ¼ minfp½1�; . . . ; p½10�g. Consider a query that
aims at finding the skyline in the first two dimensions. To
apply Index, we must organize the database into two sorted
lists L01 and L02, where L0i ð1 � i � 2Þ contains all points p
such that p½i� ¼ minfp½1�; p½2�g. Notice that the precomputed
L1; . . . ; L10 provide little help for deriving L01 and L02. The
most efficient way to calculate L01 and L02 would be to ignore
the precomputed lists, scan the database once to assign each
object to L01 or L02, and then perform two external sorts to
obtain the proper order in the two lists.

TA is directly applicable to subspace computation by
operating on only the sorted lists corresponding to the axes
of the target subspace. Unfortunately, this technique is
inappropriate for dynamic data sets because its sorted lists
are costly to maintain. Recall that every object has an entry
in each of the d sorted lists. Since a list is organized with a
B-tree [5], a single tuple insertion/deletion requires mod-
ifying d B-trees, which is prohibitively expensive for large d.

NN and BBS can find a subspace skyline by ignoring the
extents of an MBR along the irrelevant dimensions. It
suffices to discuss only BBS since NN is always slower.
Imagine the rectangles in Fig. 3 as the projections in the
2D subspace demonstrated of the MBRs in a d-dimensional
R-tree for any d > 2. BBS retrieves the skyline of the
subspace in exactly the same way as described in Section 2.1.
The performance of BBS, however, severely degrades when
the dimensionality d increases due to two reasons. First, as d
grows, MBRs become considerably larger, which signifi-
cantly decreases the probability that an MBR falls in the

dominant regions of the skyline points (recall that this is the
pruning condition of BBS).

The other (less obvious) reason is the emergence of the
“random grouping” phenomenon after d exceeds a certain
threshold. Consider, for example, a 15-dimensional (15D)
uniform data set with 100,000 points. Given a node capacity
of 100 entries, the R-tree would contain approximately
1,000 leaf nodes. Since 1;000 � 210, each leaf MBR has been
split once along roughly 10 dimensions, whereas the
remaining five axes are not considered at all in the R-tree
construction [3], [4]. Assume that we use the R-tree to
retrieve the skyline in a 2D subspace including any two of
those five dimensions. The expected performance is as poor
as deploying a pathological 2D R-tree, which groups the
points (in that 2D subspace) into leaf nodes in a completely
random manner, regardless of their spatial proximity.

Finally, the skycube algorithm discussed in Section 2.2 is
not suitable for retrieving the skyline in one subspace
because it performs unnecessary work by fetching skylines
in many nonrequested subspaces. An alternative approach
is to precompute the entire skycube. In that case, although
the skyline of any subspace can be obtained immediately,
the skycube occupies significant space and incurs expensive
update cost (whenever the original database is updated).

In summary, the existing approaches are inadequate for
the subspace skyline search because they have at least one
of the following defects: 1) They require scanning the entire
database at least once, 2) they are optimized for one
subspace but incur significant overhead for other sub-
spaces, or 3) they demand expensive maintenance cost or
space consumption. In the following sections, we remedy
all defects by proposing a new technique.

4 THE BASIC SUBSKY

We use the term maximal corner for the corner AC of the
universe having coordinate 1 on all dimensions. Each data
point p is converted to a 1D value fðpÞ equal to the
L1 distance between p and AC :

fðpÞ ¼ L1ðp;ACÞ ¼ max
d

i¼1
ð1� p½i�Þ: ð1Þ

Point p dominates all points p0 satisfying the following
inequality:

fðp0Þ < min
d

i¼1
ð1� p½i�Þ: ð2Þ

Fig. 5 illustrates a 2D example. Points p0 obeying the
inequality constitute the shaded square, whose side length
equals min2

i¼1ð1� p½i�Þ. Obviously, no such p0 can appear in

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1075

Fig. 5. Illustration of (2).

the skyline because the square is entirely contained in the
dominant region of p.

Inequality (2) applies to the whole universe, whereas a
similar result exists in any subspace. Representing a
subspace as a set SUB capturing the relevant dimensions
(for example, if the subspace involves the first and third
axes of the universe, then SUB ¼ f1; 3g), we have the
following:

Property 1. Given an arbitrary point p, no point p0 qualifying the

following condition can belong to the skyline of SUB:

fðp0Þ < min
i2SUB

ð1� p½i�Þ: ð3Þ

For example, assume d ¼ 3 and that the goal is to retrieve
the skyline in SUB ¼ f1; 2g. If p has coordinates (0.05, 0.1, -)
(the third coordinate is irrelevant), then no point p0 with
fðp0Þ < minð1� 0:05; 1� 0:1Þ ¼ 0:9 can be in the target sky-
line. This is correct because the coordinates of p0 must be at
least 0.1 on all dimensions; hence, p0 is dominated by p in
SUB.

Property 1 leads to an algorithm, referred to as the basic
SUBSKY, for computing the skyline in a subspace SUB.
Specifically, we access the data points p in descending order
of their fðpÞ. Meanwhile, we maintain 1) the current set Ssky
of skyline points (among the data already examined) and
2) a value U equal to the largest mini2SUBð1� p½i�Þ of the
objects p 2 Ssky. The algorithm terminates when U exceeds
the fðpÞ of the next p to be processed. The pseudocode of the
basic SUBSKY is given in Fig. 6.

We illustrate the basic SUBSKY using the eight 3D points
in Fig. 7 (the x and y-coordinates are the same as in Fig. 1),
where the last row indicates the f-value of each point. The
query subspace SUB is f1; 2g. Objects are processed in this
order: fp3; p4; p5; p1; p6; p2; p8; p7g. After examining p3, SUB-
SKY initializes Ssky as fp3g, and U as

min
i2SUB

ð1� p3½i�Þ ¼ 0:5:

After the second point p4 is inspected, Ssky becomes fp3; p4g,
since p4 is not dominated by p3. U remains 0.5 because

0:5 > mini2SUBð1� p4½i�Þ ¼ 0:1. Similarly, next, p5 is added to

Ssky without affecting U . To handle the fourth point p1, we

insert it in Ssky, but remove p3 from Ssky, as p3 is dominated

by p1. Moreover, U is increased to mini2SUBð1� p1½i�Þ ¼ 0:8.

