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Abstract -
We propose a new model called the “composite model” to
represent spectral functions. This model is built on the
idea of decomposing all spectral functions into smooth
and spiky components, each with its own distinct "
representation. A smooth spectrum can be expressed with
coefficients of a set of given basis functions, and the
discrete spikes in a spiky spectrum with their locations ®
and heights. For the smooth part, we propose re-sampling
functions that are reconstructed from the coefficients in a
linear combination to improve efficiency. Spectral
multiplication is thus greatly reduced in complexity. This

Efficiency In many cases, the overall performance
efficiency is largely determined by the efficiency of
multiplying two spectral functions (a computation
associated with each reflection and transmission).
Portability: The data representing spectral functions
should be portable. This facilitates exchanges and
aggregations of spectral data from various sources.
Flexibility: A representation should allow convenient
adjustment according to application requirements (e.g.,
accuracy is a priority in realistic image synthesis while
efficiency is more important in real-time simulations).

In this paper, we propose a new model called the

new model shows remarkable advantages in representin%ompo_Site mod€P0] to represent spectral functions. The
spectral functions with aspect to accuracy, compactnessbasic idea is that we classify all spectral functions into
computational efficiency, portability, and flexibility, and it Smooth and spiky spectra, and represent the two categories
has a great application potential in color science, realistic differently. A smooth spectrum can be effectively
image synthesisy and color image ana|ysisl Here we appbﬁxprESSEd as a linear combination of a finite set of given
it to rendering images invo]ving real Sp|ky illuminants as basis functions and therefore be represented through the
well as objects with light dispersion. The composite modelcoefficients in the expansion. The discrete spikes of a

is shown to surpass other models in these applications. ~ SPiky spectrum can be represented through their locations
and heights, and the smooth background (if any) can be

represented in the same way as if it were a smooth
spectrum. This new model demonstrates remarkable
advantages in representing spectral functions and has great

Spectral functions, such as spectral power distributions"“ppl'c""t!On PO“*‘”“‘”!' in_color sclence, realistic image
§ynthe3|s and color image analysis.

(SPDs) of lights and reflectances of materials, are essentia
in realistic image synthesis, color image analysis, and . i
color science. Because natural spectral functions can be of- Previous Spectral Representations
arbitrary shape, they may need an infinite number of
parameters to describe exactly. In practice, however,2.1. Color models
describing every spectral function with even a finite but
large number of parameters is not feasible. For example, a Color models, such as the CIE XYZ or RGB models,
photograph usually involves hundreds or even thousandgire spectral representations based on projections from the
of spectral functions. Therefore, it is highly desirable that infinite-dimensional spectrum space to three-dimensional
we develop a method that can represent all spectracolor spaces. The CIE XYZ model is described by
functions _through_ a small number of parameters while X, :KIAmaXS(/\)xk(/\)dA, k=123 2.1)
guaranteeing sufficient accuracy. o

Sp.ecifica'llly,l spectral representations should meet thewhereS(A) is a spectral functiong() are the CIE XYZ
following criteria:

+ Accuracy A representation must be capable of [R00 TENER MO T Tl BT el are
achieving very high accuracy. 9 g€, '

=  CompactnessSpectral functions should be represented .?_?]\é?rm;zzgszng Ce(zmi]spiﬁtsnuef;‘siii'ei:ﬂZggjyagnd[ ﬁoitzeib”g)s/'
with as few parameters as possible. This can greatlymuch informationgcan be lost during the tr)f':msfc;rma’tion
reduce the memory required in computations. 9

1. Introduction



from a spectral function into a color. As most natural where the summation is over all relevant spectral functions
spectral functions are very smooth, color models seem tawithin the domain, including SPDs, reflectances and
work fine in many applications [1]. But in general they are transmittances, and perhaps their combinations.

not accurate and provide no potential for achieving The linear model demonstrates advantages in both

reliable accuracy. Finally, they provide little flexibility. accuracy and compactness. It is also flexible because, once
the basis functions are determined, one can use various
2.2. Point sampling method numbers of the basis functions. However, this model is not

efficient. First, computing the product of two spectral

This method represents a spectrum through samplgunctions is Ol1?). Second, there is a computational cost
values at a set of discrete wavelengths, with samplingin determining the basis functions. If we use a fixed set of
intervals typically from 1 nm to 10 nm. An advantage of basis functions for different scenes, the basis functions

this method is its capability of achieving high accuracy if may possibly not work well for some spectratsidethe

the sampled points are dense enough. This method is alsepectral domain from which the basis functions are
efficient in performance in that products of spectral derived [4]. On the other hand, if we determine the basis
functions are computed by simply multiplying functions every time for different scenes, the repetitive
corresponding functional values at sample points, computations can be a significant bottleneck. Also, the
S3(A) =S1(A)Sy(A), i=1...N, (2.2) model is not very portable because the basis functions are

with cost ON). Moreover, the point sampling method is domain-dependent.

portable and is flexible (one can use different numbers of
sampled points). Its disadvantage is poor compactness. I-2. Summary
particular, this method is not suitable for representing

spectra with spikes such as in fluorescent SPDs. As shown in Table 1, the previous representation
methods have different advantages but none of them meets
2.3. Analytical method all the criteria. In comparison, the composite model

proposed in this paper can meet all the criteria.

