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Abstract Recently, uncertain data processing has become more and more impor-
tant. Although a significant amount of previous research explores various continuous
queries on data streams, continuous queries on uncertain data streams have seldom
been investigated. In this paper, we formulate a novel and challenging problem of
continuously monitoring top-k uncertain data streams, and propose a probabilistic
threshold method. We develop four algorithms systematically: a deterministic exact
algorithm, a randomized method, and their space-efficient versions using quantile
summaries. An extensive empirical study using real data sets and synthetic data sets
is reported to verify the effectiveness and the efficiency of our methods.

Keywords Uncertain streams · Probabilistic threshold top-k queries · Query
processing

1 Introduction

In some emerging applications such as large sensor networks, data keep arriving in
fast pace and thus can be modeled as data streams [5]. As an effective means of
data stream processing, continuous queries on data streams have been investigated
extensively (e.g., [7, 8, 24]). Different from conventional one-time queries on static
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Table 1 Data for segment SEGK715001 for 07/15/2001 in ARTIMIS Data Archives (Number of
Lanes: 4)

# Time Samp Speed Volume Occupancy

00 : 01 : 51 30 47 575 6

00 : 16 : 51 30 48 503 5

00 : 31 : 51 30 48 503 5

00 : 46 : 51 30 49 421 4

01 : 01 : 52 30 48 274 5

01 : 16 : 52 30 42 275 14

. . .

data, a continuous query monitors one or multiple data streams and online updates
the answers to the query as the underlying data evolve.

Interestingly and importantly, uncertainty is inherent in some data stream applica-
tions due to factors like limitations of equipment, delay or loss in data transfer, and
complex application semantics.

Example 1 (Motivation) Sensors have been extensively used to monitor traffic
in large road networks. In such a network, a speed sensor deployed at a mon-
itoring point can keep sending traffic records to a central server where each
record is about the speed when a vehicle passes the monitoring point. For ex-
ample, the ARTIMIS center in Cincinnati, Ohio/Kentucky reports the speed,
volume and occupancy of road segments every 30 seconds [23]. Table 1 is a
piece of sample data from ARTIMIS Data Archives, which can be found in
http://www.its.dot.gov/JPODOCS/REPTS_TE/13767.html, together with more other
applications examples.

Consider a simple continuous query—continuously reporting a list of top-10
monitoring points in the road network of the fastest vehicle speeds in the last
5 minutes. One interesting and subtle issue is how we should measure the vehi-
cle speed at a monitoring point. Can we use some simple statistics like the aver-
age/median/maximum/minimum speed in the last 5 minutes? Each of such simple
statistics may not capture the distribution of the data well. For example, if the aver-
age speeds are used, some outliers (e.g., speedy cars or broken cars) may affect the
average speed heavily.

Suppose in the last 5 minutes, monitoring point A has 4 records of speeds
{85,75,65,60} and monitoring point B has 3 records of speeds {100,60,55}. Which
monitoring point has a faster speed? If we use the average speeds, point B is faster
than point A.

Instead of using the average speeds, we can model each monitoring point as an
uncertain object, and apply the possible worlds semantics [1, 15, 33, 50] to define
the semantics of the query. Consider the speed of a monitoring point in the last
5 minutes as a random variable. The traffic records of speed reported at this monitor-
ing point can be considered as a set of random samples drawn from the distribution
of this random variable. The set of records at the monitoring point forms an uncertain

http://www.its.dot.gov/JPODOCS/REPTS_TE/13767.html
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object. Each record takes a probability to serve as the representative of this uncertain
object.

Under the possible worlds semantics, each record in A takes a probability of 1
4

to be a representative and each one in B takes a probability of 1
3 to be a represen-

tative. The comparison of speeds at A and B is the comparison of two uncertain
objects. Each possible combination of a record from A and a record from B is a pos-
sible world. For example, {A = 85,B = 100} is a possible world, with probability
1
4 × 1

3 = 1
12 . The speed of A is smaller than that of B in this possible world. There

are in total 12 possible worlds. Combining the results from all possible worlds, point
A takes a probability of 7

12 to have a speed faster than that at point B . Point B has a
probability of 1

3 to have a speed faster than that at point A. In a probability of 1
12 the

speeds at the two points are the same.
Using the possible worlds semantics, we can refine the continuous query to contin-

uously reporting a list of monitoring points such that each point has a probability of at
least p to be in the top-10 lists in all possible worlds in the last 5 minutes, where p is
a probabilistic threshold. This is an example of probabilistic threshold top-k queries.
Since each sensor keeps reporting traffic records and generates a stream of records,
the continuous query monitors uncertain data streams which take a probability pass-
ing a user specified threshold to be ranked among top-k.

Although a significant amount of previous research explores various continuous
queries on data streams (please see Sect. 7 for a brief review), continuous queries on
uncertain data streams have seldom been investigated, except for [11, 35]. As shown
in Example 1 where point B has an average speed faster than point A, but point
A has a higher probability to be faster than point B in possible worlds semantics,
transforming uncertain data into “disguised” certain data by simple aggregation may
not provide a meaningful solution in real applications.

Continuous queries on uncertain data streams pose several interesting challenges.
First, it is important to develop practically meaningful models for continuous queries
on uncertain data streams. The answers to queries should be sound in the sense of
probability. Second, it is challenging to develop efficient methods for query answer-
ing. As indicated in the recent studies on uncertain data processing (also see Sect. 7
for a brief review), answering queries on uncertain data often involves much heavier
cost than on certain data due to the combinatoric nature of the search space.

Top-k queries (also known as ranking queries) are a category of important queries
in data analysis. Recently, there have been a few interesting studies on ranking queries
on static uncertain data using the possible world semantics [30, 31, 40, 49, 54, 56].
Among them, probabilistic threshold top-k queries [30, 31] compute uncertain
records taking a probability of at least p to be in the top-k list where p is a user
specified probability threshold. Probabilistic threshold top-k queries capture the in-
tuition of selecting the highly ranked records with good confidence. How can we
extend probabilistic threshold top-k queries on static uncertain data to uncertain data
streams?

In this paper, we focus on continuous probabilistic threshold top-k queries on un-
certain data streams and make three major contributions.
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Table 2 Notations frequently
used Notation Description

o, oi , vi instances in uncertain streams

O uncertain streams

O a set of uncertain streams

Pr(o) membership probability of instance o

Wt
ω , W a sliding window

w possible worlds

W the complete set of possible worlds

Pr(w) the existence probability of possible world w

Prk(O) the top-k probability of object O

Qk
p a top-k query of probability threshold p

R the ranking order of instances

o1 ≺ o2 o1 is ranked before o2

DS(o) the dominant set of o

First, we propose the novel uncertain data stream model and formulate continuous
probabilistic threshold top-k queries in Sect. 2 under the possible worlds semantics [1,
15, 33, 50]. We argue that probabilistic threshold top-k queries are practically useful.

Second, we develop four algorithms systematically. A deterministic exact algo-
rithm that computes the exact answer to a continuous probabilistic threshold top-k
query is given in Sect. 3. It extends a technique in [30, 31] using Poisson binomial
recurrence and incorporates a few stream-specific pruning techniques. A sampling
algorithm is proposed in Sect. 4. It estimates the probability that an uncertain ob-
ject being ranked top-k via sampling. A probabilistic quality guarantee is provided.
Then, the approximation answer to a continuous probabilistic threshold top-k query
is obtained based on the estimated probabilities. In Sect. 5, we apply the quantile
summary techniques to devise space efficient versions of the deterministic algorithm
and the sampling algorithm.

Last, an extensive empirical study is reported in Sect. 6 to verify the effectiveness
and the efficiency of our methods. We review the related work in Sect. 7. Section 8
concludes the paper. Table 2 summarizes the notations frequently used in the paper.

2 Problem definition

In this section, we first introduce the uncertain stream model. Then, the continuous
probabilistic threshold top-k queries are formulated.

2.1 The uncertain stream model

Consider a random variable X. Theoretically, the distribution of X can be character-
ized by a probability density function (PDF for short) if X is a continuous random
variable, or a probability mass function (PMF for short) if X is a discrete random
variable. In practice, the PDF or PMF of a random variable is often unavailable. In-
stead, a sample set of instances x1, . . . , xm are used to approximate the distribution
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of X, where each instance takes a membership probability. For an instance xi ∈ X

(1 ≤ i ≤ m), the membership probability of xi measures the likelihood that xi will
occur. The set of samples generated by the random variable can be considered as an
uncertain object.

Definition 1 (Uncertain objects) An uncertain object is a set of instances O =
{o1, . . . , om} such that each instance oi (1 ≤ i ≤ m) takes a membership probability
Pr(oi) > 0, and

∑m
i=1 Pr(oi) = 1.

A temporal random variable is a random variable whose distribution evolves over
time. To approximate the current distribution of a temporal random variable, prac-
tically we often use the observations of the variable in a recent time window as the
sample instances. Conceptually, an uncertain data stream is a series of (discrete) in-
stances generated by a random variable.

To keep our discussion simple, we assume a synchronous model. That is, each
time instant is a positive integer, and at each time instant t (t > 0), an instance is
collected for an uncertain data stream.

Definition 2 (Uncertain data stream, sliding window) An uncertain data stream is
a (potentially infinite) series of instances O = o1, o2, . . . . Time instants are positive
integers. For instant t , O[t] is the instance of stream O .

A sliding window Wt
ω is a selection operator defined as Wt

ω(O) = {O[i]|(t −ω) <

i ≤ t}, where ω > 0 is called the width of the window.
For a set of uncertain data streams O = {O1, . . . ,On}, sliding window Wt

ω(O) =
{Wt

ω(Oi)|1 ≤ i ≤ n}.

The distribution of an uncertain data stream O in a given sliding window Wt
ω is

static. Thus, the set of instances Wt
ω(O) can be considered as an uncertain object.

The membership probabilities for instances depend on how the instances are gener-
ated from the underlying random variable of Wt

ω(O). For example, if the instances
are drawn using simple random sampling [36], then all instances take the same prob-
ability 1

ω
. On the other hand, using other techniques like particle filtering [21] can

generate instances with different membership probabilities. In this paper, we assume
that the membership probabilities of all instances are identical. Some of our devel-
oped methods can also handle the case of different membership probabilities, which
will be discussed in Sect. 8.

Definition 3 (Uncertain object in a sliding window) Let O be an uncertain data
stream. At time instant t > 0, the set of instances of O in a sliding window Wt

ω is
an uncertain object denoted by Wt

ω(O) (1 ≤ i ≤ n), where each instant o ∈ Wt
ω(O)

has the membership probability Pr(o) = 1
ω

.