The algorithm proceeds to inspect p6, which does not change

Ssky and U . Since the f-values of the remaining points are

smaller than the current U ¼ 0:8, the algorithm finishes and

reports fp1; p4; p5g as the final skyline.
As shown in the experiments, despite its simplicity, the

basic SUBSKY is highly efficient in computing subspace

skylines when the data distribution is uniform. Next, we

provide the intuition, under the same settings as used in

Section 3, to illustrate the defects of BBS. Consider a

15D uniform data set with cardinality 100,000. Assume

that we want to retrieve the skyline in a subspace SUB

containing any two dimensions, as shown in Fig. 8. There

is a high chance that a skyline point lies very close to the

origin in SUB. Specifically, let us examine the square in

Fig. 8 whose lower left corner is the origin, and its side

length equals some small � 2 ½0; 1�. The probability of not

having any object in the square equals ð1� �2Þ100;000,

which is less than 10 percent for � ¼ 0:001. In other

words, with at least a 90 percent chance, we can find a

point p in the square such that mini2SUBð1� p½i�Þ � 0:999.

In this case, (by Property 1) all points p0 with fðp0Þ <
0:999 are eliminated by SUBSKY. The expected percentage

of such points in the whole data set equals the volume of

a 15D square with side length 0.999. The volume

evaluates to 0:99915 ¼ 98:5 percent; that is, we only need

to access 1.5 percent of the data set.

1076 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 6. The basic SUBSKY algorithm.

Fig. 7. An example data set. Fig. 8. Illustration of the analysis.

5 THE GENERAL SUBSKY

In the basic SUBSKY, fðpÞ is always computed using one
anchor, that is, the maximal corner AC . This works fine for
uniform data. In practice, where data is clustered, however,
the fðpÞ of various p should be calculated with respect to
different anchors to achieve greater pruning power.

To illustrate this, Fig. 9 shows a 2D data set, where all
objects gather around the upper left corner. In the basic
SUBSKY, (by Property 1) point p prunes the right shaded
square, which is useless, since the square does not cover
any object. Alternatively, let us compute fðpÞ as the
L1 distance from p to another anchor A1. As a direct
corollary of Property 1, we can eliminate all points p0 whose
fðp0Þ is smaller than min2

i¼1ðA1½i� � p½i�Þ. These points form
the left shaded square, which encloses a significant portion
of the data set. That is, A1 offers stronger pruning power
than AC .

Based on this idea, in Sections 5.1-5.4, we develop the
general version of SUBSKY. Finally, Section 5.5 discusses
issues related to updates and other “preference directions.”

5.1 Pruning with Multiple Anchors

Given a data set, we will compute a set Sanc of anchors
A1; A2; . . . ; Am. Then, every data point p is converted to a
1D value as follows:

Definition 1. Each data point p is converted to a value
fðpÞ ¼ L1ðp; AÞ, where A belongs to Sanc and is called the
assigned anchor of p.

Next, we formalize our pruning heuristic based on
multiple anchors.

Property 2. Let p be an arbitrary object and S0anc be the set of
anchors whose projections in subspace SUB are dominated by
p. Then, for each anchor A 2 S0anc, an object p0 assigned to A
cannot be in the skyline if

fðp0Þ < min
i2SUB

ðA½i� � p½i�Þ: ð4Þ

The above result degenerates to Property 1 when
A ¼ AC . To explain the case where A 6¼ AC , consider d ¼
3 and A ¼ ð0:8; 0:7; 0:1Þ. In subspace SUB ¼ f1; 2g, an object
p ¼ ð0:2; 0:2;�Þ eliminates all points p0 assigned to A, with
fðp0Þ < minðA½1� � p½1�; A½2� � p½2�Þ ¼ 0:5. Note that the first
and second coordinates of p0 must be larger than 0.3 and 0.2,
respectively, indicating that p0 is dominated by p in SUB.

The pruning effectiveness of Property 2 depends on
1) how data is assigned to anchors and 2) how the anchors
are selected. We analyze these issues in the next two
sections, respectively.

5.2 Assigning Points to Anchors

We introduce the concept of effective region (ER).

Definition 2. Given a data point p and an anchor A dominated

by p, the ER of p with respect to A is a d-dimensional

rectangle whose opposite corners are the origin and the point

having coordinate A½i� � L1ðp;AÞ on the ith dimension

ð1 � i � dÞ. The ER does not exist if A½i� < L1ðp; AÞ for any

i 2 ½1; d�.

ERs are closely related to the benefit of assigning a point

to an anchor. To understand this, consider Fig. 10a, where

d ¼ 2, and point p is assigned to AC . As a result, in finding

the skyline in the universe, p can be eliminated with

Property 2 if and only if another point is discovered in the

shaded square, which is the ER of p with respect to AC . For

example, since p1ðp2Þ is inside (outside) the ER, we can

(cannot) eliminate p after encountering p1ðp2Þ. Let us assign

p to an alternative anchor A in Fig. 10b. The shaded area

demonstrates the new ER of p, which covers both p1 and p2.

This means that p can be eliminated as long as either p1 or p2

has been discovered. Compared with assigning p to AC , the

new assignment increases the chance of pruning p.
Motivated by this, we assign p to the anchor that

produces the largest ER of p. Specifically, this is the anchor

that is dominated by A and maximizes

Yd

i¼1

maxð0; A½i� � L1ðp; AÞÞ: ð5Þ

5.3 Finding the Anchors

An anchor that leads to a large ER for one data point may

produce a small ER for another. When we are allowed to

keep only m anchors (where m is a small integer, set as a

system parameter), how should they be selected in order to

maximize the ER volumes of as many points as possible?
Notice that the largest ER of a point p corresponds to its

antidominant region, consisting of all the points in the

universe dominating p. These points form a rectangle that

has the origin and p as its opposite corners. In other words,

the maximum value of (5) equals �d
i¼1p½i�, which is achieved

when

A½i� � L1ðp;AÞ ¼ p½i� ð6Þ

holds on all dimensions i 2 ½1; d�. We refer to an anchor A

satisfying the above equation as a perfect anchor for p.

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1077

Fig. 9. Pruning effects of different anchors.

Fig. 10. The concept of ER. (a) Assigning p to AC . (b) Assigning p to A.

It turns out that each point p has infinite perfect anchors.
Let us shoot a ray from p that is in its dominant region and
parallel to the major diagonal of the data space (that is, the
diagonal connecting the origin and the maximal corner).
Every point A on this perfect ray is a perfect anchor of p. This
is because the coordinate difference between A and p is
equivalent on all axes, that is, A½i� � p½i� ¼ L1ðp;AÞ for any
i 2 ½1; d�, thus establishing (6).

