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Abstract

Graph mining workloads aim to extract structural proper-
ties of a graph by exploring its subgraph structures. General
purpose graph mining systems provide a generic runtime to
explore subgraph structures of interest with the help of user-
defined functions that guide the overall exploration process.
However, the state-of-the-art graph mining systems remain
largely oblivious to the shape (or pattern) of the subgraphs that
they mine. This causes them to: (a) explore unnecessary sub-
graphs; (b) perform expensive computations on the explored
subgraphs; and, (c) hold intermediate partial subgraphs in
memory; all of which affect their overall performance. Fur-
thermore, their programming models are often tied to their
underlying exploration strategies, which makes it difficult for
domain users to express complex mining tasks.

In this paper, we develop PEREGRINE, a pattern-aware
graph mining system that directly explores the subgraphs
of interest while avoiding exploration of unnecessary sub-
graphs, and simultaneously bypassing expensive computa-
tions throughout the mining process. We design a pattern-
based programming model that treats graph patterns as first
class constructs and enables PEREGRINE to extract the se-
mantics of patterns, which it uses to guide its exploration.
Our evaluation shows that PEREGRINE outperforms state-of-
the-art distributed and single machine graph mining systems,
and scales to complex mining tasks on larger graphs, while
retaining simplicity and expressivity with its ‘pattern-first’
programming approach.

1 Introduction

Graph mining based analytics has become popular across
various important domains including bioinformatics, com-
puter vision, and social network analysis [3, 9, 28, 36, 41, 59].
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‘Arabesque Fractal G-Miner RStream PRG-U
PEREGRINE | 2-1317x  1.1-737x  3-131x  2-2016x 2-42x

Table 1. PEREGRINE performance summary. PRG-U
indicates PEREGRINE without symmetry breaking, to model
systems that are not fully pattern-aware (e.g., AutoMine).

These tasks mainly involve computing structural properties of
the graph, i.e., exploring and understanding the substructures
within the graph. Since the search space is exponential, graph
mining problems are computationally intensive and their solu-
tions are often difficult to program in a parallel or distributed
setting.

To address these challenges, general-purpose graph min-
ing systems like Arabesque [52], RStream [57], Fractal [12],
G-Miner [8] and AutoMine [34] provide a generalized ex-
ploration framework and allow user programs to guide the
overall exploration process. At the heart of these graph mining
systems is an exploration engine that exhaustively searches
subgraphs of the graph, and a series of filters that prune the
search space to continue exploration for only those subgraphs
that are of interest (e.g., ones that match a specific pattern)
and are unique (to avoid redundancies coming from struc-
tural symmetries). The exploration happens in a step-by-step
fashion where small subgraphs are iteratively extended based
on their connections in the graph. As these subgraphs are ex-
plored, they get verified via canonicality checks to guarantee
uniqueness, and get analyzed via isomorphism computations
to understand their structure (or pattern). After that, the sub-
graphs either get pruned out because they don’t match the
pattern of interest, or are forwarded down the pipeline where
their information is aggregated at the pattern level.

While such an exploration process is general enough to
compute different mining use cases including Frequent Sub-
graph Mining and Motif Counting, we observe that it remains
largely oblivious to the patterns that are being mined. Hence,
state-of-the-art graph mining systems face three main issues,
as described next: (1) These systems perform a large number
of unnecessary computations; specifically, every subgraph
explored from the graph, even in intermediate steps, is pro-
cessed to ensure canonicality, and is analyzed to either extract
its pattern or to verify whether it is isomorphic to another
pattern. Since the exploration space for graph mining use
cases is very large, performing those computations on every
explored subgraph severely limits the performance of these
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systems. (2) The exhaustive exploration in these systems ends
up generating a large amount of intermediate subgraphs that
need to be held (either in memory or on disk) so that they
can be extended. While systems based on breadth-first explo-
ration [52, 57] demand high memory capacity, other systems
like Fractal [12] and AutoMine [34] use guided exploration
strategies to reduce this impact; however, because they are
not fully pattern-aware, they process a large number of in-
termediate subgraphs which severely limits their scalability
as graphs grow large. (3) The programming model in these
systems is strongly tied to the underlying exploration strategy,
which makes it difficult for domain experts to express com-
plex mining use cases. For example, subgraphs containing
certain pairs of strictly disconnected vertices (i.e., absence of
edges) are useful for providing recommendations based on
missing edges; mining such subgraphs with constraints on
their substructure cannot be directly expressed in any of the
existing systems.

In this paper, we take a ‘pattern-first’ approach towards
building an efficient graph mining system. We develop
PEREGRINE !, a pattern-aware graph mining system that
directly explores the subgraphs of interest while avoiding
exploration of unnecessary subgraphs, and simultaneously
bypassing expensive computations (isomorphism and canon-
icality checks) throughout the mining process. PEREGRINE
incorporates a pattern-based programming model that enables
easier expression of complex graph mining use cases, and
reveals patterns of interest to the underlying system. Using
the pattern information, PEREGRINE efficiently mines rele-
vant subgraphs by performing two key steps. First, it analyzes
the patterns to be mined in order to understand their sub-
structures and to generate an exploration plan describing how
to efficiently find those patterns. And then, it explores the
data graph using the exploration plan to guide its search and
extract the subgraphs back to the user space.

Our pattern-based programming model treats graph
patterns as first class constructs: it provides basic mecha-
nisms to load, generate and modify patterns along with in-
terfaces to query patterns in the data graph. Furthermore,
we introduce two novel abstractions, an ANTI-EDGE and an
ANTI-VERTEX, that express advanced structural constraints
on patterns to be matched. This allows users to directly oper-
ate on patterns and express their analysis as ‘pattern programs’
on PEREGRINE. Moreover, it enables PEREGRINE to extract
the semantics of patterns which it uses to generate efficient
exploration plans for its pattern-aware processing model.

We rely on theoretical foundations from existing subgraph
matching research [5, 16] to generate our exploration plans.
Since PEREGRINE directly finds the subgraphs of interest,
it does not incur additional processing over those subgraphs
throughout its exploration process; this directly results in
much lesser computation compared to the state-of-the-art
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graph mining systems. Moreover, PEREGRINE does not main-
tain intermediate partial subgraphs in memory, resulting in
much lesser memory consumption compared to other systems.
PEREGRINE runs on a single machine and is highly con-
current. We demonstrate the efficacy of PEREGRINE by eval-
uating it on several graph mining use cases including fre-
quent subgraph mining, motif counting, clique finding, pat-
tern matching (with and without structural constraints), and
existence queries. Our evaluation on real-world graphs shows
that PEREGRINE running on a single 16-core machine out-
performs state-of-the-art distributed graph mining systems in-
cluding Arabesque [52], Fractal [12] and G-Miner [8] running
on a cluster with eight 16-core machines; and significantly
outperforms RStream [57] running on the same machine. Fur-
thermore, PEREGRINE could easily scale to large graphs and
complex mining tasks which could not be handled by other
systems. Table 1 summarizes PEREGRINE’s performance.

2 Background & Motivation

We first briefly review graph mining fundamentals, and then
discuss performance and programmability issues in state-of-
the-art graph mining systems. In the end, we give an overview
of PEREGRINE’s pattern-aware mining techniques.

2.1 Graph Mining Overview

Graph Terminology. Given a graph g, we use V(g) and
E(g) to denote its set of vertices and edges respectively. If
the graph is labeled, we use L(g) to denote its set of labels. A
subgraph s of g is a graph containing a subset of edges in g
and their endpoints.

Graph Mining Model. Graph mining problems involve
finding subgraphs of interest in a given input graph. We use P
to denote the pattern graph (representing structure of interest)
and G to denote the input data graph. We define a match M
as a subgraph of G that is isomorphic to P, where isomor-
phism is defined as a one-to-one mapping between V(P) and
V(M) such that if two vertices are adjacent in P, then their
corresponding vertices are adjacent in M. There are two kinds
of matches depending on how vertices and edges from G are
extracted in M. An edge-induced match is any subgraph of G
that is isomorphic to P. A vertex-induced match is a subgraph
of G that is isomorphic to P while containing all the edges in
E(G) that are incident on V(M).