In this paper, we assume that the distributions of uncertain data streams are inde-
pendent from each other. Handling correlations among uncertain data streams is an
important direction that we plan to investigate as future study. It will be discussed in
Sect. 8. The uncertain data in a sliding window carries the possible worlds seman-
tics [1, 15, 33, 50].



34 Distrib Parallel Databases (2009) 26: 29–65

Table 3 An uncertain data stream. (Sliding window width ω = 3. Wt
3 contains time instant t − 2, t − 1

and t . Wt+1
3 contains time instant t − 1, t and t + 1)

Time instant # Time Speeds at A Speeds at B Speeds at C Speeds at D

t − 2 00 : 01 : 51 a1 = 15 b1 = 6 c1 = 14 d1 = 4

t − 1 00 : 16 : 51 a2 = 16 b2 = 5 c2 = 8 d2 = 7

t 00 : 31 : 51 a3 = 13 b3 = 1 c3 = 2 d3 = 10

t + 1 00 : 46 : 51 a4 = 11 b4 = 6 c4 = 9 d4 = 3

· · ·

Definition 4 (Possible worlds) Let O = {O1, . . . ,On} be a set of uncertain data
streams. A possible world w = {v1, . . . , vn} in a sliding window Wt

ω is a set of
instances such that one instance is taken from the uncertain object of each stream
in Wt

ω, i.e., vi ∈ Wt
ω(Oi) (1 ≤ i ≤ n). The existence probability of w is Pr(w) =∏n

i=1 Pr(vi) = ∏n
i=1

1
ω

= ω−n. The complete set of possible worlds of sliding win-
dow Wt

ω(O) is denoted by W (W t
ω(O)).

Corollary 1 For a set of uncertain data streams O = {O1, . . . ,On} and a sliding
window Wt

ω(O), the total number of possible worlds is ‖W (Wω(t))‖ = ωn, and

Pr(W (W t
ω(O)) =

∑

w∈W (W t
ω(O))

Pr(w) = 1.

When it is clear from the context, we write W (W t
ω(O)) as W and Wt

ω(O) as W

or Wt for the sake of simplicity.

Example 2 (Uncertain streams) Consider Example 1 again. Speed sensors are de-
ployed to monitor traffic in a road network. The vehicle speed at each monitoring
point can be modeled as a temporal random variable. To capture the distribution
of such a temporal random variable, a speed sensor at the monitoring point reports
the speed readings every 30 seconds. Therefore, the speed readings reported by each
speed sensor is an uncertain stream. Each reading is an instance of the stream.
A sliding window of length 3 at time t contains the last 3 readings (that is, the read-
ings in the last 90 seconds) of each speed sensor.

Suppose there are four monitoring points A, B , C and D with speed readings
shown in Table 3. At time t , sliding window Wt

3 contains the records of speeds at time
t −2, t −1 and t . Wt

3(A) = {a1, a2, a3} can be modeled as an uncertain object. So are
Wt

3(B), Wt
3(C) and Wt

3(D). Each instance in Wt
3 takes membership probability 1

3 .
There are 34 = 81 possible worlds. Each possible world takes one instance from each
object. For example, {a1, b3, c2, d1} is a possible world. The existence probability of
each possible world is ( 1

3 )4 = 1
81 .
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2.2 Continuous probabilistic threshold top-k queries

Top-k queries (also known as ranking queries) [18, 22, 46, 48] are a category of im-
portant queries in data analysis and data stream monitoring. In this paper, we consider
the top-k selection query model [32].

Definition 5 (Top-k selection queries) For a set of instances S, each instance o ∈ S

is associated with a set of attributes A. Given a predicate P on A, a ranking
function f : S → R and a integer k > 0, a top-k selection query Qk

P,f returns

a set of instances Qk
P,f (S) ⊆ SP , where SP is the set of instances satisfying P ,

|Qk
P,f (S)| = min{k, |SP |} and f (o) > f (o′) for any instances o ∈ Qk

P,f (S) and

o′ ∈ SP − Qk
P,f (S).

To keep our presentation simple, we assume that the top-k selection queries in our
discussion select all instances in question. That is SP = S. Those selection predicates
can be implemented efficiently as filters before our ranking algorithms are applied.
Moreover, we assume that the ranking function f in a top-k selection query can be
efficiently applied to an instance o to generate a score f (o). When it is clear from
context, we also write Qk

P,f as Qk for the sake of simplicity.
How can we apply a top-k selection query to a set of uncertain objects? Since

each object appears as a set of instances, we have to rank the instances in the possible
worlds semantics. A top-k selection query can be applied to a possible world directly
which consists of a set of instances. In a possible word, a top-k selection query returns
k instances. Now, the problem is how to integrate in a meaningful way the results from
all possible worlds.

Often, when a user raises a top-k selection query on uncertain objects, the user is
interested in the objects which have a high probability to be ranked top-k. Probabilis-
tic threshold top-k queries [30, 31] capture this intuition.

Definition 6 (Probabilistic threshold top-k queries) Let Qk be a top-k selection query
and Qk(w) (called the top-k list) be the top-k instances in a possible world w ∈ W .
Then, the top-k probability of an uncertain object O is

Prk(O) =
∑

w ∈ W , O has an instance in Qk(w)

Pr(w).

Given a probability threshold p (0 < p ≤ 1), the probabilistic threshold top-k
query Qk

p returns the complete set of uncertain objects {O|Prk(O) ≥ p}.

Probabilistic threshold top-k queries can be applied on a sliding window of multi-
ple uncertain data streams. We treat the instances of an uncertain data stream falling
into the current sliding window as an uncertain object, and rank the streams according
to their current sliding window.

Problem definition. Given a probabilistic threshold top-k query Qk
p , a set of uncer-

tain data streams O, and a sliding window width ω, the continuous probabilistic
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threshold top-k query is to, for each time instant t , report the set of uncertain data
streams whose top-k probabilities in the sliding window Wt

ω(O) are at least p.

Hereafter, for the sake of simplicity we call a probabilistic threshold top-k query
a top-k query when it is clear from context.

Example 3 (Continuous probabilistic threshold top-k queries) Consider the uncer-
tain streams in Table 3 with sliding window size ω = 3 and continuous probabilistic
threshold top-2 query with threshold p = 0.5.

At time instant t , the sliding window contains uncertain objects Wt
3(A), Wt

3(B),
Wt

3(C) and Wt
3(D). The top-k probabilities of those uncertain objects are:

Pr2(W t
3(A)) = 1, Pr2(W t

3(B)) = 2
27 , Pr2(W t

3(C)) = 5
9 and Pr2(W t

3(D)) = 10
27 . There-

fore, the probabilistic threshold top-k query returns {A,C} at time instant t .
At time instant t + 1, the top-k probabilities of the uncertain objects are:

Pr2(W t+1
3 (A)) = 1, Pr2(W t+1

3 (B)) = 2
27 , Pr2(W t+1

3 (C)) = 4
9 and Pr2(W t+1

3 (D)) =
13
27 . The probabilistic threshold top-k query returns {A} at time instant t + 1.

The methods of answering probabilistic threshold top-k queries will be discussed
in Sects. 3, 4, and 5.

3 Exact algorithms

In this section, we discuss deterministic algorithms to give exact answers to proba-
bilistic threshold top-k queries. First, we extend a technique in [30, 31] using Poisson
binomial recurrence in answering a query in one sliding window. Then, we discuss
how to share computation among overlapping sliding windows.

3.1 Top-k probabilities in a sliding window

Consider a set of uncertain data streams O = {O1, . . . ,On} and sliding window
Wt

ω(O). Wt
ω(Oi) = {Oi[t −ω+1], . . . ,Oi[t]} is the set of instances of Oi (1 ≤ i ≤ n)

in the sliding window. In this subsection, we consider how to rank the data streams
according to their instances in sliding window Wt

ω(O). When it is clear from context,
we write Wt

ω(O) and Wt
ω(Oi) simply as W(O) and W(Oi), respectively.

We reduce computing the top-k probability of a stream O into computing the top-k
probabilities of instances of O .

Definition 7 (Top-k probability of instance) For an instance o and a top-k query Qk ,
the top-k probability of o, denoted by Prk(o), is the probability that o is ranked in the

top-k lists in possible worlds. That is, Prk(o) = ‖{w∈W |o∈Qk(w)}‖
‖W ‖ .

Following with Definitions 6 and 7, we have the following.

Corollary 2 (Top-k probability) For an uncertain data stream O , a sliding window
Wt

ω(O) and a top-k query Qk ,

Prk(O) =
∑

o∈Wt
ω(O)

Prk(o)Pr(o) = 1

ω

∑

o∈Wt
ω(O)

Prk(o).
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We sort all instances according to their scores. Let R denote the ranking order
of instances. For two instances o1, o2, we write o1 ≺ o2 if o1 is ranked before (i.e.,
better than) o2 in R. Clearly, the rank of an instance o of stream O in the possible
worlds depends on only the instances of other streams that are ranked better than o.
We capture those instances as the dominant set of o.

Definition 8 (Dominant set) Given a set of streams O, a sliding window W , and a
top-k query Qk , for an instance o of stream O ∈ O, the dominant set of o is the
set of instances of streams in O − {O} that are ranked better than o, denoted by
DS(o) = {o′ ∈ W(O − O)|o′ ≺ o}.

In a possible world w, an instance o is ranked the i-th place if and only if there
are (i − 1) instances in DS(o) appearing in w, and each of those instances is from a
unique stream.

Based on this observation, for instance o and stream O ′ such that o 
∈ O ′, we
denote by O ′ ≺ o in a possible world w if there exists o′ ∈ W(O ′), o′ ≺ o, and o′ and
o appear in w. Apparently, we have

Pr(O ′ ≺ o) =
∑

o′∈DS(o),o′∈O ′
Pr(o′)Pr(o) = 1

ω2
‖DS(o) ∩ W(O ′)‖.

Let Pr(DS(o), i) be the probability that i instances in DS(o) from unique streams
appear in a possible world. Then, the top-k probability of o can be written as

Prk(o) = Pr(o)

k−1∑

i=0

Pr(DS(o), i) = 1

ω

k−1∑

i=0

Pr(DS(o), i).