In Fig. 11a, for example, the perfect ray of point p1 is r1,
and any anchor on r1 will result in the ER of p1 that is the
shaded rectangle (that is, the antidominant region of p1).
Similarly, r2 is the ray for p2. Since r1 and r2 are very close to
each other, if we can keep only a single anchor A, then it
would lie between the two rays as in Fig. 11a. Although A is
not the perfect anchor of p1 and p2, it is a good anchor, as it
leads to large ERs for both points.

The important implication of the above discussion is that
points with close perfect rays may share the same anchor. This
observation naturally leads to an algorithm for finding
anchors based on clustering. Specifically, we first project all
objects onto the major perpendicular plane, that is, the
d-dimensional plane that passes the maximal corner and
is perpendicular to the major diagonal of the universe. In
Fig. 11a ðd ¼ 2Þ, for instance, the plane is line l, and the
projections of p1 and p2 are p01 and p02, respectively. Then, we
partition the projected points into m clusters by using the
K-Means algorithm [11], [24] and formulate an anchor for
each cluster.

It remains to clarify how we can decide an anchor A for a
cluster S. We aim at guaranteeing that A should produce a
nonempty ER for every point p 2 S (that is, A½i� > L1ðp;AÞ
on every dimension i, as suggested in Definition 2);
otherwise, p cannot be assigned to A. We illustrate the
algorithm by using a 2D example, but the idea generalizes
to arbitrary dimensionality in a straightforward manner.

Assume that S consists of five objects p1; p2; . . . ; p5. The
algorithm examines them in the original universe (that is,
not in the major perpendicular plane), as shown in Fig. 11b.
We first obtain point B, whose coordinate on each
dimension equals the lowest coordinate of the points in S
on this axis. Note that B necessarily falls inside the data
space and dominates all the points. Then, we compute the
smallest square that covers all the points in S (see Fig. 11b).
The anchor A for S is the corner of the square opposite to B.

5.4 The Data Structure and Query Algorithm

We are ready to clarify the details of our SUBSKY
technique. Given a small number m (less than 100 in our

experiments), SUBSKY first obtains m anchors by applying
the method in Section 5.3 on a random subset of the
database. Then, the fðpÞ of each point p is set to the L1
distance between p and its assigned anchor (which
maximizes the volume of ER among the anchors dominated
by p). We guarantee the existence of such an anchor by
always including the maximal corner in the anchor set.

SUBSKY manages the resulting fðpÞ with a single B-tree
that separates the points assigned to various anchors. We
achieve this by indexing a composite key (j; fðpÞ), where
j 2 ½1;m� is the ID of the anchor to which p is assigned.
Thus, an intermediate entry e of the B-tree has the form
ðe:id; e:fÞ, which means that 1) each point p in the subtree of
e has been assigned to the jth anchor, with j � e:id and 2) in
case j ¼ e:id, the value of fðpÞ is at least e:f .

We illustrate the above process by using the 3D data set
in Fig. 7 and m ¼ 2 anchors: the maximal corner A1 ð¼ ACÞ,
and A2 ¼ ð1; 1; 0:8Þ. The second row of Fig. 13a illustrates
the ER volume of each data point with respect to A1,
calculated by (5). For instance, the volume 125 ð�10�3Þ of p8

is derived from �3
i¼1ðA1½i� � L1ðA1; p8ÞÞ ¼ ð1� 0:5Þ3. Simi-

larly, the third row contains the ER volumes with respect to
A2. A “�” means that the corresponding ER does not exist.
For example, the ER of p2 is undefined because p2 does not
dominate A2, whereas there is no ER for p4, since A2½3� ¼ 0:8
is smaller than L1ðA2; p4Þ ¼ 0:9 (review Definition 2). The
white cells of the table indicate each point’s ER volume with
respect to its assigned anchor. For example, p3 is assigned to
A2, since this anchor produces a larger ER than A1. Fig. 13b
shows the B-tree indexing the transformed f-values. For
example, the leaf entry p3 : ð2; 0:7Þ in node N4 captures the
fact that fðp3Þ equals the L1 distance 0.7 between A2 and p3.

Fig. 12 formally describes the query algorithm of
SUBSKY. At a high level, SUBSKY divides the data set into
m lists such that the ith ð1 � i � mÞ list contains all the
points assigned to anchor Ai, sorted in descending order of
their f-values. Given a query subspace SUB, the algorithm
scans the m lists in a synchronous manner. Initially,
pointers ptr1; ptr2; . . . ; ptrm are positioned at the first
elements of the m lists, respectively. The subsequent
execution runs in iterations until all the pointers have
become ;. In each iteration, SUBSKY processes the point p
that has the smallest ER among all the points currently
referenced by the m pointers. Specifically, it first updates
the skyline set Ssky (that is, whenever necessary, add p to
Ssky and remove the points from Ssky dominated by p).
Then, the algorithm checks whether a list can be eliminated
with p according to Property 2. Once a list is pruned, its
corresponding pointer is set to ;. Afterward, the pointer
referencing p is advanced to the next point, and another
iteration starts.

As an example, assume that we want to compute the
skyline in the subspace SUB ¼ f1; 2g. As the first step, the
algorithm identifies, for each anchor, the assigned data
point p with the maximum fðpÞ. In Fig. 13b, the point for
A1ðA2Þ is p6ðp5Þ, which is the rightmost point assigned to
this anchor at the leaf level and can be easily found by
accessing a single path of the B-tree.

Then, the algorithm scans the points assigned to each
anchor in descending order of their f-values; that is, the
ordering is fp5; p4; p1; p2; p8; p7g for A1 and fp6; p3g for A2.

1078 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 11. Finding anchors. (a) Perfect rays. (b) Deciding the anchor.

Initially, ptr1 and ptr2 reference the heads p5 and p6 of the
two lists, respectively. At each iteration, we process the
referenced point with a smaller ER (in case of a tie, the next
processed point is randomly decided). Continuing the
example, since the ER volume 1 of p5 is smaller than the 9
of p6 (implying that p6 has a larger probability of being
pruned by a future skyline point), the algorithm adds p5 to
the skyline set Ssky and advances ptr1 to the next point p4 in
the list of A1. Since p4 has a lower ER volume (than p6

pointed to by ptr2) and is not dominated by p5, it is also
added to Sskyð¼ fp5; p4gÞ. Pointer ptr1 now reaches p1,
which is processed next and is included in Ssky too.