Since there can be sub-structure symmetries within P (e.g.,
a triangle structure looks the same when it is rotated), the
same subgraph of G can result in multiple different matches
each with a different one-to-one mapping with V(P). These
matches are automorphisms of each other, where automor-
phic matches are defined as two matches M; and M, such that
V(M) = V(My). A canonical match is the unique represen-
tative of a set of automorphic matches. Hence, uniqueness is
ensured by choosing the canonical match from every set of
automorphic matches in G.
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(a) Step-by-step exploration in graph mining systems starting at vertex 1
and vertex 3. In total, 13 partial matches get explored and 13 canonicality
checks are performed that prune out 5 partial matches. Isomorphism checks
are performed on the remaining 8 matches for applications like FSM.
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System Total Canonicality ~ Isomorphism
Matches Computations Computations
RStream 1.2B (342x) 33.0M 0
Arabesque 1.4B (400x) 1.4B 3.5M
Fractal 659.0M (188x) 599.6M 0

(b) Profiling results for 4-Clique Counting on Patents [17] which contains
~3.5M cliques of size 4. Isomorphism counts are 0 for RStream and Fractal

because they have native support for clique computation.

System Total Canonicality  Isomorphism
Matches Computations Computations
RStream | 40.1B (125%) 40.1B 343.3M
Arabesque | 685.8M (2.1x) 685.8M 320.7M
Fractal 665.6M (2.1x) 649.1M 320.7M

(c) Profiling results for 3-Motif Counting on Patents [17] which contains
~320M 3-sized motifs.

Figure 1. Left: Example illustrating step-by-step exploration; Right: Number of matches explored (partial and full), canonicality
checks performed, and isomorphism checks performed by RStream [57], Arabesque [52] and Fractal [12]. Numbers in brackets
indicate the magnitude of matches explored relative to result size.

While the techniques presented in this paper work for both
directed and undirected graphs, for easier exposition, we as-
sume that P and G are undirected.

Graph Mining Problems. We briefly describe common
graph mining problems. While the problems listed below
focus on counting subgraphs of interest, they are often gener-
alized to listing (or enumerating) as well.

— Motif Counting. A motif is any connected, unlabeled graph
pattern. The problem involves counting the occurrences of all
motifs in G up to a certain size.

— Frequent Subgraph Mining (FSM). The problem involves
listing all labeled patterns with k edges that are frequent in G
(i.e., frequency of their matches in G exceed a threshold 7).
The frequency of a pattern (also called support) is measured
in a variety of ways [30, 38, 39, 58], but most systems choose
the minimum node image (MNI) [6] support measure since
it can be computed efficiently. MNI is anti-monotonic, i.e.,
given two patterns p and p’ such that p is a subgraph of p’,
support of p will be at least as high as that of p’.

— Clique Counting. A k-clique is a fully-connected graph
with k vertices. The problem involves counting the number
of k-cliques in G. Variations of this problem include counting
pseudo-cliques, i.e., patterns whose edges exceed some den-
sity threshold; maximal cliques, i.e., cliques that are not con-
tained in any other clique; and, frequent cliques, i.e., cliques
that are frequent (exceeding a frequency threshold).

— Pattern Matching. The problem involves matching (count-
ing) the number of subgraphs in G that are isomorphic to a
given pattern. A variation of this problem is counting con-
strained subgraphs, i.e., subgraphs with structural constraints
(e.g., certain vertices in the subgraph must not be adjacent).
All of the above graph mining use cases can be modelled in
3 steps: pattern selection, pattern matching, and aggregation.

2.2 Issues with Graph Mining Systems

While several graph mining systems have been developed
[8, 12, 34, 52, 57], they are not pattern-aware. Hence, they
demand high computation power and require large memory
(or storage) capacity, while also lacking the ability to easily
express mining programs at a high level.

2.2.1 Performance.

(A) High Computation Demand. Graph mining systems
explore subgraphs in a step-by-step fashion by starting with
an edge and iteratively extending matches depending on the
structure of the data graph. Since they do not analyze the
structure of the pattern to guide their exploration, they per-
form a large number of: (a) unnecessary explorations; (b)
canonicality checks; and, (c) isomorphism checks.

Figure 1a shows an example of step-by-step exploration
starting from vertex 1 and vertex 3. In step 1, both the ver-
tices get extended generating 6 partial matches each of size
1 (edges). These are tested for canonicality which prunes
out (3, 1) and (3, 2) (non-canonical matches are marked with
—). For applications like FSM, isomorphism checks are per-
formed on each of the canonical matches to identify their
structure and compute metrics. Then, the remaining 4 matches
progress to the next step and the entire process repeats. While
explorations get pruned via both canonicality and isomor-
phism checks, every valid partial match is extended to mul-
tiple matches which may no longer be valid; generation of
intermediate matches which do not result into valid final
matches is unnecessary. Furthermore, all intermediate partial
matches (unnecessary and valid matches) are operated upon
to identify their structure (i.e., isomorphism check) and to
verify their uniqueness (i.e., canonicality check). In our ex-
ample, 13 intermediate matches get generated, 5 of which
are unnecessary; 13 canonicality checks and 8 isomorphism
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checks are performed. If these checks are not performed at
every step (as done in Fractal [12] by delaying its filter
step), a massive amount of partial and complete matches that
do not contribute to final result would get generated.

We verified the above behavior by profiling graph mining
systems on clique counting and motif counting applications.
As shown in Figure 1b and Figure 1c, on Patents [17] (a real-
world graph dataset), RStream [57] and Arabesque [52] gener-
ate over a billion partial matches for clique counting while the
total number of cliques is only ~3.5M (~99.7% matches were
unnecessary); similarly for motif counting, RStream gener-
ates over 40 billion partial matches (~99.2% unnecessary) and
Arabesque generates over 685 million partial matches (~52%
unnecessary). They also perform a large number (hundreds of
millions to billions) of canonicality checks and isomorphism
checks. Since Fractal [12] explores in depth-first fashion, its
numbers are better than RStream and Arabesque; however,
they are still very high.

(B) High Memory Demand. Graph mining systems often
hold massive amounts of (partial and complete) matches in
memory and/or in external storage. Systems based on step-
by-step exploration require valid partial matches so that they
can be extended in subsequent steps; the total size (in bytes)
required by all matches (partial and complete) quickly grows
(often beyond main memory capacity) as the size of the pat-
tern or data graph increases. Such a memory demand is lower
in DFS-based exploration (as done in Fractal [12]). For clique
and motif counting in Figure 1, Arabesque consumes ~101GB
main memory while Fractal requires ~32GB memory.

2.2.2 Programmability. Programming in graph mining sys-
tems is done at vertex and edge level, with semantics of
constructing the required matches defined explicitly by user’s
mining program. This means, mining programs expressed in
those systems contain the logic for: (a) validating partial and
complete matches; (b) extending matches via edges and/or
vertices; and, (c) processing the final valid matches. As the
size of subgraph structure to be mined grows, the complex-
ity of validating partial matches increases, making mining
programs difficult to write. For example, the multiplicity al-
gorithm to avoid over-counting in AutoMine [34] cannot be
used if the user wants to enumerate patterns, which leaves
the responsibility of identifying unique matches to the user.
Furthermore, complicated structural constraints beyond the
presence of vertices, edges and labels cannot be easily ex-
pressed in any of the existing systems.

2.3 Overview of PEREGRINE

We develop a pattern-aware graph mining system that directly
finds subgraphs of interest without exploring unnecessary
matches while simultaneously avoiding expensive isomor-
phism and canonicality checks throughout the mining process.
We do so by designing a pattern-based programming model
that treats graph patterns as first class constructs, and by
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developing a processing model that uses the pattern’s sub-
structure to guide the exploration process.