For an instance o, since the events O ′ ≺ o for O ′ ∈ O − {O} are independent,
we can view DS(o) as a set of independent random binary trials, where each trial
XO ′ is corresponding to an uncertain object O ′, Pr(XO ′ = 1) = Pr(O ′ ≺ o), and
Pr(XO ′ = 1)= 1−Pr(XO ′ = 1). The event that a trial takes value 1 is called a success.
Since the probability that each trial takes value 1 is not identical, the total number of
successes in DS(o) follows the Poisson binomial distribution [38]. Thus, Pr(DS(o), i)

can be computed using the Poisson binomial recurrence as follows.

Theorem 1 (Poisson binomial recurrence [38]) Let p1, . . . , pn be the probabilities of
independent events X1, . . . ,Xn and Si = {X1, . . . ,Xi} (1 ≤ i ≤ n). Pr(Si, k) (k ≥ 0)

denotes the probability that k events in Si happen. Then, Pr(S1,0) = 1 − p1 and
Pr(S1,1) = p1. Moreover, for i, j (1 ≤ i < j ≤ n),

Pr(Sj ,0) = (1 − pj )Pr(Sj−1,0);
Pr(Sj , i) = pj Pr(Sj−1, i − 1) + (1 − pj )Pr(Sj−1, i);
Pr(Sj , j) = pj Pr(Sj−1, j − 1).

The cost of sorting all instances in a sliding window is O(nω log(nω)). To com-
pute the top-k probability of each instance, the Poisson binomial recurrence is run
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and takes cost O(kn) in time. Since there are nω instances in the sliding window, the
overall time complexity is O(kn2ω + nω log(nω)).

Example 4 (Poisson binomial recurrence) Table 3 shows 4 uncertain streams A, B ,
C, and D. For each instance, a ranking score is given. The ranking order is the ranking
score descending order: the larger the ranking score, the better the instance is ranked.

Let us consider the sliding window Wt
3 (i.e., the first three columns of instances

in the figure), and compute the top-2 probability of c2. The dominant set is DS(c2) =
{a1, a2, a3, d3}. Thus, p1 = Pr(A ≺ c2) = Pr(a1)+Pr(a2)+Pr(a3) = 1, p2 = Pr(B ≺
c2) = 0, and p3 = Pr(D ≺ c2) = Pr(d3) = 1

3 .
Using Theorem 1, let S1 = {A}, S2 = {A,B} and S3 = {A,B,D}. For S1, we have

Pr(S1,0) = 1 − p1 = 0 and Pr(S1,1) = p1 = 1.
For S2, we have Pr(S2,0) = (1 − p2)Pr(S1,0) = 0 and Pr(S2,1) = p2Pr(S1,0) +

(1 − p2)Pr(S1,1) = 1.
For S3, we have Pr(S3,0) = (1 − p3)Pr(S2,0) = 0 and Pr(S3,1) = p3Pr(S2,0) +

(1 − p3)Pr(S2,1) = 2
3 .

Thus, Pr2(c2) = Pr(c2)(Pr(S3,0) + Pr(S3,1)) = 2
9 .

If we sort all the instances in sliding window W(O) in the ranking order, then
by one scan of the sliding window we can calculate the top-k probabilities for all
instance. For each stream O , we only need to keep the following two pieces of infor-
mation during the scan. First, we keep the number of instances in O that have been
scanned. Suppose there are l such instances, then the probability of O in the Pois-
son recurrence is l

ω
. Second, we maintain the sum of the top-k probabilities of those

scanned instances of O .
In practice, when a top-k query is raised, k � n often holds where n is the total

number of streams. In such a case, some streams can be pruned in the computation.

Theorem 2 (Pruning instances in a stream) For an uncertain stream O , a top-k query
Qk

p with probability threshold p, and all instances in W(O) sorted in the ranking
order o1 ≺ · · · ≺ oω, if there exists i (1 ≤ i ≤ ω) such that

Prk(oi) <
p − ∑i−1

j=1 Prk(oj )

ω − i + 1
(1)

then Prk(O) < p.
Moreover, Prk(O) ≥ p if there exists i (1 ≤ i ≤ ω) such that

∑i−1
j=1 Prk(oj ) ≥ p.

Proof The first part: If there exists i such that Prk(oi) <
p−∑i−1

j=1 Prk(oj )

ω−i+1 , then

(ω − i + 1)Prk(oi) < p −
i−1∑

j=1

Prk(oj ).
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Apparently, Prk(o1) ≥ · · · ≥ Prk(oω). Thus, we have

(ω − i + 1)Prk(oi) ≥
ω∑

j=i

Prk(oj ).

Combining the above two inequalities, we have

ω∑

j=i

Prk(oj ) < p −
i−1∑

j=1

Prk(oj ).

Thus, Prk(O) = ∑i−1
j=1 Prk(oj ) + ∑ω

j=i Prk(oj ) < p.

To prove the second part, we only need to notice Prk(O) = ∑ω
j=1 Prk(oj ) ≥

∑i
j=1 Prk(oj ) ≥ p. �

To use Theorem 2, for each stream O , if the last scanned instance in O satisfies one
of the conditions in the theorem, the top-k probabilities of the remaining instances of
O do not need to be computed.

For an object uncertain stream O whose top-k probability in sliding window W

is smaller than the threshold p, we can derive the maximum number of instances
scanned according to Theorem 2 as follows.

Corollary 3 (Maximum number of scanned instances) For an uncertain stream O , a
top-k query Qk

p with probability threshold p, and all instances in W(O) sorted in the
ranking order o1 ≺ · · · ≺ oω, the maximum number of instances scanned according

to Theorem 2 is 
Prk(O)
p

ω� + 1.

Proof Let ot (t > 1) be the first instance in W(O) that satisfy Inequality 1. Then, oi

(1 ≤ i < t) does not satisfy Inequality 1. That is,

Prk(o1) ≥ p

ω
, and Prk(oi) ≥ p − ∑i−1

j=1 Prk(oj )

ω − i + 1
for 1 < i < t.

Using mathematical induction, it is easy to show that for 1 ≤ i < t

i∑

j=1

Prk(oj ) ≥ i × p

ω
.

Since Prk(O) = ∑t−1
j=1 Prk(oj ) + ∑ω

m=t Prk(om), we have

t−1∑

j=1

Prk(oj ) = Prk(O) −
ω∑

m=t

Prk(om) ≥ (t − 1) × p

ω
.

Therefore, t ≤ 
Prk(O)
p

ω� + 1. �

Our second pruning rule is based on the following observation.
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Lemma 1 (Sum of top-k probabilities) For a set of uncertain data streams O, a top-k
query Qk , and a sliding window Wt

ω(O),
∑

O∈O Prk(O) = k.

Proof Using the definitions of top-k probabilities, we have

∑

O∈O
Prk(O) =

∑

w∈W ,o∈Qk(w)

Pr(w).

In a possible world w,
∑

o∈Qk(w) Pr(w) = k · Pr(w). Using Corollary 1, we have
∑

O∈O Prk(O) = k
∑

w∈W Pr(w) = k. �

Theorem 3 (Pruning by top-k probability sum) Consider a set of uncertain data
streams O, a top-k query Qk

p with probability threshold p, and a sliding window
Wt

ω(O). Assume all instances in Wt
ω(O) are scanned in the ranking order, and S ⊂

Wt
ω(O) is the set of instances that are scanned. For a stream O ∈ O, Prk(O) < p if

∑

o∈O∩S

Prk(o) < p −
(

k −
∑

o′∈S

Prk(o′)
)

.

Proof Following with Lemma 1, we have

∑

o∈Wt
ω(O)−S

Prk(o) = k −
∑

o′∈S

Prk(o′).

If
∑

o∈O∩S Prk(o) < p − (k − ∑
o′∈S Prk(o′)), then

Prk(O) =
∑

o∈O

Prk(o)

=
∑

o∈O∩S

Prk(o) +
∑

o∈O∩(W t
ω(O)−S)

Prk(o)

< k −
∑

o′∈S

Prk(o′) + p −
(

k −
∑

o′∈S

Prk(o′)
)

= p. �

In summary, by sorting the instances in a sliding window in the ranking order and
scanning the sorted list once, we can compute the top-k probability for each stream,
and thus the exact answer to the top-k query on the window can be derived. The two
pruning rules can be used to prune the instances and the streams.

3.2 Sharing between sliding windows

Using the method described in Sect. 3.1, we can compute the exact answer to a top-k
query Qk in one sliding window Wt . In the next time instant (t + 1), can we reuse
some of the results in window Wt to compute the answer to Qk in window Wt+1?
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In this subsection, we first observe the compatible dominant set property, and then
we explore sharing in computing answers to a top-k query on two consecutive sliding
windows.

3.2.1 Compatible dominant sets

For an instance o ∈ O that is in a window Wt , the top-k probability of o depends
on only the number of instances from streams other than O that precede o in the
ranking order. The ordering among those instances does not matter. Therefore, for an
instance o ∈ Wt+1, if we can identify an instance o′ in either Wt or Wt+1 such that o

and o′ are compatible in terms of number of other preceding instances, then we can
derive the top-k probability of o using that of o′ directly. Technically, we introduce
the concept of compatible dominant sets.

Definition 9 (Compatible dominant sets) Let o ∈ O be an instance that is in window
Wt+1 and DSt+1(o) be the dominant set of o in Wt+1. For an instance o1 ∈ O and
dominant set DS(o1), if for any stream O ′ 
= O , the number of instances from O ′ in
DSt+1(o) and that in DS(o) are the same, DSt+1(o) and DS(o1) are called compatible
dominant sets. Please note that o may be the same instance as o1, and DS(o1) can
be in Wt or Wt+1. We consider DSt+1(o) and itself trivial compatible dominant sets.

Following with the Poisson binomial recurrence (Theorem 1), we immediately
have the following result.

Theorem 4 (Compatible dominant sets) If DSt+1(o) and DS(o1) are compatible
dominant sets, for any j ≥ 0, Pr(DSt+1(o), j) = Pr(DS(o1), j) and Prk(o) = Prk(o1).

Proof If DSt+1(o) and DS(o1) are compatible dominant sets, then for any stream
O ′ (o, o1 
∈ O ′), Pr[O ′ ∈ DSt+1(o)] = Pr[O ′ ∈ DS(o1)]. Thus, following with The-
orem 1, we have

∑k−1
i=0 Pr(DSt+1(o), i) = ∑k−1

j=0 Pr(DS(o1), j). Therefore, Prk(o) =
Prk(o1). �

Compatible dominant sets can be employed directly to reduce the computation
in window Wt+1 using the results in window Wt and those already computed in
window Wt+1. For any instance o, if the dominant set of o in Wt+1 is compatible to
some dominant set of o1, then the top-k probability of o in Wt+1 is the same as o1.
No recurrence computation is needed for o in Wt+1.