According to Property 2, p1 prunes all the points p
assigned to A1 whose fðpÞ are smaller than

min
i2SUB

ðA1½i� � p1½i�Þ ¼ 0:8:

Since the next point p2 in the list of A1 qualifies the
condition, none of the remaining data in the list can be a
skyline point. Similarly, p1 also prunes the data p assigned
to A2 satisfying fðpÞ < mini2SUBðA2½i� � p½i�Þ ¼ 0:8. Thus,
the head p6 in the list of A2 is eliminated ðfðp6Þ ¼ 0:7 < 0:8Þ,
and no point in the list belongs to the skyline, either. Hence,
the algorithm terminates with Ssky ¼ fp5; p4; p1g.

5.5 Discussion

We keep the anchor set in memory, since it is small
(occupying only several Kbytes) and is needed for
performing queries and updates. Specifically, to insert/
delete a point p, we decide its assigned anchor A, as

described in Section 5.2, and set fðpÞ ¼ L1ðp; AÞ, after
which the insertion/deletion proceeds as in a normal B-
tree. The anchor set is never modified after its initial
computation. Query efficiency remains unaffected, as long
as the data distribution does not incur significant
changes.

For a dynamic data set, all the data must be retained
because a nonskyline point may appear in the skyline after

a skyline point is deleted. On the other hand, if the data set
is static, then points that are not in the skyline of the whole
universe can be discarded, since, as mentioned in Sec-

tion 2.1, they will not appear in the skyline of any
subspace.4 When d is large, the size of the full-space skyline
may still be comparable to the data set cardinality [13].

Hence, the points (of the skyline) should be managed by a
disk-oriented technique (such as SUBSKY) to enable
efficient retrieval in subspaces.

So far, our definition of “dominance” prefers small
coordinates on all dimensions, whereas, in general, a point
may be considered dominating another only if its

coordinates are larger on some axes. For example, given
attributes price and size of houses, a reasonable skyline
would seek to minimize the price but maximize the size

(that is, a customer is typically interested in large houses

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1079

Fig. 13. Illustration of the skyline algorithm. (a) ER volumes with respect to A1 and A2 (units 10�3). (b) The B-tree on the transformed f-values.

4. Strictly speaking, this is correct only if all the data points have distinct
coordinates on each dimension. If this is not true, then the points that need
to be retained include those sharing common coordinates with a point in the
full-space skyline. Retrieval of such points is discussed in [23].

Fig. 12. The algorithm of finding a subspace skyline.

with low prices). Depending on its semantics, a dimension
usually has only one “preference direction.” For example,
skylines involving price (size) would most likely prefer the
negative (positive) direction of this axis. SUBSKY easily
supports a positive preference direction by converting it to
a negative direction, which can be achieved by subtracting
(from 1) all coordinates on the corresponding dimension
(for example, 1 � price).

It is worth mentioning that, sometimes, a dimension may
have two preference directions. For example, consider the
attribute nearest subway station distance of properties. People
who travel with the subway frequently may prefer to
minimize this attribute. Others, who are seeking quiet
neighborhoods, may prefer to maximize it. In this case, two
instances of SUBSKY may be maintained, each supporting
one preference direction.

6 EXTENSIONS OF SUBSKY

In the sequel, we show that SUBSKY can be adapted to
perform other types of search in subspaces efficiently.
Section 6.1 first elaborates this for skyband queries, and
then, Section 6.2 discusses top-k processing.

6.1 Subspace Skyband Retrieval

As mentioned in Section 1, the k-skyband of a data set
consists of all the data points that are dominated by less
than k other points. SUBSKY can be easily modified to find
the k-skyband in any subspace SUB. In terms of theoretical
reasoning, the modification lies in Property 2: A point p0

cannot appear in the k-skyband if there are k points
p1; . . . ; pk such that each pjð1 � j � kÞ satisfies inequality
(4), replacing p with pj. This observation implies that a
subspace k-skyband can be extracted using the B-tree
deployed by SUBSKY in a way similar to finding a subspace
skyline. Intuitively, the only difference is that here, a sorted
list can be eliminated only after its remaining points are
guaranteed to be dominated by k points already seen. Based
on this idea, Fig. 14 demonstrates the SUB-SKYBAND
algorithm.

Next, we illustrate the algorithm by using the index in
Fig. 13b to extract the 2-skyband in SUB ¼ f1; 2g of the data
set in Fig. 7. SUB-SKYBAND scans two sorted lists
fp5; p4; p1; p2; p8; p7g and fp6; p3g in a synchronous manner.
Recall that the points in the first (second) list are assigned to
anchor A1ðA2Þ and sorted in descending order of their
f-values. Following the process discussed in Section 5.4, we
access, in this order, p5, p4, and p1 of the first list, after which
ptr1 and ptr2 are referencing p2 and p6, respectively, and
Ssky ¼ fp5; p4; p1g (which should be interpreted as the
2-skyband set now). As explained in Section 5.4, p1

definitely dominates all the uninspected points in both
lists, which is the reason for terminating the skyline search
in the example in Section 5.4. To obtain the complete
2-skyband, we continue to process p2 because its ER has a
smaller volume than that of p6. Since p2 is dominated by
only a single point p1 in Ssky, it is added to Ssky. Then, ptr1 is
moved to p8.
p2 must dominate all the unexamined points p in the first

list, which can be understood by combining Property 2 with

1080 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 14. The algorithm of finding a subspace skyband.

the fact fðpÞ � fðp8Þ ¼ 0:5 < mini2SUBðA1½i� � p2½i�Þ ¼ 0:6.
Now that we have found two points (p1 and p2) that
dominate the uninspected part of the first list, the list is
eliminated from further consideration.

The discovery of p2 does not prune the second list.
Hence, p6 is examined and added to Ssky because it is
dominated by only one point p1 in Ssky. Pointer ptr1 now

references p3, which is also checked and included in the
2-skyband. Since the second list has been exhausted, the
algorithm finishes, reporting Ssky ¼ fp5; p4; p1; p2; p6; p3g as
the final result.

6.2 Subspace Top-k Retrieval

Given a monotone preference function g (concerning a
subspace SUB), a top-k query returns the k data points with

the lowest scores. Since, in any SUB, any top-k result is
always included in the corresponding k-skyband, an
obvious solution to answering the query is to extract the
k-skyband, compute the scores of the retrieved points, and
report the k ones with the lowest scores. This approach,
however, may perform considerable unnecessary work if
the k-skyband is sizable. Here, we propose a faster
algorithm, which employs exactly the same B-tree used by
our SUBSKY methodology and is applicable to any
monotone preference function g. The algorithm requires

the notion of “ER max-corner,” defined as follows:

Definition 3. Given a point p and an anchor A dominated by p,

let R be the ER of p with respect to A (formulated in

Definition 2). Then, the ER max-corner of p with respect to

A is the corner of R opposite to the origin (which is also a

corner of R).