Pattern-based Programming. In PEREGRINE, graph min-
ing tasks are directly expressed in terms of subgraph struc-
tures (i.e., graph patterns). Our pattern-aware programming
model allows declaring (statically and dynamically generated)
patterns, modifying patterns, and performing user-defined op-
erations over matches explored by the runtime. This allows
concisely expressing mining programs by abstracting out the
underlying runtime details, and focusing only on the sub-
structures to be explored. Moreover, we introduce two novel
abstractions, anti-edges and anti-vertices: an anti-edge en-
forces strict disconnection between two vertices in the match
whereas an anti-vertex captures strict absence of a common
neighbor among vertices in the match. These abstractions
allow users to easily express advanced structural constraints
on patterns to be mined.

Automatic Generation of Exploration Plan. With pat-
terns of interest directly expressed, PEREGRINE analyzes
the patterns and computes an exploration plan which is later
used to guide the exploration in the data graph. Specifically,
the pattern is first analyzed to eliminate symmetries within
itself so that expensive canonicality checks during exploration
can be avoided. Then the pattern is reduced to its core sub-
structure that enables identifying matches using simple graph
traversals and adjacency list intersection operations without
performing explicit isomorphism checks.

Guided Pattern Exploration. After the exploration plan is
generated, PEREGRINE starts the exploration process using
our pattern-aware processing model. The exploration process
matches the core substructure of the pattern to generate partial
matches using recursive graph traversals in the data graph.
As partial matches get generated, they are extended to form
final complete matches by intersecting the adjacency lists of
vertices in the partial matches. Since the entire exploration
is guided by the plan generated from the pattern of interest,
the exploration does not require intermediate isomorphism
and canonicality checks for any of the partial and complete
matches that it generates. This reduces the amount of compu-
tation done in PEREGRINE compared to state-of-the-art graph
mining systems. Moreover, since matches are recursively
explored and instantly extended to generate complete final re-
sults, partial state is not maintained in memory throughout the
exploration process which significantly reduces the memory
requirement for PEREGRINE.

Finally, we reduce load imbalance in PEREGRINE by en-
forcing a strict matching order based on vertex degrees. Fur-
thermore, we incorporate on-the-fly aggregation and early
termination features to provide global updates as mining pro-
gresses so that exploration can be stopped once the conditions
required to compute final results are met.
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] Set<Pattern> loadPatterns (String filename);

] Set<Pattern> generateAllEdgelInduced (Int size);

] Set<Pattern> generateAllVertexInduced (Int size);
] Pattern generateClique (Int size);

] Pattern generateStar (Int size);

] Pattern generateChain (Int size);

] Set<Pattern> extendByEdge (Set<Pattern> patterns);
]

L
[G
[G
[s
[s
[s
[C
[C Set<Pattern> extendByVertex (Set<Pattern> patterns);

1
1
2
1
2
3
1
2

class Pattern {
Set<Vertex> getNeighbors (Vertex u);
Label getLabel (Vertex u);
Bool areConnected (Vertex src, Vertex dst);
Void addEdge (Vertex src, Vertex dst);
Void addAntiEdge (Vertex src, Vertex dst);
Void removeEdge (Vertex src, Vertex dst);
Void addLabel (Vertex u, Label 1);

Figure 2. PEREGRINE Pattern Interface.

3 PEREGRINE Programming Model

Since graph mining fundamentally involves finding subgraphs
that satisfy certain structural properties, we design our pro-
gramming model around graph patterns as first class con-
structs. This allows users to easily express the subgraph struc-
tures of interest, without worrying about the underlying mech-
anisms of how to explore the graph and find those structures.
With such a declarative style of expressing patterns, PERE-
GRINE enables users to program complex mining queries as
operations over the matches. The clear separation of what to
find and what to do with the results helps users to quickly
reason about correctness of their mining logic, and develop
advanced mining-based analytics.

We first present how patterns are directly expressed in
PEREGRINE, and then show how common graph mining use
cases can be programmed with patterns in PEREGRINE.

3.1 PEREGRINE Patterns

Figure 2 shows our API to directly express, construct and
modify connected graph patterns. Patterns can be constructed
statically and loaded using [L1], or can be constructed dy-
namically [G1-G2, C1-C2, S1-S3].[Gl] and [G2]

generate all unique patterns that can be induced by certain
number of edges and vertices respectively. [S1-S3] gen-
erate special well-known patterns. [C1-C2] take a group
of patterns as input, and extend one of them by an edge or
a vertex, to return all of the unique new patterns that result
from these extensions. This allows constructing patterns step-
by-step which is useful to perform guided exploration. The
Pattern class provides a standard interface to access and
modify the pattern graph structure.

In most common applications, the edges and vertices in the
pattern graph are sufficient for PEREGRINE to find subgraph
structures that match the pattern. For advanced mining use
cases that require structural constraints within the pattern, we
introduce anti-edges and anti-vertices.
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Figure 3. Example patterns with Anti-Edges and
Anti-Vertices.

3.1.1 Anti-Edges. Anti-edges are used to model constraints
between vertex pairs in the pattern. They are special edges
indicating disconnections between pairs of vertices. For ex-
ample, in a social network graph where vertices model people
and edges model their friendships, extracting unrelated peo-
ple with at least two mutual friends can be achieved using p,
in Figure 3 where (u,, u4) is an anti-edge.

An anti-edge ensures that the two vertices in the match
do not have an edge between them in the data graph. If two
vertices u; and u; are connected via an anti-edge in a pattern
p, then any match for p guarantees the anti-edge constraint:

m(uy) = v; Am(uz) = vo = (v1,02) € E(G)

where m is the function mapping vertices in p to vertices
in G. The two vertices connected by an anti-edge are called
anti-adjacent. Figure 3 shows another example pattern (pp)
with anti-adjacent vertices u;-us and u;-uy, and their corre-
sponding anti-edges (uy, u3) and (uz, uy). PEREGRINE natively
supports anti-edges (discussed in §4.2), and hence, it directly
matches only those subgraphs that do not contain an edge
between the two anti-adjacent vertices.

3.1.2 Anti-Vertices. Anti-vertices are used to model con-
straints among shared neighborhoods of vertices in the pattern.
They are special vertices that are only connected to other ver-
tices via anti-edges. For example, extracting pairs of friends
with only one mutual friend in a social network graph can be
achieved using p, in Figure 3 where uy4 is an anti-vertex. Such
a query cannot be directly expressed using anti-edges alone.
Anti-vertices represent absence of a vertex. So a match of
a pattern with an anti-vertex will not contain a data vertex
matching the anti-vertex. If u is an anti-vertex in a pattern p
and S is the set of data vertices matching the neighbors of u,
then any match for p guarantees the anti-vertex constraint:

§ =m(adj(w)) = m adj(v) \ m(adj(m™(v))) = @
vES
where m is the function mapping vertices in p to vertices in
G, and m~! is its inverse.

To distinguish anti-vertices, we call a vertex with at least
one regular edge (i.e., not anti-edge) a regular vertex. Figure 3
shows different patterns with anti-vertices: In a match for p.,
the matches for u; and u, have no common neighbors. On
the other hand, in a match for p;, the match for u; has no
neighbors other than the matches for u; and us. Finally, pr
has two anti-vertices which combines constraints from p. and
paq. PEREGRINE natively supports anti-vertices (discussed in
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Void updateSupport (Match m) { mapPattern(m.getDomain());
Bool isFrequent (Pattern p, Domain d) {
return (d[p].support () >= threshold);
}
DataGraph G
Set<Pattern> patterns
while
Map<Pattern,
Set<Pattern> frequentPatterns
patterns extendByEdge (frequentPatterns) ;

loadDataGraph ("labeledInput.graph");
generateAllEdgeInduced(2);
{

Domain> results

(patterns not empty)

match (G,

}
(a) Frequent Subgraph Mining

patterns, updateSupport)
results.filter (isFrequent) .keys (

} DataGraph G loadDataGraph ("input.graph") ;
Void output (Match m) }
Pattern p = loadPattern("pattern.txt");

match (G, p, output);

{ write(m);

(c) Pattern Matching

; DataGraph G = loadDataGraph ("input.graph");
Pattern p = generateClique (desiredSize);

Int result pP);

)

count (G,

(d) Clique Counting

Int numTriplets = 0;
Void countAndCheck (Match m) {
Int numTriangles loadAggregatedvValue (m
if (numTriangles*3/numTriplets > bound)
stopExploration();
else

)i

mapPattern(m, 1);

}

DataGraph G
Pattern wedge

numTriplets

loadDataGraph ("input.graph");
generateStar (3);
2xcount (G, wedge);

Pattern triangle generateClique (3);
Map<Pattern, Int> result match (G, triangle,

(b) Global Clustering Coefficient Bound

countAndCheck) ;

DataGraph G loadDataGraph ("input.graph");

Set<Pattern> patterns
generateAllVertexInduced (size);

Map<Pattern, Int> result = count (G, patterns);

(e) Motif Counting

Void found (Match m)
mapPattern (m,
stopExploration();

}

DataGraph G

Pattern p

Map<Pattern,

{

True) ;

loadDataGraph ("input.graph");
generateClique (desiredSize);

Bool> result match (G, p,

found) ;

(f) Clique Existence

Figure 4. Graph mining use cases in PEREGRINE’S pattern-aware programming model.