When the data streams evolve slowly, the instances from a stream may have a good
chance to be ranked in the compatible places. Using compatible dominant sets can
capture such instances and save computation.

Now, the problem becomes how to find compatible dominant sets quickly. Here,
we give a fast algorithm which can be integrated to the top-k probability computation.

For each sliding window Wt(O), we maintain the sorted list of instances in the
window. When the window slides, we update the sorted list in two steps. First, we
insert the new instances into the sorted list, but still keep the expired instances. We
call the sorted list after the insertions the expanded sorted list.
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We use an n-digit bitmap counter c[1], . . . , c[n], where n is the number of streams.
At the beginning, c[i] = 0 for 1 ≤ i ≤ n. We scan the expanded sorted list in the
ranking order. If an expired instance or a new instance o ∈ Oi is met, we set c[i] =
c[i] ⊕ 1.

For an instance o ∈ Oi in the expanded list such that o is in both Wt and Wt+1,
if all the bitmap counters, except for c[i], are 0 right before o is read, then, for every
instance o′ ∈ Oj (i 
= j), o′ ≺ o in the expanded sorted list, one of the following three
cases may happen: (1) o′ appears in both Wt and Wt+1; (2) o′ = O ′

j [t − ω + 1] (i.e.,
o′ appears in Wt only) and the new instance Oj [t + 1] ≺ o; or (3) o′ = O ′

j [t + 1]
(i.e., appears in Wt+1 only) and the expired instance O ′

j [t − ω + 1] ≺ o. In all the

three cases, DSt (o) and DSt+1(o) are compatible if o does not arrive at time t + 1.
If o arrives at time t + 1, then we check the left and the right neighbors of o in the

expanded sorted list. If one of them o′ is from the same stream as o, then DS(o) and
DS(o′) are compatible.

We conduct Poisson recurrence for only instances which are in Wt+1(O) and do
not have a compatible dominance set. Otherwise, they are expired instances or their
top-k probabilities can be obtained from the compatible dominant sets immediately.
After one scan of the expanded sorted list, we identify all compatible dominant sets
and also compute the top-k probabilities. Then, we remove from the expanded sorted
list those expired instances. The current sliding window is processed. We are ready
to slide the window to the next time instant (t + 2).

Example 5 (Compatible dominant set) Figure 1(a) shows the expanded sorted list of
instances in sliding windows Wt

3 and Wt+1
3 in Table 3. At time t + 1, the instances

a1, b1, c1, d1 expire, and new instances a4, b4, c4, d4 arrive.
In Fig. 1(b), we show the values of the bitmap counters during the scan of the

expanded sorted list. Each instance in Wt+1
3 , except for d3, can find a compatible

dominant set. We only need to conduct the Poisson recurrence computation of d3
in Wt+1

3 .

3.2.2 Pruning using the highest possible rank

Consider an instance o in a sliding window Wt . As the window slides towards future,
new instances arrive and old instances expire. As a result, the rank of o in the sliding
windows may go up or down.

However, the instances arriving later than o or at the same time as o would never
expire before o. In other words, the possible rank of o in the future sliding windows
is bounded by those instances “no older” than o.

Lemma 2 (Highest possible rank) For an instance O[i] arriving at time i, in a slid-
ing window Wt

ω(O) such that t − ω + 1 < i ≤ t , let RO[i] = {O ′[j ]|O ′ ∈ O,O ′ 
=
O,j ≥ i}. In any sliding window Wt ′

ω such that t ′ > t , the rank of O[i] cannot be less
than ‖RO[i]‖ + 1.

Example 6 (Highest possible rank) Consider again the uncertain streams in Table 3.
In window Wt

3, the rank of c2 is 6. Among the 8 instances with time-stamp t − 1
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Fig. 1 The sorted lists of instances in SW(t − 1) and SW(t)

and t , there are 3 instances ranked better than c2. The highest possible rank of c2 in the
future windows is 4. In window Wt+1, there are 5 instances arriving no earlier than c2

and ranked better than c2. The highest possible rank of c2 in the future windows is 6.

The highest possible rank of o can be used to derive an upper bound of the top-k
probability of o in the future sliding windows.

Theorem 5 (Highest possible top-k probability) For an instance o in sliding window
Wt

ω with the highest possible rank r ≥ kω, let ρ = r−1
ω(n−1)

, where n is the number of

streams, in any window Wt ′
ω (t ′ ≥ t),

Prk(o) ≤ 1

ω

k−1∑

j=0

(
n

j

)

ρj (1 − ρ)n−j .

Proof To prove the theorem, we need the following lemma [29].

Lemma 3 (Extrema of Poisson trials) Let p1, . . . , pn be the success probabilities
of n independent Poisson trials X1, . . . ,Xn, respectively. Let ρ = 1

n

∑n
i=1 pi , and
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X = ∑n
i=1 Xi . If 0 ≤ c ≤ n × ρ − 1, then

Pr(X ≤ c) ≤
c∑

j=0

(
n

j

)

ρj (1 − ρ)n−j .

Given o with the highest possible rank r , there are r − 1 instances from other
objects ranked better than o. The sum of membership probabilities of those instances
is r−1

ω
. The theorem follows with Lemma 3 directly. �

Corollary 4 (Pruning using highest possible rank) For any instance o ∈ O , if∑
o∈O po < p and there exists po such that Prk(o) ≤ po, then Prk(O) < p.

We need O(1) space to maintain the highest possible rank for an instance. The
overall space consumption is O(nω) for a sliding window. Each time when new in-
stances arrive, the highest possible ranks of all old instances are updated. The highest
possible top-k probability of each stream is updated accordingly. This can be inte-
grated into the top-k probability computation. For a stream O , once the upper bound
of Prk(O) fails the threshold, all instances in O do not need to be checked in the
current window.

The complete exact algorithm is shown in Fig. 2. Compatible dominant sets can
help to reduce the computation cost, however, although it works well in practice, in
the worst case, the new instances may be ranked far away from the expired instances
of the same stream, and thus no compatible dominant sets can be found. Thus, the
time complexity of processing a sliding window, except for the first one, is O(kn2ω+
n log(nω)), where O(n log(nω)) is the cost to insert the n new instances into the
sorted list.

4 A sampling method

In this section, we propose a sampling method to estimate the top-k probability of
each stream with a probabilistic quality guarantee.

For a stream O in a sliding window Wt(O), we are interested in the event that O

is ranked top-k. Let ZO be the indicator to the event: ZO = 1 if O is ranked top-k in
Wt(O); ZO = 0 otherwise. Then, Pr(ZO = 1) = Prk(O).

To approximate the probability Pr(ZO = 1), we design a statistic experiment as
follows. We draw samples of possible worlds and compute the top-k lists on the
samples. That is, in a sample, for each stream O we select an instance o in window
Wt(O). A sample is a possible world. Then, we sort all instances in the sample in the
ranking order and find the top-k list.

We repeat the experiment m times independently. Let ZO,i be the value of ZO at
the i-th run. Then, Ẽ[ZO ] = 1

m

∑m
i=1 ZO,i is an estimation of E[ZO ] = Pr(ZO = 1).

By using a sufficiently large number of samples, we can obtain a good approxima-
tion of Prk(ZO) with high probability. The methods follows the idea of unrestricted
random sampling (also known as simple random sampling with replacement) [36].
The following minimum sample size can be derived from the well known Chernoff-
Hoffding bound [2].
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Fig. 2 The exact algorithm

Theorem 6 (Minimum sample size) For any stream O , let ZO,1, . . . ,ZO,m be the
values of ZO in m independent experiments, and Ẽ[ZO ] = 1

m

∑m
i=1 ZO,i . For any δ

(0 < δ < 1), ξ (ξ > 0), if m ≥ 3 ln 2
δ

ξ2 , then Pr{|Ẽ[ZO ] − E[ZO ]| > ξ} ≤ δ.

For efficient implementation, we maintain an indicator variable for each stream.
To avoid sorting instances repeatedly, we first sort all instances in a sliding window
Wt(O). When drawing a sample, we scan the sorted list from the beginning, and
select an instance o ∈ O in probability 1

ω
if stream O has no instance in a sample yet.

If an instance is chosen, the corresponding stream indicator is set. When the sample
already contains k instances, the scan stops since the instances sampled later cannot
be in the top-k list. The sample can then be discarded since it will not be used later.

The space complexity of the sampling method is O(nω), because all instances in
the sliding window have to be stored. The time complexity is O(mnω + nω log(nω))

for the first window and O(mnω + n log(nω)) for other windows where m is the
number of samples drawn, since the n new instances can be inserted into the sorted
list in Wt(O) to form the sorted list in Wt+1(O).
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5 Space efficient methods

In the exact algorithm and the sampling algorithm, we need to store the sliding win-
dow in main memory. In some applications, there can be a large number of streams
and the window width is non-trivial. In this section, we develop the space efficient
methods using approximate quantile summaries. The central idea is to use quantiles
to summarize instances in streams. Since computing exact quantiles in data streams
is costly, we seek for high quality approximation.

Both the exact algorithm in Sect. 3 and the sampling method in Sect. 4 can be ap-
plied on the approximate quantile summaries of uncertain data streams. Using quan-
tiles is a trade-off between space requirement and query answering accuracy. The
distribution of an object is represented in a higher granularity level using quantiles,
and thus the query results are approximate. However, we show that using approx-
imate quantiles can save substantial space in answering top-k queries on uncertain
streams with high quality guarantees.

5.1 Top-k probabilities and quantiles

Definition 10 (Quantile) Let o1 ≺ · · · ≺ oω be the sorted list of instances in the rank-
ing order in a sliding window Wt

ω(O). The φ-quantile (0 < φ ≤ 1) of Wt
ω(O) is

instance o
φω�. A φ-quantile summary of Wt
ω(O) is o1 and a list of instances oi
φω�

(1 ≤ i ≤ 
 1
φ
�).

The φ-quantile summary of Wt
ω(O) partitions the instances of Wt

ω(O) into 
 1
φ
�

intervals (in the values of the ranking function), with 
φω� instances in each in-
terval. The first interval t1 = [o1, o
φω�]. Generally, the i-th (1 < i ≤ 
 1

φ
�) interval

ti = (o
(i−1)φω�, o
iφω�]. Since the membership probability of each instance is 1
ω

, the
membership probability of each interval ti is Pr(ti) = 1

ω
φω = φ.