For example, in Fig. 10a, the ER max-corner of p is the
upper right corner of the shaded region. Such corners have
two important properties.

Property 3. A data point p0 cannot be in the result of a top-k

query (which specifies a preference function g concerning

subspace SUB) if there exist k points p1; . . . ; pk such that for

all j 2 ½1; k�

gðpjÞ < gðp0CÞ; ð7Þ

where p0C is the ER max-corner of p0 with respect to its

assigned anchor.

Property 4. Let p1 and p2 be two points assigned to the same

anchor A. If fðp1Þ � fðp2Þ, then gðp1C Þ � gðp2C Þ, where g is

any monotone preference function, and p1C and p2C are the ER

max-corners of p1 and p2 with respect to A, respectively.

Fig. 7 formally describes the proposed algorithm SUB-

TOPK for subspace top-k retrieval. As with subspace
skyline/skyband search, SUB-TOPK leverages m lists,
where the ith ð1 � i � mÞ list juxtaposes the points assigned
to the ith anchor in descending order of their f-values.

Given a query subspace SUB, the algorithm again uses
m pointers ptr1; ptr2; . . . ; ptrm to scan the m lists synchro-
nously and maintains the set Stop of k objects that have the
smallest scores among all the objects scanned so far. In each
iteration, SUB-TOPK processes the referenced point p with

the smallest score and attempts to prune a list according to
Properties 3 and 4.

In the sequel, we explain the algorithm using the data set
in Fig. 13, assuming a top-2 query in SUB ¼ f1; 2g, with
gðpÞ ¼ 3p½1� þ p½2�. SUB-TOPK examines two sorted lists
fp5; p4; p1; p2; p8; p7g and fp6; p3g. In the beginning, pointers
ptr1 and ptr2 reference the top elements of the two lists,
respectively. At each step, we process the referenced point
with a smaller score. Since gðp5Þ ¼ 1:2 < gðp6Þ ¼ 1:6, p5 is
added to Stop, and ptr1 is moved to the next element p4.

As gðp6Þ < gðp4Þ ¼ 2:8, the algorithm adds p6 to Stop
(which becomes fp5; p6g, sorted in ascending order of their
scores) and shifts pointer ptr2 into p3. Similarly, p3 is the
third point inspected but is discarded because gðp3Þ ¼ 1:8 is
larger than the score of the current top-2 object p6. The
second list has been exhausted; hence, the subsequent
execution focuses on the first list. We continue to process p5

and p4, which are also ignored due to the same reason for
discarding p3. Next, p1 is examined and included in Stop,
whereas p6 is removed from Stop because it has a higher
score than p1 and p5.

The algorithm terminates here, with Stop ¼ fp1; p5g as
the final result. To explain this, notice that the
element p2 referenced by ptr1 now has an ER max-
corner p2C ¼ ð0:4; 0:4; 0:4Þ. The score gðp2C Þ ¼ 1:6 of p2C is
greater than those (0.8 and 1.2) of p1 and p5. Hence, by
Property 3, p2 cannot belong to the top-2 result.
Furthermore, let p be any point in the first list that
has not been examined and pC be the ER max-corner of
p. As fðp2Þ � fðpÞ, according to Property 4, gðpCÞ must
be at least gðp2C Þ and, hence, larger than the scores of
both p1 and p5. Therefore, p cannot be in the top-2
result, either. The complete algorithm is formally
described in Fig. 15.

7 EXPERIMENTS

In this section, we experimentally evaluate the efficiency of
the proposed techniques. We deploy three real data sets
NBA, Household, and Color.5 Specifically, NBA contains
17,000 eight-dimensional (8D) points, where each point
corresponds to the statistics of a player in eight categories.
These categories include the numbers of points scored,
rebounds, assists, steals, blocks, field goals attempted, free
throws, and three-point shots, all averaged over the number
of minutes played. Household consists of 127,000 six-
dimensional (6D) tuples, each of which represents the
percentage of an American family’s annual income spent on
six types of expenditure: gas, electricity, water, heating,
insurance, and property tax. Color is a nine-dimensional
(9D) data set with cardinality of 68,000, and a tuple captures
several properties of an image. Specifically, each image is
encoded in the hue, saturation, and value (HSV) space, and
those nine dimensions record the mean, standard deviation,
and skewness of all the pixels in the H, S, and V channels,
respectively. All the values are normalized into the unit
range [0, 1].

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1081

5. These data sets can be downloaded at http://www.nba.com, http://
www.ipums.org, and http://kdd.ics.uci.edu, respectively.

We also generate synthetic data with four distributions:
uniform, correlated, anticorrelated, and clustered. The first three
distributions are commonly adopted in the literature for
evaluating skyline algorithms, and we refer our readers to
[5] for their generalization. To create a clustered data set with
cardinality N , we first pick 10 cluster centroids randomly.
Then, for each centroid, we obtain N=10 points such that the
coordinate of a point on each axis follows a Gaussian
distribution with standard deviation 0.05 and a mean equal
to the corresponding coordinate of the centroid.

7.1 Efficiency of Subspace Skyline Retrieval

We compare SUBSKY against the adapted versions of BBS,
SFS, and TA discussed in Section 3. To apply SUBSKY
(BBS), we build a B-tree (R-tree) on each data set. Each
B-tree is constructed with anchors computed (as elaborated
in Section 5.3) from a 10 percent random sample set of the
employed data set. For TA, we create d sorted lists, as
described in Section 2.1. Recall that TA executes in two
phases. The first phase extracts the IDs of a set of candidate
objects, that is, the IDs scanned until the same ID is
encountered in all lists. Then, the second step retrieves the
concrete coordinates of each candidate. To optimize the
second phase, we employ a B-tree to index the underlying
data set on the IDs. Thus, the phase can be completed via a
single traversal of the tree, which visits only the nodes on
the paths from the root to the leaves containing at least a

candidate ID. Our approach incurs much lower cost than
the traditional implementation [5], [26], where the second
phase invokes a blocked nested loop. SFS is implemented in
the same way as presented in [10]. The page size is set to
4,000 bytes in all cases.

A workload contains as many queries as the number of
subspaces with the same dimensionality dsub in the
underlying data set, where dsub is a parameter of the
workload. For example, for NBA and dsub ¼ 3, there are

8
3

� �
¼ 56 3D subspaces and, hence, the corresponding

workload includes 56 queries. For NBA and Household,
each skyline aims at maximizing the coordinates of the
participating dimensions, whereas queries on the other
data sets prefer small coordinates.