§4.3), and hence, it directly matches only those subgraphs that
satisfy absence of vertices across neighborhoods as defined
by anti-vertex constraint.

3.1.3 Edge-Induced and Vertex-Induced Patterns. De-
pending on the mining use case, the matches for a given
pattern must be either edge-induced or vertex-induced. For
example, Frequent Subgraph Mining (FSM) relies on edge-
induced matches, whereas Motif Counting requires vertex-
induced matches (programs shown in §3.2). Our pattern-based
programming model allows exploring subgraphs in both edge-
based and vertex-based fashion as discussed next.

An edge-induced match is a subgraph s, of G such that the
subgraph of G induced by E(s,) is isomorphic to p. Note that,
by definition, the subgraph induced by E(s.) is equal to s..
Hence, edge-induced matches are directly expressed by the
pattern.

A vertex-induced match, on the other hand, is a subgraph s,,
of G such that the subgraph of G induced by V(s,,) is isomor-
phic to p. Hence, the sets of vertex-induced and edge-induced
matches of p are not equal mainly because the vertices of s,
can have more edges between them in G than are present in p
(in general, the subgraph induced by V (s, ) is not isomorphic
to p). In our pattern-based programming approach, the vertex-
induced requirement gets directly expressed using anti-edges.
Specifically, to find vertex-induced matches of a pattern p, we
use the following result:

Theorem 3.1. Let p be a pattern, and p’ be another pattern
such that p’ has the same vertices and edges as p, and every
pair of vertices in p that are not adjacent are anti-adjacent in
p’. The set of vertex-induced matches of p is equal to the set
of edge-induced matches of p’.

Proof. We skip the proof due to limited space. An edge-
induced match m’ for p’ shares the same edges and vertices
as a vertex-induced match m for p, and does not have edges
between any vertices which are not adjacent in p. O

Hence, our pattern-based programming doesn’t need to
separately define the exploration strategy, as done in other
pattern-unaware systems [52, 57].

3.2 Pattern-Aware Mining Programs in PEREGRINE

Figure 4 shows PEREGRINE programs for motif counting,
frequent subgraph mining (FSM), clique counting, pattern
matching, an existence query for global clustering coeffi-
cient bound, and an existence query for k-sized clique. All
the programs first express patterns by dynamically gener-
ating them or by loading them from external source. Then
they invoke PEREGRINE engine to find (match () ) and pro-
cess matches of those patterns. For every match for the
pattern, user-defined function (e.g., updateSupport (),
countAndCheck (), found (), etc.) gets invoked to per-
form desired analysis. The count () function is a syntactic
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ExplorationPlan generatePlan (Pattern p) {
partialOrders = breakSymmetries (p);
vc = minConnectedVertexCover (p) ;
pc = vertexInducedSubgraph (vc, p);
matchingOrders = computeMatchingOrders (pc,
partialOrders);
return (pc, partialOrders, matchingOrders);

Figure 5. Computing exploration plan.

sugar and is equivalent to match () with a function that in-
crements a counter. Most of the programs are straightforward,
we discuss FSM and existence queries in more detail.

3.2.1 FSM: Anti-Monotonicity & Label Discovery. FSM
leverages anti-monotonicity in support measures (discussed
in §2.1). PEREGRINE natively provides MNI support compu-
tation where it internally constructs the domain of patterns,
i.e., a table mapping vertices in G to those in p (similar to
[1]). After exploration ends for a single iteration, the sup-
port measure maintained by PEREGRINE can be directly used
to prune infrequent patterns using a threshold, as shown in
Figure 4a, and only the remaining frequent patterns are then
programmatically extended to be explored.

Before finding the first small frequent labeled patterns, the
FSM program has no information about which labelings are
frequent. PEREGRINE provides dynamic label discovery by
starting with unlabeled (or partially labeled) patterns as input
and returning labeled matches. Hence, the FSM program
in Figure 4a first starts with unlabeled patterns of size 2,
and discovers frequent labeled patterns. It then iteratively
extends the frequent labeled patterns with unlabeled vertices
to discover frequent labeled patterns of larger sizes.

3.2.2 Existence Queries. Existence queries allow quickly
verifying whether certain structural properties hold within a
given data graph. PEREGRINE allows dynamically stopping
exploration when the required conditions get satisfied.
Figure 4b shows a PEREGRINE program to verify if the
global clustering coefficient [27] of graph G is above a certain
bound. The global clustering coefficient is the ratio of three
times the number of triangles and the number of triplets (all
connected subgraphs with three vertices, including duplicates)
in G. The number of triplets is equal to twice the number of
edge-induced 3-star matches since the endpoints of a 3-star
are symmetric. Hence, the program quickly computes the
number of 3-stars, and then starts counting triangles. During
exploration, if the number of triangles reaches the requisite
number to exceed the bound, exploration stops immediately.
Figure 4f shows PEREGRINE program to check whether a
clique of a certain size is present in G. As soon as the explo-
ration finds at least one match, it stops and returns True.
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Figure 6. Example of a pattern graph and a data graph.

4 Pattern-Aware Matching Engine

PEREGRINE is pattern-aware, and hence, it directly finds
patterns in any given data graph. In this section, we discuss
our core pattern matching engine that directly finds canonical
subgraphs from a given vertex in the data graph. In §5, we
will use this engine to build PEREGRINE. For simplicity, we
assume the data graph and the pattern are unlabeled.

4.1 Directly Matching A Given Pattern

To avoid the overheads of a straightforward exhaustive search,
we develop our pattern matching solution based on well-
established techniques [5, 16, 24]. Since patterns are much
smaller than the data graph, we analyze the given pattern to
develop an exploration plan. This plan guides the data graph
exploration to ensure generated matches are unique.

Figure 5 shows how the exploration plan is computed from
a given pattern p. First, to avoid non-canonical matches we
break the symmetries of p by enforcing a partial ordering on
matched vertices [16]. For our example pattern in Figure 6,
we obtain the partial ordering u; < us and u; < uy.

In the next step, we compute the core of p (called pc) as the
subgraph induced by its minimum connected vertex cover 2.
Given a match m for pc, all matches of p which contain m
can be computed from the adjacency lists of vertices in m. In
our example, pc is the subgraph induced by u; and uy.

To simplify the problem of matching pc, we generate
matching orders to direct our exploration in the data graph.
A matching order is a graph representing an ordered view
of pc. The vertices of the matching order are totally-ordered
such that the partial ordering of V(p) restricted to V(pc) is
maintained. This allows matching pc by traversing vertices
with increasing vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences
of vertices in pc that meet the partial ordering, and for each
sequence we create a copy of pc where the id of each ver-
tex is remapped to its position in the sequence. Then, we
discard duplicate matching orders. For our example pattern
(Figure 6), its core substructure has only one valid vertex
sequence, {uy,us}, SO we obtain only one matching order.
Note that there can be multiple matching orders for a given
pc depending on the partial orders. We call the i matching
order puy;.