Typically, we can represent spectral functions with

fitting polynomials [6,18]. The accuracy and compactness ~ 1aple 1: Comparing different spectral models.

are thus determined by the polynomial degrie Color [Point _ |Analytical [ Linear [Composite
Unfortunately, whenM becomes largeM = 7), a models [sampling model [model
computational instability arises [5]. Therefore, the fitting |Accuracy No Yes No Yes | Yes
polynomials have to be of low degree, which limits the [Compactnesy Yes | No Yes Yes | Yes
potential in achieving accuracy. Also, this method is not{Emciency  [ves | Yes No No | Yes
fficient because multiplying two spectral functions Portability | Yes Yes No Mo ves
very e plying p Flexibility No Yes Yes Yes Yes

is O(M?). Finally, although portable, it is not flexible. If
we increaseM for better accuracy, all the polynomial

The color models, in spite that they are ubiquitous in
coefficients have to be recomputed. P y i,

software, are not sufficient to be the foundation for various
. applications because of their limited accuracy. For the
2.4. Linear model same reason, the analytical method is not appropriate
. . ) either. As for the point sampling method, its weakness in
The key point of linear model is to express a spectrtumcompactness cannot be eliminated because neighboring

as a linear combination of a set of basis functigiy(3) sampled points are inherently redundant. The linear model
M offers freedom in choosing the basis functions according

S(A) = ) amBm(A), (23) o specific spectral domains, and this freedom could be

m= ] o applied successfully in representing either smooth or spiky

so that spectra are represented using coefficants, ay. spectral functions. However, it is this freedom that leads to

In principle, any set of basis functions can be used as longhe model’s weaknesses in efficiency and portability. In
as they are linearly independent. In practice, however, thegppiications, to use the linear model efficiently we must
basis functions are usually derived numerically in such ayse a uniform format (the same basis functions) to
way that they can best represent all spectral functions for gepresent both smooth and spiky spectral functions, but
specified domain [4,13,16,19], e.g., choosing the basissmooth and spiky spectra are inherently opposite to each

functions to minimize other. Smooth ones are dominated by low-frequency
M 2 components and are more effectively described in the
; I[S(A)_ZCmBm(A)] da, (2.4) frequency (inverse of wavelength) space, while spikes

{S(A)} m=1

contain significant high-frequency components and are



more effectively described in theavelengthspace. For M
this reason, the linear model has to rely on statistical and S(A) = Ssmoott(4) * Sspiky(A) = SsmootnlA) + ZWm5(A =lm),
subjective calculations in choosing the basis functions m=
numerically, but cannot benefit from using simple and (3.4)
neutral analytical functions (such as the Fouriers) as thewhere each spike is described by a delta function, which is
basis functions. a good approximation because all spikes are very narrow

(typically under 1 nm). Thus, all spectral functions can be
3. New Method: the Composite Model represented through scheme A:

(1) ag,&,...,ay andby,... by, lowestFouriercoefficierts

3.1. Basic concept (2) (I3, W), (I, Ws),...,(In » Wiy ), Spikelocationsandweights
o (Scheme A)

Fig. 1 shows examples of smooth and spiky spectral . .
functions. The curves in (a) and (b) are reflectances of3-2. Classifying smooth and spiky spectra

seven MacBeth Checkers [8,14] and they are smooth ) N
spectral functions. The spectrum in (c) is the SPD of the Table 2 summarizes the occurrences and conditions of

CIE “daylight” fluorescent lamp [22] and it is a spiky smooth aqd spiky spectral functions [15, 21]._ The smooth
spectral function. Note that the spikes are actually 10¢ategory includes the SPDs of thermal light sources
times higher, but for better visibility they are drawn with 1.0