We measure query cost as the total overhead, which
includes both the CPU and I/O time. In particular, I/O
cost involves 20 ms for each random access and 4 ms for
each sequential access. All the experiments are performed
on a machine with a Pentium IV CPU at 3 GHz and
1 Gbyte memory.

7.1.1 Tuning the Number of Anchors

The first set of experiments examines the influence of the
number m of anchors on the performance of SUBSKY. For
each real data set, we create 11 B-trees by varying m from 1
to 100. Then, we use each tree to process a workload and
measure the average cost per query. Fig. 16 plots the cost as

1082 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 15. The algorithm of answering a subspace top-k query.

Fig. 16. SUBSKY performance versus the number of anchors. (a) NBA. (b) Household. (c) Color.

a function of m for workloads with dsub ¼ 2; 3, and 4,
respectively. Note that the results for m ¼ 1 correspond to
the overhead of the basic SUBSKY that uses the maximal
corner as the only anchor (Section 4).

As m becomes larger, the query overhead first decreases
and then actually increases after m passes a certain
threshold. The initial decrease confirms the analysis in
Section 5 that query efficiency can be improved by using
multiple anchors. To explain the performance deterioration,
recall that the query algorithm of SUBSKY essentially scans
m segments of continuous leaf nodes in a B-tree, which
requires at least m page accesses. For excessively large m,
these m accesses constitute a dominant factor in the overall
overhead, which thus grows (almost) linearly with m.

Even for the same data set, the optimal m is greater when

the dimensionality dsub of the query subspace is higher. For

example, for NBA, the best m equals 10, 40, and 50 for

dsub ¼ 2; 3, and 4, respectively. In the sequel, we set m to 10

for real data sets, since this value offers the best overall

performance.
Through a similar tuning process, we use m ¼ 70, 1, 100,

and 30 for all the uniform, correlated, anticorrelated, and

clustered data sets, respectively.

7.1.2 Scalability with the Cardinality and Universe

Dimensionality

In the next experiment, we deploy 10-dimensional (10D)

uniform data sets, with the cardinalities ranging from 0.5 to

1,500,000. Deploying a 3D workload, Fig. 17a compares the

average cost (of all queries in a workload) of BBS, SFS, TA,

the basic SUBSKY, and the general SUBSKY.

The proposed techniques significantly outperform their

competitors. In particular, the two SUBSKY methods are

faster than SFS and TA by a factor of an order of magnitude.

Furthermore, the general SUBSKY is also nearly 10 times

faster than BBS. In Figs. 17b, 17c, and 17d, we present the

results of the same experiments on synthetic data sets of the

other distributions, confirming the above observations. The

basic SUBSKY is omitted because it targets uniform data

specifically.
To examine the influence of the universe dimension-

ality d, we utilize data sets with cardinality of 1,000,000,

whose d varies from 5 to 15. In Fig. 18, again leveraging

3D workloads, we measure the average cost of alternative

methods as a function of d for the four types of synthetic

distributions, respectively. SUBSKY consistently outper-

forms the other approaches significantly.
It is worth mentioning that all algorithms are I/O-

bounded such that the CPU cost accounts for at most

2 percent of the total runtime of any query. In the following

experiments, we omit SFS and TA because they are not

comparable with BBS and SUBSKY. Furthermore, we will

use the general SUBSKY as the representative of our

technique.

7.1.3 Characteristics of SUBSKY

We proceed to study several intrinsic properties of the

proposed technique. For this purpose, we focus on uniform

data sets so that we can explain the observed behavior

without worrying about the complex influences caused by

the irregularity in the data distribution.

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1083

Fig. 17. Cost of skyline search versus cardinality (dsub ¼ 3, d ¼ 10). (a) Uniform. (b) Correlated. (c) Anticorrelated. (d) Clustered.

Fig. 18. Cost of skyline search versus universe dimensionality (dsub ¼ 3, 1,000,000 cardinality). (a) Uniform. (b) Correlated. (c) Anticorrelated.

(d) Clustered.

First, we examine the percentage of a database (universe

dimensionality 10) that must be inspected by SUBSKY. The

second (third and fourth) row of Table 1a shows the

percentage for answering a 2D (3D and 4D, respectively)

workload as the data set cardinality grows from 10,000 to

2,000,000. For the same dsub, the percentage is actually lower

for a more sizable data set. To explain this, consider the

object whose L1 distance to the origin is the smallest. Let �

denote that distance. This object prunes all the data points p

satisfying fðpÞ < 1� �, where fðpÞ is the L1 distance

between p and the maximal corner. When the data set is

larger, � is smaller; therefore, a higher percentage of the

data set can be pruned. Note that the above phenomenon

does not contradict the results in Fig. 17. As the cardinality

grows, the actual number of objects inspected by SUBSKY

still increases, even though the percentage is reduced.

1084 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

TABLE 1
The Percentage of a Database Accessed by SUBSKY.

(a) Percentage versus data set cardinality ðd ¼ 10Þ. (b) Percentage
versus universe dimensionality d (cardinality of 1,000,000).

Fig. 19. The break-even d between BBS and SUBSKY (dsub ¼ 2, and

1,000,000 cardinality).

Fig. 20. Cost of skyline search versus subspace dimensionality. (a) NBA, dsub ¼ 2. (b) NBA, dsub ¼ 3. (c) NBA, dsub ¼ 4. (d) Household, dsub ¼ 2.

(e) Household, dsub ¼ 3. (f) Household, dsub ¼ 4. (g) Color, dsub ¼ 2. (h) Color, dsub ¼ 3. (i) Color, dsub ¼ 4.

Table 1b demonstrates the percentages for performing

2D, 3D, and 4D workloads with respect to various universe

dimensionalities d. As expected, the percentage increases

with d, confirming the intuition that subspace skyline

retrieval is more difficult in a higher dimensional universe.

The two tables also indicate that given the same cardinality

and d, the percentage grows with dsub. This is reasonable

because our heuristics are less effective in subspaces with

more dimensions.
Second, we investigate the “break-even” universe di-

mensionality where BBS and SUBSKY switch their relative

superiority. As analyzed in Section 3, BBS is expensive only
if the universe dimensionality d is sufficiently high (so that
the structure of the underlying R-tree degrades signifi-
cantly). If d is small, then BBS would be faster than SUBSKY

due to the information loss in the dimension-reduction
transformation adopted by SUBSKY.

To capture the break-even point, we fix dsub to 2 and
the cardinality to 1,000,000, but measure the cost of the
two methods by gradually raising d. The results are
demonstrated in Fig. 19. The overhead of SUBSKY is not
significantly affected when d distributes in the tested
range, whereas the cost of BBS escalates quickly. As
expected, for small d, BBS entails cheaper computation
time, but SUBSKY starts being the better method at d ¼ 5.