Example 7 (A quantile summary) Consider a window Wt
9(O) where the sorted list

of instance scores is (21, 20, 12, 10, 9, 5, 4, 3, 2). Then, 12, 5 and 2 are the 1
3 , 2

3 , and
1-quantiles of Wt

9(O), respectively. The 1
3 -quantile summary of O is (21,12,5,2)

which partitions the instances into three intervals: t1 = [21,12], t2 = (12,5], and
t3 = (5,2]. The membership probability of each interval is 1

3 .

We can use quantiles to approximate the top-k probabilities of streams.

Example 8 (Approximating top-k probability) Consider three streams A, B , and C

and their quantile summaries in window W({A,B,C}), as shown in Fig. 3, where ai ,
bi and ci (1 ≤ i ≤ 3) are the intervals of W(A), W(B) and W(C), respectively. The
membership probability of each interval is 1

3 .
To compute the upper bound of the top-2 probability of instances falling into b1,

we let all instances in b1 take the maximum value b1.MAX. Moreover, since inter-
vals a2 and c2 cover b1.MAX, we let all instances in a2 and c2 take the minimum
value a2.MIN and c2.MIN, respectively. Thus, the probability that A is ranked bet-
ter than b1 is at least Pr(a1) = 1

3 , and the probability that C is ranked better than b1
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Fig. 3 The quantile summaries
of three streams

is at least Pr(c1) = 1
3 . The upper bound of the top-2 probability of b1 is Pr(b1) ×

(1 − 1
3 × 1

3 ) = 8
27 .

Using the similar idea, we can verify that 1
9 is the lower bound of the top-2 prob-

ability of b1.

Using the idea illustrated in Example 8 and the Poisson binomial recurrence, we
can have the general upper and lower bounds of the top-k probabilities of intervals.

Theorem 7 (Upper and lower bounds) To answer a top-k query on sliding window
W(O), for an interval t in a φ-quantile summary of W(O) (O ∈ O),

Prk(t) ≤ Pr(t)
k−1∑

i=0

Pr(UDS(t), i)

and

Prk(t) ≥ Pr(t)
k−1∑

i=0

Pr(LDS(t), i),

where Prk(t) = ∑
o∈W(O),o∈t Prk(o), UDS(t) = {o′|o′ ∈ t ′, t ′ is an interval in a φ-

quantile summary of W(O ′),O ′ 
= O, t ′.MIN ≥ t.MAX}, and LDS(t) = {o′|o′ ∈ t ′, t ′
is an interval in a φ-quantile summary of W(O ′),O ′ 
= O, t ′.MAX ≥ t.MIN}.

Proof Since UDS(t) ⊆ DS(t),
∑k−1

i=1 Pr(UDS(t), i) ≥ ∑k−1
j=1 Pr(DS(t), j). Similarly,

DS(t) ⊆ LDS(t), so we have
∑k−1

j=1 Pr(DS(t), j) ≥ ∑k−1
i=1 Pr(LDS(t), i). Moreover,

since Prk(t) = Pr(t)
∑k−1

j=1 Pr(DS(t), j), the conclusions hold. �

Using Theorem 7, we can easily derive the upper bound and the lower bound
of a stream by summing up the upper/lower bounds of all intervals of the quantile
summary of the stream. Importantly and interestingly, the difference between the
upper bound and the lower bound of the top-k probability is up to 2φ, which provides
a strong quality guarantee in approximation.

Theorem 8 (Approximation quality) For a stream O , let U (Prk(O)) and L(Prk(O))

be the upper bound and the lower bound of Prk(O) derived from Theorem 7, respec-
tively. U (Prk(O)) − L(Prk(O)) ≤ 2φ.
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Fig. 4 Two cases in the proof of Theorem 8

Proof To prove Theorem 8, we need the following lemma.

Lemma 4 (Monotonicity) Let ti , ti+1 and ti+2 be three consecutive intervals in the
φ-quantile summary of W(O). Let L(Prk(ti)) and U (Prk(ti+2)) be the lower bound
of Prk(ti) and the upper bounds of Prk(ti+2), respectively, derived from Theorem 7.
If for any interval t ′ in the φ-quantile summary of O ′ (O ′ 
= O), t ′.MAX > ti.MIN,
t ′.MIN > ti+2.MAX, then L(Prk(ti)) ≥ U (Prk(ti+2)).

Proof For intervals ti and ti+2, we have LDS(ti) = {t ′|t ′ ∈ O ′, t ′.MAX > ti.MIN},
and UDS(ti+2) = {t ′|t ′ ∈ O ′, t ′.MIN ≥ ti+2.MAX}. Using the assumption in the
lemma, we have LDS(ti) ⊂ UDS(ti+2). Thus, L(Prk(ti)) ≥ U (Prk(ti+2)). �

We consider the following two cases:

Case 1. For any interval t ∈ W(O) and t ′ ∈ W(O ′) (O ′ 
= O), if t ′.MAX > t.MAX,
then t ′.MIN > t.MIN, as illustrated in Fig. 4(a). Lemma 4 holds in this case.

According to the definitions of U (Prk(O)) and L(Prk(O)), U (Prk(O)) =
∑ 1

φ

i=1 U (Prk(ti)) and L(Prk(O)) = ∑ 1
φ

i=1 L(Prk(ti)). Thus,

U (Prk(O)) − L(Prk(O))

=
1
φ
−2

∑

i=1

(U (Prk(ti+2)) − L(Prk(ti))) + U (Prk(t1))

+ U (Prk(t2)) − L(Prk(t 1
φ
−1)) − L(Prk(t 1

φ
)). (2)

Using Lemma 4, we have

1
φ
−2

∑

i=1

(U (Prk(ti+2)) − L(Prk(ti))) < 0.

Thus, we have

U (Prk(O)) − L(Prk(O))

< U (Prk(t1)) + U (Prk(t2)) − L(Prk(t 1
φ
−1)) − L(Prk(t 1

φ
)). (3)
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Also, for 1 ≤ i ≤ 1
φ

, Pr(ti) = φ and

0 ≤ U (Prk(ti)) ≤ Pr(ti) and 0 ≤ L(Prk(ti)) ≤ Pr(ti).

Thus, we have

U (Prk(t1)) + U (Prk(t2)) − L(Prk(t 1
φ
−1)) − L(Prk(t 1

φ
)) ≤ 2φ. (4)

Plugging Inequalities 3 and 4 into (2), we get U (Prk(O)) − L(Prk(O)) ≤ 2φ.

Case 2. If case 1 does not hold, i.e., there is an interval t ∈ O and an inter-
val t ′ ∈ W(O) − O such that, t ′.MAX > t.MAX and t ′.MIN ≤ t.MIN. That is, in-
terval t ′ covers t completely, as illustrated in Fig. 4(b). In that case, U (Pr(O ′ ≺
ti+1)) − L(Pr(O ′ ≺ ti+1)) = Pr(tj ) = φ. Comparing to Case 1 where U (Pr(O ′ ≺
ti+1)) − L(Pr(O ′ ≺ ti+1)) = Pr(tj ) + · · · + Pr(tj+x) = (x − 1)φ, the difference
between the upper bound and the lower bound is smaller. Therefore, in Case 2,
U (Prk(O)) − L(Prk(O)) is even smaller than that in Case 1. The theorem holds. �

For any object O , since U (Prk(O)) − L(Prk(O)) ≤ 2φ, we can simply use
U (Prk(O))−L(Prk(O))

2 to approximate Prk(O).

Corollary 5 (Approximation Quality) For a stream O ∈ W(O), let P̃rk(O) =
U (Prk(O))−L(Prk(O))

2 , then ‖P̃rk(O) − Prk(O)‖ ≤ φ.

5.2 Approximate quantile summaries

Although using quantiles we can approximate top-k probabilities well, computing ex-

act quantiles of streams by a constant number of scans still needs �(N
1
p ) space [47].

To reduce the cost in space, we use ε-approximate quantile summary which can still
achieve good approximation quality.

Definition 11 (ε-approximate quantile) Let o1 ≺ · · · ≺ oω be the sorted list of in-
stances in a sliding window W(O). An ε-approximate φ-quantile (0 < φ ≤ 1) of
W(O) is an instance Ol where l ∈ [
(φ − ε)ω�, 
(φ + ε)ω�].

An ε-approximate φ-quantile summary of W(O) is o1 and a list of instances
ol1, . . . , ol
1/φ� , li ∈ [
(iφ − ε)ω�, 
(iφ + ε)ω�] (1 ≤ i ≤ 
 1

φ
�).

The ε-approximate φ-quantile summary of W(O) partitions the instances of
W(O) into 
 1

φ
� intervals. The first interval t1 = [o1, ol1], and generally the i-th

(1 < i ≤ 
 1
φ
�) interval ti = (qi−1, qi].

The number of instances in each interval is in [(φ − 2ε)ω, (φ + 2ε)ω]. Since the
membership probability of each instance is 1

ω
, the membership probability of each

interval is within [φ − 2ε,φ + 2ε].
Computing ε-Approximate quantiles in data streams is well studied [25, 26, 41,

43]. Both deterministic and randomized methods are proposed. In our implementa-
tion, we adopt the method of computing approximate quantile summaries in a sliding
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window proposed in [41], which is based on the GK-algorithm [26] that finds the
approximate quantile over a data steam. The algorithm can continuously output the

ε-approximate quantiles in a sliding window with space cost of O(
log2 εω

ε2 ).
Then, how can we compute the upper bound and the lower bound of the top-

k probability of a stream in a sliding window using its ε-approximate φ-quantile
summaries?

Consider an interval ti = (oi−1, oi] in an ε-approximate φ-quantile summary. Sup-
pose R(oi−1) and R(oi) are the actual rank of oi−1 and oi , respectively. Then, the
actual number of instances in ti is R(oi) − R(oi−1). The membership probability
of ti is Pr(ti) = R(oi )−R(oi−1)

ω
. However, since oi−1 and oi are approximations of

the (i − 1)φ- and iφ-quantiles, respectively, their actual ranks are not calculated.
Instead, we use P̃r(t) = φ to approximate the membership probability of ti . Since
((i − 1)φ − ε)ω ≤ R(oi−1) ≤ ((i − 1)φ + ε)ω, and (iφ − ε)ω ≤ R(oi) ≤ (iφ + ε)ω,
we have ‖Pr(t) − P̃r(t)‖ ≤ 2ε.