2 A connected vertex cover is a subset of connected vertices that covers all
edges.
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Void matchFrom (Match m, Pattern p, Func f,

MatchingOrder mo, PartialOrder po, Int i) {

iE (1> Vo)D) |
// remaps m as in §4.1, before completing it
// and invoking the user's callback f()
completeMatch(m, p, £, po, 1);

} else {
for (v in getExtensionCandidates (mo, po, 1)) {

matchFrom(m+v, p, £, mo, po, i+1l);

AggregationVal match (Graph G, Pattern p, Func f) {

Aggregator a;

(pc, partialOrder, matchingOrders) =
generatePlan (p) ;

parallel for (v in G) {

for (matchingOrder in matchingOrders) {
matchFrom({v}, p, f, matchingOrder,
partialOrders, 1);

}

return a.result ();

Figure 7. Pattern-Aware Processing Model.

Thus, to match pc it suffices to match its matching orders
pumi- A match for pyy; results in 1 match for pe per valid vertex
sequence. In our example, a match for py, say {vz, vs}, is
converted to a single match for pc, v; = w; — ug,v3 —
Wy — Uj.

It is important to note that the exploration plan is generated
by analyzing the pattern graph only, i.e., all the computations
explained above are applied on p (and its derivatives). Hence,
exploration plans are computed quickly (often in less than
half a millisecond).

4.2 Matching Anti-Edges

To enforce an anti-edge constraint, we perform a set difference
between the adjacency lists of its endpoints. For example, if
v;, v; match uy, up of p, in Figure 3, the candidates for uy are
the elements of adj(v;) \ adj(v;).

To perform the set difference, we need to ensure that one
of the vertices of the anti-edge is already matched so that
its adjacency list is available. Hence, when computing the
vertex cover we also cover the anti-edge by including one of
its endpoints. When computing partial orders, however, we
do not need to consider anti-edges since they don’t generate
automorphic matches and we only verify absence of edges
(i.e., we never traverse through anti-edges).

4.3 Matching Anti-Vertices

The anti-vertex semantics offer flexibility to match them dif-
ferently compared to anti-edges. Anti-vertices break sym-
metries and do not impact the core graph (i.e., vertex cover
computation) as described next.
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Figure 8. Pattern-guided exploration in PEREGRINE for
pattern and data graph in Figure 6 with matching order
high-to-low.

Checking Anti-Vertices. The anti-vertex constraint can
only be verified after the common neighbors of an anti-
vertex’s neighbor have been matched. Thus, we perform the
check after all true vertices are already matched.

For example, consider p, in Figure 3, with anti-vertex uy.
If v;, vj, v in the data graph match u, u,, us respectively,
then we verify the anti-vertex constraint for u, as follows:

(adj(vi) \ {v;}) N (adj(v) \ {o;}) = @

Since anti-vertices do not participate while matching regular
vertices and edges, we keep the pattern core pc the same as
the core pattern when anti-vertices are removed.

Breaking Symmetries with Anti-Vertices. We expose the
asymmetry introduced by anti-vertices to the symmetry-
breaking algorithm, which treats the anti-edges of an anti-
vertex differently than regular edges.

S PEREGRINE: Pattern-Aware Mining

We will now discuss how PEREGRINE performs pattern-aware
mining using the matching engine presented in §4.

5.1 Pattern-Aware Processing Model

Mining in PEREGRINE is achieved by matching patterns start-
ing from each vertex and invoking the user function to process
those patterns. Hence, a task in PEREGRINE is defined as the
data vertex where the matching process begins. As shown in
Figure 7, each mining task takes a start vertex and the explo-
ration plan generated in §4 (matching orders, partial orders,
pattern core pc). From the starting vertex, we recursively
match vertices in the matching order. At each recursion level,
a data vertex is matched to a matching order vertex. To avoid
non-canonical matches, we maintain sorted adjacency lists
and use binary search to generate candidate sets comprised
only of vertices that meet the total ordering.

Once a matching order is fully matched, it is converted to
matches for pc. Matches for pc are then completed by per-
forming set intersections (for true edges) and set differences
(for anti-edges) on sections of adjacency lists that satisfy the
partial orders. Each completed match is passed to a user-
defined callback for further processing. Figure 8 shows a
complete exploration example.

Note that our processing model doesn’t incur expensive
isomorphism and canonicality checks for every match in the
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data graph, while simultaneously avoiding mis-matches and
only exploring subgraphs that match the given pattern. Fur-
thermore, tasks in our processing model are independent of
each other since explorations starting from two different ver-
tices do not require any coordination. Threads dynamically
pick up new tasks when they finish their current ones.

5.2 Early Pruning for Dynamic Load Balancing

While a matching order enforces a total ordering on the data
vertices matching pc, there is flexibility in the order in which
its vertices are matched. To reduce the load imbalance across
our matching tasks, we: (a) follow matching orders high-to-
low, e.g. in our example in Figure 6 we match w, before wy;
and, (b) order vertices by their degree such that v; < v; in the
data graph if and only if degree(v;) < degree(v;).

High-degree vertices have fewer neighbors with degrees
higher than or equal to their own, so the degree-based ordering
ensures that when a high-degree vertex is matched to ws, only
those few neighbors can be matched to wy. Thus, explorations
of neighbors with lower degrees are pruned. Note that the total
number of matches generated remains the same; the high-to-
low matching order traversal, along with degree-based vertex
ordering, reduces the workload imbalance of matching across
high-degree and low-degree vertices by dynamically pruning
more explorations from high-degree tasks while enabling
those explorations in low-degree tasks.

Finally, it is important to note that this process does not
‘eliminate’ workload imbalance simply because the mining
workload is dynamic and depends on the pattern and data
graphs. Hence, to avoid stragglers and maximize parallelism,
we process tasks in the order defined by the degree of the
starting vertex, beginning with the highest-degree vertices.

5.3 Early Termination for Existence Queries

For existence queries, PEREGRINE allows actively moni-
toring the required conditions so that the exploration pro-
cess terminates as quickly as possible. When the matching
thread observes the required conditions, the user function calls
stopExploration () to notify other matching threads.
Threads monitor their notifications periodically while match-
ing, and when a notification is observed, the thread-local
values computed up to that point are aggregated and returned
to the user.

5.4 On-the-fly Aggregation

PEREGRINE performs on-the-fly aggregation to provide
global updates as mining progresses. This is useful for early
termination and for use cases like FSM where patterns that
meet the support threshold can be deemed frequent while
matching continues for other patterns.

We achieve this using an asynchronous aggregator thread
that periodically performs aggregation as values arrive from
threads. The matching threads swap the global aggregation
value with the local aggregation value and set a flag to indicate
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that new thread-local aggregation values are available for
aggregation. The aggregator thread blocks until all thread-
local aggregation values become available, after which it
performs the aggregation and resets the flag to indicate that
the global aggregation value is available. With this design,
our matching threads remain non-blocking to retain high
matching throughput.

5.5 Implementation Details

PEREGRINE is implemented in C++ where concurrent threads
operate on exploration tasks, each starting at a different ver-
tex in the data graph. The data graph is represented using
adjacency lists, and the tasks are distributed dynamically us-
ing a shared atomic counter indicating the next vertex to be
processed. To minimize coordination, threads maintain infor-
mation regarding their exploration tasks, including candidate
sets for each pattern vertex as exploration proceeds.

PEREGRINE provides native computation of support values
for frequency-based mining tasks like FSM. Domains are
implemented as a vector of bitmaps representing the data
vertices that can be mapped to each pattern vertex. They are
aggregated by merging their contents via logical-or. To scale
to large datasets, we use compressed Roaring bitmaps [7],
which are more memory efficient than dense bitmaps.

6 Evaluation

We evaluate the performance of PEREGRINE on a wide variety
of graph mining applications and compare the results with
the state-of-the-art general purpose graph mining systems :
Fractal [12], Arabesque [52], RStream [57] and G-Miner [8].

6.1 Experimental Setup

System. All  experiments were conducted on
c5.4xlarge and c5.metal Amazon EC2 instances.
Most experiments use c5.4xlarge, with an Intel Xeon
Platinum 8124M CPU containing 8 physical cores (16 logical
cores with hyper-threading), 32GB RAM, and 30GB SSD.
Fractal (FCL), Arabesque (ABQ) and G-Miner (GM) were
evaluated using both a cluster of 8 nodes (denoted by the
suffix ‘-8’), as well as in single node configuration (denoted
by the suffix *-17).