7.1.4 Examination of Individual Subspaces

Fig. 20a illustrates the cost of SUBSKY and BBS for
answering each query in a 2D workload on the NBA data
set. The x-axis represents the subspaces, sorted in ascending
order of the corresponding SUBSKY overhead. The average
cost of each method is shown after its legend (for example,
the per-query overhead of SUBSKY equals 0.23 sec). In

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1085

Fig. 21. The best case for BBS.

Fig. 22. Cost of k-skyband search versus subspace dimensionality ðk ¼ 5Þ. (a) NBA, dsub ¼ 2. (b) NBA, dsub ¼ 3. (c) NBA, dsub ¼ 4. (d) Household,

dsub ¼ 2. (e) Household, dsub ¼ 3. (f) Household, dsub ¼ 4. (g) Color, dsub = 2. (h) Color, dsub ¼ 3. (i) Color, dsub ¼ 4.

Figs. 20b and 20c, we demonstrate a similar comparison for

workloads with dsub ¼ 3 and 4, respectively. Figs. 20d, 20e,

20f, 20g, 20h, and 20i present the results of the same

experiments on Household and Color, respectively, except

that the y-axes are in logarithmic scale.
SUBSKY consistently achieves lower average cost than

its competitor (with the maximum speedup 5 in Fig. 20d).

Regarding individual query performance, SUBSKY outper-

forms BBS in all queries on Household and most queries on

NBA and Color. The only exception is in Fig. 20g, where BBS

is slightly faster for around 60 percent of the workload but

significantly slower for the remaining queries, rendering its

average overhead nearly three times higher than that of

SUBSKY.
Why can BBS sometimes be so efficient even when the

structure of the R-tree incurs serious deterioration caused

by the high dimensionality of the data set? To answer this

question, Fig. 21 shows an extreme case where the skyline

1086 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 23. Cost of k-skyband search versus k ðdsub ¼ 3Þ. (a) NBA. (b) Household. (c) Color.

Fig. 24. Cost of top-k search versus subspace dimensionality ðk ¼ 5Þ. (a) NBA, dsub ¼ 2. (b) NBA, dsub ¼ 3. (c) NBA, dsub ¼ 4. (d) Household, dsub ¼ 2.

(e) Household, dsub ¼ 3. (f) Household, dsub ¼ 4. (g) Color, dsub = 2. (h) Color, dsub ¼ 3. (i) Color, dsub ¼ 4.

includes a single point p (that is, p dominates all the other
points). BBS accesses only the nodes whose MBRs intersect
the shaded region. No matter how the leaf nodes of the
R-tree are obtained, there is only one leaf (that is, the one
that contains p) whose MBR intersects the region (recall that
there exists a data point on each edge of an MBR). The same
analysis also applies to nodes of higher levels; that is, BBS
needs to access only a single path of the R-tree.

In general, given a “bad” R-tree, BBS may still have
satisfactory performance if the skyline points are close to
the origin. However, when the condition is violated, the
efficiency of this technique drops considerably due to the
reasons discussed in Section 3. SUBSKY, on the other hand,
is able to find a skyline that contains numerous points far
away from the origin with much lower overhead.

7.2 Efficiency of Skyband and Top-k Retrieval

Having demonstrated the superiority of SUBSKY in
answering skyline queries, we proceed to evaluate the
efficiency of our techniques for subspace k-skyband and
top-k search. Specifically, for k-skyband (or top-k) queries,
we compare SUBSKY against the extended BBS in [21] (or
BF, standing for the best-first algorithm mentioned in
Section 2.3). Each query workload is created in the same
way as described in Section 7.1, except that here, it contains
another parameter k. For all data sets examined in the
sequel, the indexes employed are exactly the same as those
used in the skyline experiments.

Figs. 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h, and 22i
demonstrate the results of 5-skyband retrieval under the
settings identical to those in Figs. 20a, 20b, 20c, 20d, 20e,
20f, 20g, 20h, and 20i, respectively. The characteristics of
SUBSKY and BBS are similar to those in the skyline search.
Fixing dsub to 3, Fig. 23 compares the average query cost in
a workload of the two methods by varying k from 1 to 10.
Figs. 24 and 25 repeat these experiments with respect to
top-k queries. Clearly, SUBSKY outperforms its competitor
considerably in all cases.

8 CONCLUSIONS

In practice, skyline and top-k queries are usually issued in a

large number of subspaces, each of which includes a small

subset of the attributes in the underlying relation. In this

paper, we develop a new technique SUBSKY that supports

subspace skyline/top-k retrieval with only relational

technologies. The core of SUBSKY is a transformation that

converts multidimensional data to 1D values and permits

indexing the data set with a single conventional B-tree.

Extensive experiments verify that SUBSKY consistently

outperforms the previous solutions in terms of efficiency

and scalability.

This work also lays down a foundation for future

investigation of several related topics. For instance, certain

attributes in the relation may appear in the subspaces of

most queries (for example, a user looking for a good hotel

would always be interested in the price dimension). In this

case, the data structure may be modified to facilitate

pruning on these axes. Another interesting issue is to cope

with data sets where the data distribution may incur

frequent changes. Instead of periodically reconstructing the

B-tree, a better approach is to replace only some anchors

and reorganize the data assigned to them. This strategy

achieves lower update cost, since it avoids accessing the

points assigned to the unaffected anchors.

ACKNOWLEDGMENTS

Yufei Tao and Xiaokui Xiao were supported by the CERG
Grant CUHK 1202/06 from the Research Grant Council of
the Hong Kong SAR government. Jian Pei was supported
by the Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery Grants Program, NSERC
Collaborative Research and Development Grants Program,
and IBM Faculty Award.

REFERENCES

[1] W.-T. Balke, U. Guntzer, and J.X. Zheng, “Efficient Distributed
Skylining for Web Information Systems,” Proc. Ninth Int’l Conf.
Extending Database Technology (EDBT ’04), pp. 256-273, 2004.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R	-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’90), pp. 322-331, 1990.

[3] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree : An Index
Structure for High-Dimensional Data,” Proc. Int’l Conf. Very Large
Data Bases (VLDB ’96), pp. 28-39, 1996.

[4] C. Bohm, “A Cost Model for Query Processing in High-
Dimensional Data Spaces,” ACM Trans. Database Systems, vol. 25,
no. 2, pp. 129-178, 2000.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” Proc. 17th IEEE Int’l Conf. Data Eng. (ICDE ’01),
pp. 421-430, 2001.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified Computation of
Skylines with Partially-Ordered Domains,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’05), pp. 203-214, 2005.