Then, we compute the upper bound and the lower bound of Prk(t), denoted by
Ũ (Prk(t)) and L̃(Prk(t)), respectively, using the approximate membership probability
P̃r(t), following with Theorem 7. In sequel, we can further derive the upper bound and
the lower bound of a stream by summing up the upper bound and the lower bound of
all intervals, respectively. The above approximation method has the following quality
guarantee.

Theorem 9 (Approximation quality) Given a stream O in a sliding window W , let
Ũ (Prk(O)) and L̃(Prk(O)) be the upper and lower bounds of Prk(O) computed using
the ε-approximate φ-quantile summary of W(O), then,

‖Ũ (Prk(O)) − U (Prk(O))‖ ≤ ε (5)

and

‖L̃(Prk(O)) − L(Prk(O))‖ ≤ ε. (6)

Proof Consider an ε-approximate iφ-quantile oi ∈ O . To analyze the approximation
error introduced by oi , we first assume that other quantiles oj (1 ≤ j ≤ 1

φ
, j 
= i)

are exact. Suppose the real rank of oi is R(oi), according to the definition of ε-
approximate quantile, we have (iφ − ε)ω ≤ R(oi) ≤ (iφ + ε)ω.

ti = (oi−1, oi] and ti+1 = (oi, oi+1] are two intervals partitioned by oi . The ap-
proximate numbers of instances in ti and ti+1 are both φω.

If R(oi) < φ, then the actual number of instances in ti is R(oi) − (φ − 1)ω <

φω, and the actual number of instances in ti+1 is (φ + 1)ω − R(oi) > φω. That is,
there are φω − R(oi) ≤ εω instances that are actually in ti+1, but are counted into
ti due to the ε-approximate quantile oi . Thus, the error introduced by oi is at most
‖ ε

φ
(U (Prk(ti)) − U (Prk(ti+1)))‖. Similarly, if R(oi) < φ, the error introduced by oi

is at most ‖ ε
φ
(U (Prk(ti+1)) − U (Prk(ti)))‖.

Generally, the maximum overall approximation error introduced by ε-approximate
quantiles o1, . . . , o 1

φ
−1 is

‖Ũ (Prk(O)) − U (Prk(O))‖
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=
1
φ
−1

∑

i=1

∥
∥
∥
∥

ε

φ
(U (Prk(ti)) − U (Prk(ti+1)))

∥
∥
∥
∥

≤ ε

φ
(U (Prk(t1)) − U (Prk(t 1

φ
))) ≤ ε.

Inequality 6 can be shown similarly. �

For a sliding window W(O) of a stream, we use Ũ (Prk(O))−L̃(Prk(O))
2 as an approx-

imation of Prk(O).

Theorem 10 (Approximation Quality) For a stream O and sliding window W(O),

let P̃rk(O) = Ũ (Prk(O))−L̃(Prk(O))
2 , then ‖P̃rk(O) − Prk(O)‖ ≤ φ + ε.

Proof Following with Theorems 9 and 8, we have

Ũ (Prk(O)) − L̃(Prk(O)) ≤ U (Prk(O)) − L(Prk(O)) + 2ε ≤ 2φ + 2ε.

Theorem 10 follows with the above inequality directly. �

5.3 Space efficient algorithms using quantiles

The deterministic algorithm discussed in Sect. 3 and the sampling algorithm pro-
posed in Sect. 4 can both be extended using approximate quantile summaries. Due
to the loss of information in approximate quantile summaries, the extension of the
deterministic algorithm only provides approximate answers.

Using approximate quantile summaries, each stream in a sliding window is repre-
sented by 
 1

φ
� intervals. The upper bound and the lower bound of the top-k proba-

bility of each interval can be computed using either the deterministic method or the
sampling method.

To compute the upper bound and the lower bound using the deterministic method,
we first sort the maximum values and the minimum values of all intervals in the rank-
ing order. Then, by scanning the sorted list once, we can compute the approximate
upper bound and the approximate lower bound of the top-k probability of each in-
terval. For each stream O , we maintain the upper bound and the lower bound of the
number of instances in W(O) that have been scanned, and the upper bound and the
lower bound of Prk(O) so far.

The time complexity of query evaluation in a sliding window using the above

extended algorithm is O(kn2

φ
+ n

φ
log(n 1

φ
)). The upper bound of approximation error

is φ + ε.
To compute the upper bound and the lower bound using the sampling method,

we draw m sample units uniformly at random as described in Sect. 4. The differ-
ence is, each sample unit contains an interval from each stream. For each interval
t of stream O , we define an indicator XtU to the event that ‖{t ′|t ′ is an interval of
O ′,O ′ 
= O, t ′.MIN > t.MAX}‖ < k, and an indicator XtL to the event that ‖{t ′|t ′
is an interval of O ′,O ′ 
= O, t ′.MAX > t.MIN}‖ < k. The indicator is set to 1 if



52 Distrib Parallel Databases (2009) 26: 29–65

the event happens; otherwise, the indicator is set to 0. Then, U (Prk(t)) = E[XtU ],
and L(Prk(t)) = E[XtL ]. Suppose in sample unit s, the value of XtU is Xs

tU , then

the expectation E[XtU ] can be estimated by 1
m

∑m
i=1 X

si
tU . Similarly, E[XtL ] can be

estimated by 1
m

∑m
i=1 X

si
tL .

The time complexity of query evaluation in a sliding window using the above

sampling method is O(mn 1
φ
), where m is the number of samples. If m ≥ 3 ln 2

δ

ξ2 , (0 <

δ < 1, ξ > 0), then, the upper bound of approximation error is φ + ε + ξ with a
probability at least 1 − δ.

In the above two extended algorithms using approximate quantile summaries, the

space complexity of the algorithms is reduced from O(nω) to O(n
log2 εω

ε2 ), which is
the space complexity of computing ε approximate quantiles.

6 Experimental results

In this section, we report a systematic empirical study. All the experiments were con-
ducted on a PC computer with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and
a 160 GB hard disk, running the Microsoft Windows XP Professional Edition oper-
ating system. Our algorithms were implemented in Microsoft Visual Studio 2005.

6.1 Results on real data sets

To illustrate the effectiveness of probabilistic threshold top-k queries over sliding
windows in real applications, we use the seismic data collected from the wireless
sensor network monitoring volcanic eruptions (http://fiji.eecs.harvard.edu/Volcano).
16 sensors were deployed at Reventador, an active volcano in Ecuador. Each of the
16 sensors continuously sampled seismic data, and the last 60 seconds of data from
each node was examined at the base station. To detect the eruption, it is interesting to
continuously report the top-k monitoring locations with the highest seismic values in
the last 60 seconds.

The seismic data reported by each sensor is treated as an uncertain stream, and
each data record is an instance. We tested probabilistic threshold top-k queries with
different parameter values on the data set. Limited by space, we only report the an-
swers to a probabilistic threshold top-k query with k = 5 and p = 0.4 in this paper.
We consider a sliding window width of 60 instances per stream. The answers to the
query in 10 consecutive sliding windows are reported in Table 4. As comparison, we
also compute the average value of each stream in each sliding window and report the
top-5 streams with the highest average seismic values.

The answers to the probabilistic threshold top-k query listed in Table 4 reveal
the following interesting patterns. First, the seismic values reported by sensors O2
and O16 are consistently among the top-5 with high confidence in the 10 sliding
windows. The rankings of seismic values in those locations are stable. Second, the
seismic values reported by sensor O6 is among the top-5 with high confidence in the
first 5 sliding windows. The rankings of seismic values reported by sensor O6 drop
after sliding window W5. Third, the seismic values reported by sensor O4 is ranked
among top-5 with high confidence only in sliding window W4.

http://fiji.eecs.harvard.edu/Volcano


Distrib Parallel Databases (2009) 26: 29–65 53

Table 4 The answers to a probabilistic threshold top-k query in 10 consecutive sliding windows (ω = 60)
and the answers to a traditional top-k query on average values

Window ID PTK query (k = 5, p = 0.4) Top-5 query on average data

W1 O2,O6,O16 O2,O4,O6,O14,O16

W2 O2,O6,O16 O2,O4,O6,O14,O16

W3 O2,O6,O16 O2,O4,O6,O14,O16

W4 O2,O4,O6,O16 O2,O4,O6,O14,O16

W5 O2,O6,O16 O2,O4,O6,O14,O16

W6 O2,O16 O2,O4,O6,O14,O16

W7 O2,O16 O2,O4,O6,O14,O16

W8 O2,O16 O2,O4,O6,O14,O16

W9 O2,O16 O2,O4,O6,O14,O16

W10 O2,O16 O2,O4,O6,O14,O16

A traditional top-5 query on the average seismic values in each sliding window
reports {O2,O4,O6,O14,O16} consistently in the 10 sliding windows. They do not
reflect the above interesting patterns.

Simple example shows that continuous probabilistic threshold top-k queries on
uncertain streams provide meaningful information which cannot be captured by the
traditional top-k queries on aggregate data.

6.2 Synthetic data set Setup

In this performance study, we use various synthetic data sets to evaluate the effi-
ciency of the algorithms and the query evaluation quality. By default, a data set con-
tains 100 uncertain streams, and the sliding window width is set to ω = 200. Thus,
there are 20,000 instances in each sliding window. The data in a sliding window
is already held in main memory. The scores of instances from one stream follow a
normal distribution. The mean μ is randomly picked from a domain [0,1000], and
the variance σ is randomly picked from [0,10]. We add 10% noise by using 10σ as
the variance. Moreover, the query parameter k = 20, and the probability threshold
p = 0.4. The number of samples drawn in the sampling algorithm is 1,000. In quan-
tile summaries, φ = 0.1, and ε = 0.02. The reported results are the average values in
5 sliding windows.

We test the following four algorithms: the deterministic exact method (Det) in
Sect. 3.2; the sampling method (Sam) in Sect. 4; the extended deterministic method
using quantile summaries (Det-Q) and the sampling method using quantile sum-
maries (Sam-Q) in Sect. 5.3.