RStream was evaluated on a c5.4xlarge (RS-16) as
well as a ¢c5.metal (RS-96) equipped with an Intel Xeon
Scalable Processor containing 48 physical cores (96 logi-
cal cores with hyper-threading), and 192GB RAM. Both in-
stances were provisioned with a S00GB SSD.

In all performance comparisons, we ran PEREGRINE on
acb.4xlarge, and we used c5.metal to study PERE-
GRINE’s scalability and resource utilization.

Datasets. Table 2 lists the data graphs used in our evalua-
tion. Mico (M) is a co-authorship graph labeled with each

3We could not evaluate AutoMine [34] since its source code is not available.
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Max. Avg.

G V@I EG LGN Dl e

(MI) Mico [13] 100K IM 29 96637 21.6
(PA) Patents [17]

L Unlabeled 3.7M 16M  — 793 10

L Labeled 27M  13M 37 789 10

(OK) Orkut [60] 3M 117M — 33133 76

(FR) Friendster [60] 65M 1.8B — 5214 55

Table 2. Real-world graphs used in evaluation.
’— indicates unlabeled graph.

author’s research field. Patents (PA) is a patent citation graph.
In the labeled version, each patent is labeled with the year it
was granted. Orkut (OK) and Friendster (FR) are unlabeled
social network graphs where edges represent friendships be-
tween users. Mico and labeled Patents have been used by
previous systems [12, 52, 57] to evaluate FSM while Orkut
and Friendster were used by [8]. Except for FSM and labeled
pattern matching, all experiments on Patents use its larger,
unlabeled version.

Applications. We evaluated PEREGRINE on a wide array
of applications: counting motifs with 3 and 4 vertices, labeled
3- and 4-motifs; counting k-cliques, for k ranging from 3 to
5; FSM with patterns of 3 edges on labeled datasets using var-
ious supports; matching the patterns shown in Figure 9; and
checking the existence of 14-cliques. We selected the patterns
in Figure 9 to cover all the patterns used in [12] and [8]; note
that patterns like triangles and empty squares are covered via
applications like cliques and motifs. Since G-Miner’s pattern
matching program is specific to labeled p, (in Figure 9), we
used labels on p, for all the systems to enable direct compari-
son. To match it on Orkut and Friendster graphs, which are
unlabeled, we added synthetic labels (integers 1-6 as done in
[8]) with uniform probability.

6.2 Comparison with Breadth-First Enumeration

Table 3 compares PEREGRINE’s performance with Arabesque
and RStream on motif-counting, clique-counting, and FSM
(these systems do not support pattern matching). As we can
see, PEREGRINE outperforms the breadth-first systems by at
least an order of magnitude on every application except FSM.
RStream, despite being an out-of-core system, runs out of
memory during FSM computations because of the massive
amounts of aggregation information, as well as during 4- and
5-cliques on Mico where it could not handle the size of a
single expansion step.

It was interesting to observe that Arabesque performed
better in single-node mode compared to 8-node configuration
across all experiments except FSM on Patents, where it ran
out of memory. This is because its breadth-first exploration
generates large amounts of partial matches which must be
synchronized across the entire cluster between supersteps,
incurring high communication costs that impact its scalability.

Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora

nanRfiin

p;

Figure 9. Patterns used in evaluation.

When support thresholds are high, Arabesque on 8 nodes
computes FSM more quickly than PEREGRINE. This is be-
cause its breadth-first strategy leverages high parallelism
when there are few frequent patterns to explore and aggregate.
However, this approach is sensitive to the support thresh-
old, which stops Arabesque from scaling to lower threshold
values where there are more frequent patterns. In these sce-
narios Arabesque simply fails due to the memory burden of
maintaining the vast amount of intermediate matches and
aggregation values. We suspect that even with more main
memory per node, the intermediate computations (canonical-
ity, isomorphism, etc.) for each individual match in Arabesque
would significantly limit its performance. Since PEREGRINE
is pattern-aware, it only needs to maintain aggregation values
for the patterns it is currently matching, allowing it to scale
to inputs that yield many frequent patterns.

6.3 Comparison with Depth-First Enumeration

Table 4 compares PEREGRINE’s performance with Fractal on
motif-counting, clique-counting, FSM, and pattern matching.
As we can see, PEREGRINE is faster than Fractal by at least
an order of magnitude across most of the applications. For
instance, 4-cliques on Patents finished in less than a second
on PEREGRINE whereas Fractal took over 200 seconds in
both cluster and single-node configurations.

Given equal resources (i.e., on a single node), FSM on
Mico is up to 2.6x faster on PEREGRINE compared to that
on Fractal. Furthermore, PEREGRINE scales to the larger
dataset while Fractal does not. Even with 8 nodes, Fractal
only outperforms PEREGRINE on the small Mico graph, and
cannot handle the Patents workload except for very high
support thresholds, where there is less work to be done; there
too, PEREGRINE executes faster than Fractal.

Similar to Arabesque, Fractal’s pattern-unawareness re-
quires it to maintain global aggregation values throughout its
computation. In FSM, the aggregation values consume O(|V])
memory per vertex in each pattern in the worst case, and
thus quickly become a scalability bottleneck. On the other
hand, PEREGRINE only needs to maintain aggregation val-
ues for the current patterns being matched, which allows it
to achieve comparable performance and superior scalability
while matching up to 15,817 patterns on Mico and 6,739
patterns on Patents.
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Arabesque RStream
App G |PEREGRINE| \po ¢ ABQ-1| RS-96 RS-16
3-Motifs MI 0.12] 158.05 39.05| 51.83 252.74 Fractal
PA 3.10| 870.70 525.49|2685.45 2186.93 App G | PEREGRINE | poy g peyp
OK 17.90 — — / / -
FR 370.64 _ _ / / 3-Motifs MI 0.12 | 22.13 17.11
4-Motifs MI 6.74 — — / / g?( 1338 231'? 214'%
PA 1204  —  — /X FR 37064 |  — —
OK 6156.10 — — / / :
4-Motifs MI 6.74 | 78.66  420.67
2K-FSM  MI 380.81|3418.25 821.60 X —
3K-FSM  MI 279.74|3520.82 784.27 X — PA 12.04 | 362.19 74235
4K-FSM MI 250.68|3514.97 779.75 X OK 6156.10 — —
20K-FSM PA 859.41 — — | 1757.69 — 2K-FSM  MI 380.81 | 154.47 67598
21K-FSM PA 647.97 — —|1711.87 — 3K-FSM  MI 279.74 | 154.74  680.33
22K-FSM PA 507.56| 342.63 —11626.53 — 4K-FSM MI 250.68 | 144.34  663.26
23K-FSM PA 402.57| 299.12 —11936.92 —
3-Cli MI 0.05|] 18.62 598 7.34  11.32 20R-FSM - PA 85141 X _
-Cliques . . . . . - —
PA 0.59| 15555 87.26| 840 11.97 %%EEEM gﬁ ggz:gg § _
ORI eae| = | %620 164310 23K-FSM  PA 402.57 | 451.18 —
4-Cliques MI 2.02]1598.09 353.37| 266.61 _ 3-Cliques  MI 0.05 | 1871 17.21
PA 0.90| 24938 107.02| 105.00 181.30 PA 0.59 | 232.60  216.76
OK 281.47 — — / / OK 13.75 — —
FR 1337.77 — — / / FR 296.99 — —
5-Cliques MI 89.60 X — — — 4-Cliques MI 2.02 | 25.77 34.79
PA 1.12| 352.64 122.09| 145.00 237.90 PA 090 | 237.64 22450
OK 3182.56 — — / / OK 281.47 — —
FR 4214.72 — — / / FR 1337.77 — —
Table 3. Execution times (in seconds) for PEREGRINE, 5-Cliques MI 89.60 | 181.30  904.65
Arabesque [52] and RStream [57]. PA 1.12 | 266.88  217.30
’%’ indicates the execution did not finish within 5 hours. OK 3182.56 - -
R FR 4214.72 — —
— indicates the system ran out of memory. - 012 9476 602
s s g : Match p; MI . i .
/’ indicates the system ran out of disk space. PA 0.84 | 23577 189.03
OK 38.97 — —
FR 824.62 — —
6.4 Comparison with Purpose-Built Algorithms Match p, MI 0.03 | 22.11 16.85
G-Miner i | beraph . h PA 1.07 | 260.15 202.23