TAO ET AL.: EFFICIENT SKYLINE AND TOP-K RETRIEVAL IN SUBSPACES 1087

Fig. 25. Cost of top-k search versus k ðdsub ¼ 3Þ. (a) NBA. (b) Household. (c) Color.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang, “On
High Dimensional Skylines,” Proc. 10th Int’l Conf. Extending
Database Technology (EDBT ’06), pp. 478-495, 2006.

[8] C.-Y. Chan, H.V. Jagadish, K.-L. Tan, A.K.H. Tung, and Z. Zhang,
“Finding k-Dominant Skylines in High Dimensional Space,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’06),
pp. 503-514, 2006.

[9] Y.-C. Chang, L.D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J.R.
Smith, “The Onion Technique: Indexing for Linear Optimization
Queries,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’00), pp. 391-402, 2000.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
Presorting,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03),
pp. 717-719, 2003.

[11] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
Wiley, 1973.

[12] R. Fagin, “Combining Fuzzy Information from Multiple Systems
(Extended Abstract),” Proc. 15th ACM Symp. Principles of Database
Systems (PODS ’96), pp. 216-226, 1996.

[13] P. Godfrey, “Skyline Cardinality for Relational Processing,” Proc.
Third Int’l Symp. Foundations of Information and Knowledge Systems
(FoIKS ’04), pp. 78-97, 2004.

[14] P. Godfrey, R. Shipley, and J. Gryz, “Maximal Vector Computa-
tion in Large Data Sets,” Proc. 31st Int’l Conf. Very Large Data Bases
(VLDB ’05), pp. 229-240, 2005.

[15] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[16] V. Hristidis and Y. Papakonstantinou, “Algorithms and Applica-
tions for Answering Ranked Queries Using Ranked Views,”
VLDB J., vol. 13, no. 1, pp. 49-70, 2004.

[17] Z. Huang, C.S. Jensen, H. Lu, and B.C. Ooi, “Skyline Queries
against Mobile Lightweight Devices in MANETs,” Proc. 22nd IEEE
Int’l Conf. Data Eng. (ICDE ’06), 2006.

[18] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB ’02), pp. 275-286, 2002.

[19] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows,” Proc. 21st IEEE Int’l
Conf. Data Eng. (ICDE ’05), 2005.

[20] S. Michel, P. Triantafillou, and G. Weikum, “Klee: A Framework
for Distributed Top-k Query Algorithms,” Proc. 31st Int’l Conf.
Very Large Data Bases, pp. 637-648, 2005.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal and
Progressive Algorithm for Skyline Queries,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’03), pp. 467-478, 2003.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline
Computation in Database Systems,” ACM Trans. Database Systems,
vol. 30, no. 1, pp. 41-82, 2005.

[23] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the Best Views of
Skyline: A Semantic Approach Based on Decisive Subspaces,”
Proc. 31st Int’l Conf. Very Large Data Bases (VLDB ’05), pp. 253-264,
2005.

[24] D. Pelleg and A.W. Moore, “X-Means: Extending k-Means with
Efficient Estimation of the Number of Clusters,” Proc. 17th Int’l
Conf. Machine Learning (ICML ’00), pp. 727-734, 2000.

[25] R.K. Surajit Chaudhuri and N. Dalvi, “Robust Cardinality and
Cost Estimation for Skyline Operator,” Proc. 23rd IEEE Int’l Conf.
Data Eng. (ICDE ’06), 2006.

[26] K.-L. Tan, P.-K. Eng, and B.C. Ooi, “Efficient Progressive Skyline
Computation,” Proc. 27th Int’l Conf. Very Large Data Bases (VLDB
’01), pp. 301-310, 2001.

[27] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou,
“Branch-and-Bound Processing of Ranked Queries,” Information
Systems, vol. 32, no. 3, pp. 424-445, 2007.

[28] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava,
“Ranked Join Indices,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE
’03), pp. 277-288, 2003.

[29] T. Xia and D. Zhang, “Refreshing the Sky: The Compressed
Skycube with Efficient Support for Frequent Updates,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’06), pp. 491-
502, 2006.

[30] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient Maintenance
of Materialized Top-k Views,” Proc. 19th IEEE Int’l Conf. Data Eng.
(ICDE ’03), pp. 189-200, 2003.

[31] Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu, and Q. Zhang, “Efficient
Computation of the Skyline Cube,” Proc. 31st Int’l Conf. Very Large
Data Bases (VLDB ’05), pp. 241-252, 2005.

Yufei Tao received the PhD degree in
computer science from the Hong Kong Uni-
versity of Science and Technology. He was a
visiting scientist in the Department of Compu-
ter Science, Carnegie Mellon University, in
September 2002 to August 2003. For the next
three years, he was an assistant professor at
the City University of Hong Kong. He joined
the Chinese University of Hong Kong in
September 2006. His research interests in-

clude temporal databases, spatial databases, approximate query
processing, data privacy, and security. He is the winner of the 2002
Hong Kong Young Scientist Award, conferred by the Hong Kong
Institution of Science.

Xiaokui Xiao received the bachelor’s and
master’s degrees in computer science from the
South China University of Technology in July
2001 and June 2004, respectively. He is
currently a PhD candidate at the Chinese
University of Hong Kong. His research interests
include spatial/temporal databases and privacy
preservation.

Jian Pei received the PhD degree in computing
science from Simon Fraser University (SFU),
Canada, in 2002. He is currently an assistant
professor of computing science at SFU, Canada.
He has served regularly in the organizing and
program committees of many international con-
ferences and workshops, and has been a
reviewer of leading academic journals in his
fields. His research interests include developing
effective and efficient data analysis techniques

for novel data intensive applications. Currently, he is interested in
various techniques of data mining, data warehousing, online analytical
processing, and database systems, as well as their applications in
bioinformatics, privacy preservation, software engineering, sensor net-
works, and education. His current research is supported in part by the
Natural Sciences and Engineering Research Council of Canada
(NSERC), the US National Science Foundation (NSF), IBM, Hewlett-
Packard Co. (HP), the Canadian Imperial Bank of Commerce (CIBC),
and the SFU Community Trust Endowment Fund. He has published
prolifically in refereed journals, conferences, and workshops. He is a
senior member of the IEEE and a member of the ACM. He is the
recipient of the 2005 British Columbia Innovation Council Young
Innovator Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1088 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