6.3 Efficiency and approximation quality

Figure 5 shows the runtime of the four algorithms. To show the effectiveness of the
compatible dominant set technique and the pruning techniques discussed in Sect. 3.2,
we also plot the runtime of the method (Naive) discussed in Sect. 3.1, which does
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Fig. 5 Efficiency

not explore the sharing between sliding windows. We evaluate the probabilistic top-k
queries in 5 consecutive sliding windows. In the first sliding window, the runtime of
the “Naive” algorithm and the “Det” algorithm is the same. But in the next 4 sliding
windows, the “Naive” algorithm recomputes the top-k probabilities without using the
results in the previous sliding windows. But the “Det” algorithm adopts the incre-
mental window maintenance techniques, and thus requires very little computation.
Therefore, by average, the runtime of the “Naive” algorithm is approximately 5 times
greater than the runtime of the “Det” algorithm. Among all methods, the sampling
method and the algorithm using quantiles have much less runtime than the determin-
istic methods.

Figure 5(a) shows that when parameter k increases, the runtime of the naive
method and the deterministic method also increases. With a larger k, more instances
are likely to be ranked top-k, and thus more instances have to be read before prun-
ing techniques take effects. Moreover, the Poisson binomial recurrence used by those
two methods has a linear complexity with respect to k. However, the deterministic
method has a clear advantage over the naive method, which shows the effectiveness
of the compatible dominant set technique, and the pruning using highest possible
rank. The runtime in the sampling methods and the Det-Q method is more sensitive
to k, since those techniques have very small overhead increase as k increases.

In Fig. 5(b), as the probability threshold increases, the runtime of the naive method
and the deterministic method first increase, and then drop when p is greater than 0.8.
As indicated by Theorem 2, if p is small, we can determine that many streams can
pass the threshold after checking only a small number of their instances; if p is very
large, we can also determine that many streams fail the threshold after checking a
small number of instances.

In the synthetic data set, the instances of each stream follow a normal distribution.
If the variance of the distribution is larger, then the ranks of instances are more di-
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Fig. 6 Approximation quality

verse. Thus, we may have to scan more instances in order to determine whether the
top-k probability of a stream can pass the probability threshold. Figure 5(c) verifies
our analysis.

We test how the two parameters φ and ε affect the efficiency of the methods using
quantiles. 
 1

φ
� is the number of instances kept in a quantile summary. In Fig. 5(d), we

set the value of φ to 0.1,0.05,0.033,0.025,0.02, and the corresponding number of
instances in a quantile summary is 10,20,30,40,50, respectively. Only the runtime
of Det-Q increases when more instances are kept. Since ε is typically very small, and
does not affect the runtime remarkably, we omit the details here due to limited space.

Figure 6 compares the precision and the recall of the three approximation algo-
rithms using the same settings as in Fig. 5. In general, all three methods have good ap-
proximation quality, and the sampling method achieves a higher precision and recall.
We notice that, in Fig. 6(b), the recall of the deterministic methods using quantiles
decreases when the probability threshold increases. This is because a larger probabil-
ity threshold reduces the size of answer sets. Moreover, in Fig. 6(c), the precision and
recall of all methods decreases slightly as the variance increases. When the variance
gets larger, the instances of a stream distribute more sparsely. Thus, we may need
more samples to capture the distribution.

We also test our methods on the uncertain data streams generated using the
Gamma distribution 
(k, θ). The mean μ is randomly picked from a domain
[0,1000]. We change the variance σ from 10 to 50. The scale parameter θ is set

to σ
μ

and the shape parameter k is set to μ2

σ
. The efficiency and the approximation

quality are shown in Fig. 7. The results are very similar to Figs. 5(c) and 6(c). This
shows that the performance of our algorithms is not sensitive to the types of score
distributions of the data sets.
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Fig. 7 Efficiency and approximation quality on data sets under the Gamma distribution

Fig. 8 Scalability

6.4 Scalability

To test the scalability of the algorithms, we first fixed the sliding window width to
200, and change the number of uncertain streams from 100 to 500. The maximum
number of instances in a window is 100,000. As the number of streams increases,
the Poisson binomial recurrence takes more time in the deterministic method. Thus,
the runtime increases. However, all methods are linearly scalable. The results are
shown in Fig. 8(a).

Then, we fix the number of streams to 100, and vary the sliding window width
from 200 to 1,000. The runtime in the deterministic method increases substantially
faster than the other methods. The sampling method is more stable, because its run-
time is related to only the sample size and the number of streams. For the methods
using quantile summaries, after compressing the instances in to a quantile summary,
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the increase of sliding window width does not affect the runtime noticeably. The re-
sults are shown in Fig. 8(b).

In terms of memory usage, Figs. 8(c) and 8(d) show the scalability of each algo-
rithm with respect to the number of uncertain streams and the sliding window width,
respectively. The memory used by the deterministic exact algorithm and the sam-
pling algorithm increases linearly, since it is proportional to the number of instances
in a sliding window. The memory used by the extended deterministic method using
quantiles and the sampling method using quantiles does not change dramatically, be-
cause the number of instances for each object in the sliding window only depends on
parameter φ.

7 Related work

In this section, we briefly review the existing work highly related to our study and
point out the differences.

7.1 Continuous queries on probabilistic streams

To the best of our knowledge, [11, 34, 35, 37] are the only existing studies on contin-
uous queries on probabilistic data streams, which are highly related to our study.

In [11], a probabilistic data stream is a (potentially infinite) sequence of uncertain
tuples, where each tuple is associated with a membership probability p (0 < p ≤ 1),
meaning that the tuple takes a probability p to appear in an instance (i.e., a possible
world) of the probabilistic stream. It is assumed that tuples are independent from each
other. Conventional stream sketching methods are extended to such probabilistic data
streams to approximate answers to complex aggregate queries.

Jayram et al. [34, 35] adopt a different probabilistic data stream model. A prob-
abilistic data stream contains a (potentially infinite) sequence of uncertain objects,
where each uncertain object is represented by a set of instances and each instance
carries a membership probability. An uncertain object arrives in whole at a time and
does not change after the arrival. In other words, uncertain objects do not evolve over
time. New uncertain objects keep arriving. Several one pass streaming algorithms are
proposed to estimate the statistical aggregates of the probabilistic data.

Most recently, Kanagal and Deshpande [37] propose a probabilistic sequence
model that considers the temporal and spatial correlations among data. Given a set
of uncertain attributes (A1, . . . ,Am), each uncertain attribute Ai (1 ≤ i ≤ m) is a dis-
crete random variable in domain dom(Ai) whose distribution is evolving over time.
A probabilistic sequence contains, for each time instant t , an instance (vt

1, . . . , v
t
m)

for (A1, . . . ,Am), where each vt
i (1 ≤ i ≤ m) is a random variable in domain dom(Ai)

with certain probability distribution. It is a Markov sequence since the random vari-
ables at t only depends on the random variables at t − 1. Graphical models are used
to describe the correlations among the random variables in two consecutive instants.
Query answering are considered as inferences over the graphical models.

Our study is different from [11, 34, 35, 37] in following two important aspects.
First, the uncertain stream model proposed in this paper is substantially different
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from the ones proposed before. In the probabilistic sequence model proposed in [37],
each element in the stream is a random variable (distribution). While we model an
uncertain stream as a series of sample instances generated by a temporal random vari-
able. The set of random variables (i.e., uncertain objects) are fixed. The distributions
of those random variables evolve over time. Our model handles some application
scenarios that are not covered by the models in [11, 34, 35, 37].

Second, we focus on continuous probabilistic threshold top-k queries on sliding
windows, a novel type of queries on uncertain data streams that have not been ad-
dressed before. [11, 34, 35] deal with aggregates on a whole stream. The operators
discussed in [37] cannot be directly used to answer continuous probabilistic threshold
top-k queries.

7.2 Top-k queries on uncertain data

There are numerous existing methods for answering top-k queries on static data. The
threshold algorithm (TA) [48] is one of the fundamental algorithms. Several variants
of TA have been proposed, such as [22].

Recently, ranking queries are extended to uncertain data. In [54], Soliman et al.
proposed U-Topk queries and U-kRanks queries. A U-Topk query returns a k-tuple
sorted list which has the highest probability to be the top-k list in possible worlds.
Therefore, the co-existence probability of tuples in the top-k lists affects the results
heavily. However, when k is large, the probability of the answers to a U-Topk query
may become very small. A U-kRanks query finds the tuple of the highest probability
at each ranking position. Thus, the tuples returned by a U-kRanks query may not
be a valid top-k tuple list in any possible world, and a tuple may appear more than
once in the answer set. Lian and Chen developed the spatial and probabilistic pruning
techniques for U-kRanks queries [40].

In [49], Ré et al. consider arbitrary SQL queries and the ranking is on the proba-
bility that a tuple satisfies the query instead of using a ranking function. Zhang and
Chomicki developed the global top-k semantics on uncertain data which returns k tu-
ples having the largest probability in the top-k list, and gave a dynamic programming
algorithm [56].

Hua et al. give efficient algorithms for probabilistic threshold top-k queries (PTK
queries for short) on static uncertain data in [30, 31]. The continuous probabilistic
threshold top-k queries discussed in this paper are based on the study of PTK queries
in [30, 31]. Compared to the U-Topk queries and U-kRanks queries, the PTK queries
address a different application scenario.

Example 9 (Comparison among U-Topk, U-kRanks and PTK queries) Consider the
speed monitoring scenario in Example 1. A traffic analyst wants to know the top-2
speeding locations so that more efforts can be placed at those locations for speed-
ing control. If there are three sensors A, B and C deployed at different locations.
At time 9 : 00AM, three records rA, rB , and rC are reported from those sensors
with associated confidences: rA = 110 km/h with Pr(rA) = 0.1, rB = 100 km/h with
Pr(rB) = 0.4, and rC = 90 km/h with Pr(rC) = 0.8. What are the top-2 speeding
locations?
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A U-Top2 query reports C as the answer, since 〈rC〉 is the most probably top-2
list in all possible worlds, whose probability is 0.432.

A U-2Ranks query reports C as the most probably 1-st speeding location with
confidence 0.432. For the 2-nd speeding location, C is reported again with confidence
0.288.

A probabilistic threshold top-2 query with probability threshold p = 0.3 returns B

and C as the 2 locations whose top-2 probabilities are no smaller than p. Their top-2
probabilities are Pr2(rB) = 0.4 and Pr2(rC) = 0.72.

Therefore, location B has a probability of 0.4 of being ranked in the top-2 speeding
locations. But it cannot be reported by U-Topk queries or U-kRanks queries.

In the speed monitoring application, users are more interested in the individual lo-
cations with a high probability of being ranked top-k. The co-occurrence of speeding
locations in the top-k list or the speeding location at certain ranking position are not
important. Therefore, probabilistic threshold top-k queries are more appropriate than
U-Topk queries and U-kRanks queries in this application scenario.