-Miner is a general-purpose subgrap .—c.entrlc sys.tem that OK 474.09 - -
targets expert users to implement the mining algorithms us- FR 18.09 — _
ing a low-lfev'el subgrgph data stmcture. S‘ince exp'ressing Match p;  MI 19.93 | 181.76 1288.94
common mining algorithms requires domain expertise, we PA 13.41 | 30.18 69.33
only evaluated the applications that are already implemented OK 13292.77 — —
in G-Miner: 3-clique counting and pattern matching on p, Match p, MI 12.29 | 12099 789.81
(pattern matching for other patterns is not supported). This PA 223 | 25.58 21.63
experiment serves to showcase how PEREGRINE compares to OK 1569.73 - -

. . . FR 7057.40 — —
custom algorithms for matching specific patterns.

Table 5 compares PEREGRINE’s performance with G- Match ps %//&I 1‘1'3; ;gg (1) 3?3%3
Miner. As we can see, PEREGRINE is 3X to 77x faster than G- OK 1381.03 7 7
Miner when counting 3-cliques even though G-Miner imple- FR 6726.51 — _
ments an algorithm designed spfzciﬁcally to count 3-cliqges. Match s MI 65.26 » »;
When matching p,, PEREGRINE is 6X to 131x faster on Mico PA 2794 | 210.04 205.39
and Patents. On Orkut, however, G-Miner performs better on . . _
finding p,; this is because G-Miner indexes vertices by la- Table 4. Execution times (in seconds) for PEREGRINE and
bels when preprocessing the data graph, whereas PEREGRINE Fractal [12]. "— indicates the system ran out of memory.
discovers labels dynamically. Due to these indexes, G-Miner "X indicates the execution did not finish within 5 hours.

could not handle Friendster even with 240GB disk space on
the cluster.
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App G | PEREGRINE G-Miner

GM-8 GM-1

3-Cliques MI 0.05 3.79 3.86
PA 0.59 7.91 8.93

OK 13.75 | 4426 62.65

FR 296.99 / /

Match p, MI 0.03 3.67 3.95
PA 1.07 6.84 9.80

OK 474.09 | 145.00 396.72

FR 18.09 / /

Table 5. Execution times (in seconds) for PEREGRINE and
G-Miner [8]. ’/’ indicates the system ran out of disk space.

Existence | Anti-Vertex | Anti-Edge
G .
14-Clique D7 Ds
MI 0.07 0.65 6.92
PA 3.95 0.67 1.69
OK 4.08 56.06 879.01
FR 50.39 470.21 4017.15

Table 6. PEREGRINE execution times (in seconds) for
matching with an anti-vertex (p7), matching with an
anti-edge (ps), and 14-clique existence query.

6.5 Mining with Constraints in PEREGRINE

We evaluate PEREGRINE on mining tasks with structural
constraints. We match a pattern containing an anti-vertex (p;),
one containing an anti-edge (ps), and perform an existence
query of a 14-clique. The results are show in Table 6.

Mining with Anti-Vertices. Pattern p; expresses a maxi-
mal clique of size 3 (triangle) using a fully-connected anti-
vertex, i.e., it matches all triangles that are not contained in a
4-clique. While satisfying the anti-vertex constraint requires
computing set-intersections across all vertices of the triangle,
PEREGRINE takes less than a minute on Orkut, and under
eight minutes on the billion scale Friendster graph.

Mining with Anti-Edges. Pattern ps represents a vertex-
induced chordal square using an anti-edge constraint. Satis-
fying the anti-edge constraint is computationally demanding,
since it requires computing set differences of adjacency lists,
which is twice as many operations as the sum of the adjacency
list sizes. Nevertheless, PEREGRINE still easily completes it
on all the datasets.

Existence Query. The goal of this query is to determine
whether a 14-clique exists in the data graph. PEREGRINE
stops exploration immediately after finding an instance of
14-clique. We observe that Patents and Orkut performed sim-
ilarly; this is because the rarer the target pattern for an ex-
istence query, the longer it takes to find it. Patents does not
contain a 14-clique, so the entire graph was searched, but
in the much larger and denser Orkut graph, a 14-clique gets
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Figure 10. Execution times (in seconds) for PEREGRINE
with (PRG) and without (PRG-U) symmetry breaking.
PRG-U could not finish matching any of the 4-motif patterns
on Orkut within 5 hours.

found quickly during exploration. Friendster is both large and
sparse, and hence, 14-cliques are rare. Furthermore, since
14-clique is a large pattern, several partial explorations do not
lead to a complete 14-clique.

6.6 PEREGRINE’s Pattern-Aware Runtime

Benefits of Symmetry Breaking. Symmetry breaking is
a well-studied technique for subgraph matching that PERE-
GRINE uses to guide its graph exploration. However, recent
systems like Fractal [12] and AutoMine [34] are not fully
pattern-aware and do not leverage symmetry breaking for
common graph mining use cases. We showcase the impor-
tance of symmetry breaking in PEREGRINE by disabling it
and running 4-motifs and FSM with low support thresholds.
These are expensive subgraph matching workloads: 4-motifs
contains complex patterns with many matches and FSM in-
volves a large number of patterns to match. Figure 10 sum-
marizes the results.

We observe that symmetry breaking improves performance
by an order of magnitude for 4-motifs on Mico and Patents.
Orkut 4-motifs without symmetry breaking did not even finish
matching even a single size 4 pattern within 5 hours. This
shows the importance of symmetry breaking when scaling to
large patterns and large datasets. For instance, Orkut contains
over 22 trillion unique vertex-induced 4-stars, and so without
symmetry breaking, the system must process six times that
many matches (a 4-star’s automorphisms are the permutations
of its 3 endpoints: resulting in 3! = 6 automorphic subgraphs).

FSM achieves 3x performance improvement through sym-
metry breaking. This is because with symmetry breaking,
FSM’s expensive aggregation values are only written to once
per unique match in the data graph, whereas the naive ap-
proach without symmetry breaking would incur dozens of
redundant write (and read) accesses per unique match.

Breakdown on Mining Time. Figure 12 shows the ratio
of time spent in each stage of matching during 4-motif exe-
cution: finding the range of sorted candidate sets that meet
the pattern’s partial order (PO), performing adjacency list



PEREGRINE: A Pattern-Aware Graph Mining System

(a) Scalability (b) Resource Utilization
/ Q 100- . -40 z
60- i 57x < 30- -35 g
.50~ 5 ;2 g
3 40- 2 60- =T -257<
E%50- === Ideal E 40 I B ~15Z2 5
—e— PRG i i -10 =
10- E 20 5 =
- ==== JHUNEIEN 9 i =
14 e ol 'L i S s s e e e ) B
1816 32 48 64 96 0246 810121416
Number of Threads Elapsed Time (s)

Figure 11. (a) Scalability (PRG HT = hyper-threaded).
(b) CPU utilization (solid) and memory bandwidth (dashed)
for 24 cores (blue), 47 cores (green) and 94 cores (red).

intersections and differences to match the pattern core (Core)
and finally, intersecting the adjacency lists of the pattern core
to complete the match (Non-Core). Some time is also spent
on the other requirements of matching, for example, fetching
adjacency lists and mapping vertices (Other).

We observe that the majority of execution is spent intersect-
ing adjacency lists of candidate vertices to complete matches.
In comparison to the overall execution time, matching the
core pattern is insignificant. This is because the core pattern
is matched according to all valid total orderings of its ver-
tices, and hence, the traversal is fully guided. In contrast, the
non-core vertices may or may not be ordered with respect
to each other, and with respect to the core vertices; so the
runtime usually has less guidance when exploring the graph.
Furthermore, in most patterns the core is small and involves
fewer intersections than the non-core component.