Although top-k queries in various forms are explored for uncertain static data, all
the existing studies do not consider streaming uncertain data which is the focus of
this paper.

7.3 Distributed top-k query processing

Distributed top-k query processing focuses on reducing communication cost while
providing high quality answers. [6] studies top-k monitoring queries which continu-
ously report the k largest values from data streams produced at physically distributed
locations. In their model, there are multiple logical data objects and each object is
associated with an overall logical data value. Updates to overall logical data val-
ues arrive incrementally over time from distributed locations. Efficient techniques
are proposed to compute and maintain the top-k logical data objects over time with
low communication cost among distributed locations and a bounded error tolerance.
In [45], an algorithmic framework is proposed to process distributed top-k queries,
where the index lists of attribute values are distributed across a number of data peers.
The framework provides high quality approximation answers and reduces network
bandwidth, local peer load, and query response time.

There are two major differences between our study and distributed top-k query
processing. First, different data models are adopted. In our study, each object is asso-
ciated with a set of instances representing the distribution of the object; while in [6],
each object has only one overall logical data value, and [45] considers a set of tu-
ples with distributed attribute index lists. Second, the queries are different. In our
study, a probabilistic threshold top-k query finds all objects whose probability of be-
ing ranked top-k is greater than a threshold; while in [6], a top-k query finds the top-k
objects having the highest overall logical data values, and in [45], tuples are ranked
according to a monotonic aggregate function on a set of attributes. The techniques de-
veloped in [6] and [45] cannot be used to answer probabilistic threshold top-k queries
efficiently.
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7.4 Continuous ranking and quantile queries on data streams

A rank or quantile query is to find a data entry with a given rank against a monotonic
order specified on the data. Rank queries have several equivalent variations [13, 27,
57] and play important roles in many data stream applications.

It has been shown in [34] that an exact computation of rank queries requires mem-
ory size linear to the size of a data set by any one-scan technique, which may be
impractical in on-line data stream computation where streams are massive in size and
fast in arrival speed. Approximately computing rank queries over data streams has
been investigated in the form of quantile computation.

A φ-quantile (0 < φ ≤ 1) of a collection of N data elements is the element with
rank 
φN� against a monotonic order specified on the data set. The main paradigm
is to continuously and efficiently maintain a small data structure (sketch/summary)
in space over data elements for online queries. It has been shown in [4, 25, 26, 44]
that a space-efficient φ-approximation quantile sketch can be maintained so that, for
a quantile φ, it is always possible to find an element at rank r ′ with the uniform pre-
cision guarantee ‖r ′ − 
φN�‖ ≤ εN . Due to the observation that many real data sets
often exhibit skew towards heads (or tails depending on a given monotonic order),
relative rank error (or biased) quantile computation techniques have been recently
developed [12, 13, 57], which give better rank error guarantees towards heads.

Top-k queries have been extended to data streams. In [46], Mouratidis el al. study
the problem of continuous monitoring top-k queries over sliding windows. Very re-
cently, [17] improves the performance of the algorithms.

All the existing studies on continuous ranking or quantile queries on data streams
do not consider uncertain data. Those methods cannot be extended to probabilistic
threshold top-k queries on uncertain data directly due to the complexity of possible
worlds semantics. In this paper, we investigate native methods for uncertain data
streams.

7.5 Uncertain data processing

Recently, modeling and querying uncertain data has become an active research direc-
tion [3, 20, 39, 50].

In this study, we adopt the working model for uncertain data proposed in [50],
which describes the existence probability of an instance tuple in an uncertain data set
and the constraints (i.e., exclusiveness).

There have been a few important models of uncertain data and queries. Cheng et
al. [9] propose a general classification of probabilistic queries and evaluation algo-
rithms over uncertain data sets. In [10], uncertain data are modeled as a set of ranges
and the associated probability density functions. Probabilistic threshold queries are
proposed on the above model, which return the results whose confidence is higher
than a user defined threshold. Tao et al. [55] proposed a U-tree index to facilitate
probabilistic range queries on uncertain objects represented by multi-dimensional
probability density functions. Singh et al. [52] extended the inverted index and signa-
ture tree to index uncertain categorical data. Dalvi and Suciu [16] developed an effi-
cient algorithm to evaluate arbitrary SQL queries on probabilistic databases and rank
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the results by their probability. In [14], they showed that the complexity of evaluating
conjunctive queries on a probabilistic database is either PTIME or #P -complete.

On the system level, Orion [51] is an uncertain database management system that
supports the attribute and tuple level uncertainty with arbitrary correlations. Three ba-
sic operations are defined to perform selection and to compute marginal distributions
and joint distributions. Other relational operations can be defined based on the three
basic operations. Both continuous and discrete uncertainty is handled in Orion [53].

7.6 Continuous sensor stream monitoring

Sensor stream monitoring focuses on maintaining the answers to deterministic
queries in sensor networks, while reducing the energy consumption as much as pos-
sible. Deshpande et al. [19] build a correlation-aware probabilistic model from the
stored and current data in a sensor network, and use the probabilistic model to an-
swer SQL queries. Only approximate answers with certain confidence bounds are
provided, but the cost of data maintenance and query answering is significantly re-
duced. More specifically, Liu et al. [42] study Min/Max query monitoring over dis-
tributed sensors. In their scenario, queries are submitted to a central server, and the
major cost in query answering is the communication cost between the central server
and distributed sensors. The authors model the reading of each sensor as a random
variable, whose probability distribution can be obtained from historical data. Those
distributions are used to estimate the answer to any Min/Max query. The server also
contacts a small number of sensors for their exact readings, in order to satisfy the user
specified error tolerance. [28] considers the applications where multiple sensors are
deployed to monitor the same region. A sampling method is used to answer contin-
uous probabilistic queries. The values of sensors that have little effect on the query
results are sampled at a lower rate.

There are three differences between our study and [19, 28, 42]. First, the uncer-
tain data models adopted in the above work are different from the uncertain stream
model discussed in this paper, due to different application requirements. Second, the
monitored queries are different: [19, 28, 42] deal with general SQL queries, Min/Max
queries, and probabilistic queries, respectively, but our study focuses on top-k queries
on uncertain streams specifically. Last, while the above work only provides approxi-
mate answers, our study can provide a spectrum of methods including an exact algo-
rithm, a random method and their space efficient versions.

8 Conclusions

In this paper, we proposed a novel uncertain data stream model and continuous prob-
abilistic threshold top-k queries on uncertain streams, which are different from the
existing probabilistic stream models and queries. A deterministic method and a sam-
pling method, as well as their space efficient versions using quantiles were developed
to answer those queries. Experimental results on real data sets and synthetic data sets
were reported, which show the effectiveness and efficiency of the methods.

As future work, it is interesting to extend our methods to other probabilistic data
stream models and other continuous preferences queries. Particularly, there are four
important directions.
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Uncertain data streams with non-uniformly distributed instances. In this paper, we
assume that the membership probabilities of all instances in a sliding window are
identical. This is suitable for the applications where instances are generated using
simple random sampling. However, in other applications, instances with non-identical
membership probabilities may be generated. Therefore, it is important to investigate
how to adapt the methods developed in this paper for the case of non-identical mem-
bership probabilities.

In the exact algorithm, all techniques can be used except for the “compatible dom-
inant set” technique. The “compatible dominant set” technique reuse the dominant set
of an instance in the previous sliding window, as long as the number of instances from
each object in the dominant set does not change. This only holds when the member-
ship probabilities of instances are identical. Therefore, new techniques that can reuse
the dominant set of instances in the case of non-identical membership probabilities
need to be developed.

Second, the sampling method can be used without any change. We simply draw
samples according to the distribution of instances for each object in the sliding win-
dow.

Last, in order to use the space efficient algorithms developed in this paper, the φ-
quantile summary needs to be redefined. The major idea is to partition the instances
ranked in the value ascending order into intervals, so that the sum of membership
probabilities of instances in each interval is at most φ. For an uncertain object Wt

ω(O)

containing a set of instances o1, . . . , oω, where each instance oi is associated with a
membership probability Pr(oi) (1 ≤ i ≤ ω). The instances are ranked in the value as-
cending order. We partition o1, . . . , oω into b exclusive intervals ti = [ozi

, oz′
i
], where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zi = 1, i = 1;
zi = z′

i−1 + 1, 1 < i ≤ b;

z′
i = max

j≥zi

⎧
⎨

⎩
j

j∑

x=zi

Pr(ox) ≤ φ

⎫
⎬

⎭
, 1 ≤ i ≤ b.

Therefore, the probability of each interval is at most φ. Moreover, there are at most
2
 1

φ
� intervals. This is because, in the worst case, each interval only contains one in-

stance, which means that the sum of membership probabilities of any two consecutive
instances is greater than φ. Then, if the number of instances is greater than 2
 1

φ
�, the

sum of membership probabilities of all instances will be greater than 1, which con-
flicts with the fact that the sum of membership probabilities of all instances of one
object is 1.

Though the approximate top-k probabilities can be computed similarly as dis-
cussed in the paper, details need to be worked out as future work.

Uncertain data streams with correlations. Correlations may exist among uncertain
data streams. For example, in the speed monitoring application, if two speed sensors
are deployed at the same location, then the readings of the two sensors are mutually
exclusive. That is, only the reading of one sensor can exist in a possible world. More
generally, the complex correlation among two or more uncertain data streams can be
represented by the joint distribution of their readings. How to continuously monitor
the top-k uncertain data streams in such cases is highly interesting.
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Continuously monitoring probabilistic threshold top-k queries with different para-
meter values. There are two parameters, the query parameter k and the probability
threshold p, in probabilistic threshold top-k queries. To achieve the best analysis re-
sults, users may be interested in how query results change as parameters vary. To
support the interactive analysis, it is highly desirable to monitor probabilistic thresh-
old top-k queries on uncertain data streams with different parameters.

To achieve this goal, we plan to design an index that stores the top-k probabilities
of instances and objects in the current sliding window. Once constructed, the index
should be easy to update as the sliding window advances. Moreover, the index should
be memory efficient.

Continuously monitoring probabilistic threshold top-k aggregate queries. In this
paper, we focus on probabilistic threshold top-k selection queries, where the ranking
function is applied on a single instance. Another category of top-k queries is top-k
aggregate queries [32], where the ranking function is applied on a group of instances.
The top-k groups with highest scores are returned as results. It is interesting to inves-
tigate how to extend the techniques discussed in this paper to handle top-k aggregate
queries on uncertain data streams.
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