6.7 System Characteristics

Scalability. We study PEREGRINE’s scalability by match-
ing pattern p; on Orkut using c5.metal instance. Note that
we do not perform a COST analysis [37] with this experiment
since we already compared PEREGRINE with optimized al-
gorithms in §6.4, and state-of-the-art serial pattern matching
solutions like [19, 53] performed much slower than our single
threaded execution.

Figure 11a shows how PEREGRINE scales as number of
threads increase from 1 to 96. As we can see, PEREGRINE
scales linearly until 48 threads, after which speedups increase
gradually. This is mainly because c5.metal has 48 phys-
ical cores, and scheduling beyond 48 threads happens with
hyper-threading. We verified this effect by alternating how

4-Motif Execution Time Breakdown
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Figure 12. PEREGRINE 4-motif execution time breakdown.
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Figure 13. Peak memory usage of different systems across
various applications. Tall red bars represent RStream out of
memory errors.

threads get scheduled across different cores; the dashed lines
in Figure 11a show speedups when every pair of PEREGRINE
threads is pinned to two logical CPUs on one physical CPU.
As we can see, with 48 threads but only 24 physical cores,
PEREGRINE only achieves a 30x speedup, whereas with 48
physical cores it achieves a 41x speedup. Since pattern explo-
ration involves continuous random memory accesses through-
out execution, hyper-threading helps in hiding memory laten-
cies only up to an extent. Figure 11b verifies this, as memory
bandwidth grows considerably higher when using more cores,
though CPU utilization remains similar.

We observe that speedups also decline slightly between
24 cores and 48 cores. This is because c5.metal has two
NUMA nodes, each allocated to 24 physical cores. We mea-
sured remote memory accesses to observe the NUMA effects:
when running on 48 cores, cross-numa memory traffic was
86GB as opposed to only 4.9MB when running on 24 cores.

Resource Utilization. Figure 11b shows CPU utilization
and memory bandwidth consumed by PEREGRINE while
matching p; on Orkut on c¢5.metal with 24, 47, and 94
threads. We reserve a core for profiling to avoid its overhead.
We observe that PEREGRINE maintains high CPU utiliza-
tion throughout its execution. The memory bandwidth curve
increases over time; as high degree vertices finish process-
ing, low degree vertices do less computation and incur more
memory accesses as they get processed.

Figure 13 compares the peak memory usage for PERE-
GRINE and other systems. For distributed systems we report
the sum of all nodes’ peak memory. PEREGRINE consistently
uses less memory than all the systems, mainly because of its
direct pattern-aware exploration strategy. It is interesting to
note that changing the pattern size in cliques and motifs does
not impact PEREGRINE’s memory usage. The usage is high
for FSM compared to other applications due to large domain
maps for support calculation.

Load Balancing. Since PEREGRINE threads dynamically
pick up tasks as they become free, we observe near-zero load
imbalance while matching p; across all our datasets. The
difference between times taken by threads to finish all of their
work was only up to 71 ms.
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7 Related Work

There has been a variety of research to develop efficient graph
mining solutions. To the best of our knowledge, PEREGRINE
is the first general-purpose graph mining system to leverage
pattern-awareness in its programming and processing models.

General-Purpose Graph Mining Systems. Several
general-purpose graph mining systems have been devel-
oped [8, 12, 22, 34, 52, 57]. Arabesque [52] is a distributed
graph mining system that follows a filter-process model
developed on top of map-reduce. It proposed the “Think
Like an Embedding” processing model. Fractal [12] extends
this to the concept of fractoids, which expose parts of the
user program to the system; in conjunction with depth-first
exploration, fractoids allow the system to more intelligently
plan its execution. G-Miner [8] is a task-oriented distributed
graph mining system that enables building custom graph
mining use cases using a distributed task queue. RStream [57]
is a single machine out-of-core graph mining system that
leverages SSDs to store intermediate solutions. It uses
relational algebra to express mining tasks as table joins.
AutoMine [34] is a recent single-machine system that
generates efficient code to match patterns for common graph
mining tasks. As discussed in §2.2, none of these systems are
fully pattern-aware, the way PEREGRINE is: these systems
perform unnecessary explorations and computations, require
large memory (or storage) capacity, and lack the ability to
easily express mining tasks at a high level. While Fractal
uses symmetry breaking for pattern matching use case, other
applications like FSM and motif counting are not guided
by symmetry breaking, and hence they end up performing
unnecessary explorations. Similarly, AutoMine also does
not employ symmetry breaking for any of the use cases,
requiring users to filter duplicate matches by individually
examining every single match when enumerating patterns.
Lack of full pattern-awareness not only makes these systems
slower, but also limits their applicability to more complex
mining use cases. Finally, ASAP [22] is a programmable
distributed system for approximate graph mining where users
write programs based on sampling edges and vertices to
reason about the probabilistic counts of patterns.

Purpose-Built Graph Mining Solutions. These works ef-
ficiently perform specific graph mining tasks. ApproxG [35]
is an efficient system for computing approximate graphlet
(motif) counts with accuracy guarantees. [2] uses combinato-
rial arguments to obtain counts for size 3 and 4 motifs after
counting smaller motifs. [10] efficiently lists k-cliques in
sparse graphs and [4] is aimed at k-plexes which are clique-
like structures. GraMi [13] leverages anti-monotonicity for
FSM on a single machine while ScaleMine [1] is a distributed
system for FSM that uses efficiently computable approximate
stats to inform its graph exploration. [51] is also a distributed
system focusing on FSM. [50, 61] are recent works aimed at
analyzing small graphs whose edges have large attribute sets.

Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora

Several systems aim to perform efficient pattern match-
ing. OPT [25] is a fast single-machine out-of-core triangle-
counting system whose techniques are generalized by Dual-
Sim [24] to match arbitrary patterns. [49] proposes several
provably cache-friendly parallel triangle-counting algorithms
which provide order-of-magnitude speedups over previous al-
gorithms. DistTC [20] presents a distributed triangle-counting
technique that leverages a novel graph partitioning strategy
to count triangles with minimal communication overhead.

[31] is a distributed map-reduce based pattern matching
system that first finds small patterns and joins them into large
ones. QFrag [47] is another map-reduce based distributed
pattern matching system that focuses on searching graphs
for large patterns using the TurboISO [19] algorithm. Prune-
Juice [43] is a distributed pattern matching system that fo-
cuses on pruning data graph vertices that cannot contribute
to a match. [18] is a scalable subgraph isomorphism algo-
rithm while TurboFlux [26] performs pattern matching on
dynamically changing data graphs. [40] presents a pattern
matching plan optimizer incorporated in Graphflow [23] that
uses both binary and multi-way joins. [44] is a resource-aware
distributed graph querying system for property graphs.

Graph Processing Systems. Several works enable process-
ing static and dynamic graphs [11, 14, 15, 21, 29, 32, 33, 42,
45, 46, 48, 54-56, 62]. These systems typically compute val-
ues on vertices and edges rather than analyzing substructures
in graphs. They decompose computation at vertex and edge
level, which is not suitable for graph mining use cases.

8 Conclusion

We presented PEREGRINE, a pattern-aware graph mining sys-
tem that efficiently explores subgraph structures of interest,
and scales to complex graph mining tasks on large graphs.
PEREGRINE uses ‘pattern-based programming’ that treats
patterns as first class constructs. We further introduced two
novel abstractions: ANTI-EDGE and ANTI-VERTEX, that
express advanced structural constraints on patterns to be
matched. This allows users to directly operate on patterns
and easily express complex mining use cases as ‘pattern pro-
grams’ on PEREGRINE.

Our extensive evaluation showed that PEREGRINE out-
performs the existing state-of-the-art by several orders of
magnitude, even when it has access to up to 8x fewer
CPU cores. Furthermore, PEREGRINE successfully handles
resource-intensive graph mining tasks on billion-scale graphs
on a single machine, while the state-of-the-art fails even with
a cluster of 8 such machines or access to large SSDs.
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