width of 10 nm while maintaining the same areas (or a
weights) of the spikes. 08 | Red
The composite model [20] is built on the idea of o 06 | Blushgreen
classifying all spectral functions into smooth and spiky E Orange
categories, and representing them differently. A smooth g 04
spectrum can be expressed as a linear combination of a se 0.2 |Yellow green
of basis functions and represented through the '
corresponding coefficients. For a spiky spectral function, 0.0 i L L
its smooth background (if any) can be represented 400 500 600 700
likewise, and its discrete spikes can be represented Wavelength (nm)
through the locations and heights of the spikes.
If S(A) is an smooth spectrum, we can express it as a 1.0
Fourier series over the visible randgil, Amad : b
0 08 L White
S(A) = Z}{an cod2m(A = Ain)/ L]+ by sin[2m(A = Amin)/ L], o /W
n= s =
3.1) S 04
whereL = Ana—Amin @nd the coefficients are
0 1 Ao 0.2 Magenta
g L.[\mm SAA 0.0 L ! .
=2' . 400 500 600 700
%afr S(A)cod2m(A - Amin)/L]dA, n=12... Wavelength (nm)
O 5 )
éb“ = S(A)sin2m(A = Agin)/L]dA, n=12....00 200
(3.2) 5 150
For smooth SA), we can ignore its high-frequency %
components, say those abowd, so that SA) is g 100
approximated by =
N © 50
S(A) = Zj{an cod2rm(A = Ain)/ L]+ by sin[2m(A = Ain) /L], &
n= 0

(3.3) 400 500 600 700
with 2N+1 coefficientsag, ay, ..., ay andby, by, ..., by. For

. . Wavelength (nm
a spiky spectrum, we decompose it as gth (nm)

Fig. 1: Smooth and spiky spectral functions.



Table 2: The sources, generations, and conditions of smooth and spiky spectral functions.

Generations and conditiong Smooth spectral functions Spiky spectral functions
Light sources Thermal sources (sunlight, incandescent lamps, gftliorescent light sources, mercury lamps and sodium lamps, and
ordinary flames) lasers
Reflectances and Non-fluorescent materials (the case of most naturgFluorescent materials, very few
transmittances of materials |materials)
After reflections and The outgoing SPDs are smooth if the incident SPDOJ he outgoing SPDs are spiky if the incident SPDs are spike, or
transmissions are smooth and the materials are non-fluorescent |the materials are fluorescent
Rayleigh scattering, The outgoing SPDs are smooth if the incident SPOJ he outgoing SPDs are spiky if the incident SPDs are spiky
interference, diffraction are smooth
After light dispersion The result SPDs are monochromatic; may vanish if the ingident
SPDs are spiky but without smooth background

(sunlight, incandescent lamps, and ordinary flames),3.3. Proof: Sufficiency to represent all spectral
reflectances and transmittances of non-fluorescentfynctions through a few parameters

materials, and their combinations. Smooth spectral

functions usually remain within the category when  |tjs important to show that all spectral functions can be
subjected to physical optical events such as Rayleighrepresented through a small number of parameters while
scattering, interference and diffraction. Typical examples stjll achieving sufficient accuracy. Since a spectrum can
of spiky spectral functions are the SPDs of lights from pe decomposed into a smooth component and a collection
fluorescent sources, vapor discharge sources (mercury angf spikes, where the number of spikes is small (typically
sodium lamps), and lasers. Spiky SPDs that undergopelow 5) [22], we only need to show that thmooth
reflections, transmissions, or the physical optical eventscomponent can be sufficiently represented through a small
remain Splky Fina”y, when ||ghtS interact with number of parameters_

fluorescent materials, even if the incident SPDs are e start by performing Fourier transformations for the
smooth the outgoing SPDs can be spiky. However, if thethree CIE color matchlng functions

incident SPDs are spiky but do not have a smooth

background, the resultant SPDs after dispersion may X (A) = {A]'kcos{Zm(/\—/\min)/L] (3.6)
vanish in certain outgoing directions. A0 '
Natural spectral functions seldom contain peaks as +'By e sinf2m(A = Ain) /L]

narrow as between 1 nm and 10 nm. This can bewhere the coefficients are
understood in terms of light coherence in physics. Suppose
a spectrum is dominated by a single peak, then the DAOK__J. X (A)dA,
coherence length of the corresponding light is give by [2] =0

A 23 (3.5) %m =< I "@)eod2m( )/ LA, n=12..0
where A, is the peak center ami) is the peak width. (B, « __J' xk(/\)sm[Zm(/\ Amin)/L]dA, n=12...
According to this equation, the narrower the peak, the H min
larger the coherence length.Af = 550 nm and\A = 10 3.7)

nm, thenAl ~ 30000 nm, over which the light should be Substituting Egs. (3.1) and (3.6) into (2.1), the tristimulus
regarded as coherent light. However, it is well known that values can be expressed as

common light sources (i.e., except lasers) only generate ®

incoherent light, and incoherent light remains incoherent Xy = LZ[anAn,k +ann,k]: k=123 (3.8)
while interacting with regular materials. An interesting n=

case is fluorescence, an effect in which light is absorbedThis implies that if the high-frequency coefficients of
and then re-radiated at longer wavelengths. This effecteither the color matching functions or the smooth
involves electronic transitions between discrete energycomponent are negligibleég(A) can be represented with
levels and thus the outgoing spectra are characterized witlyood accuracy through its low-frequency Fourier
very narrow spikes, which can be treated separately in ourcoefficients. Fig. 2 shows the first 21 Fourier coefficients
composite model. Overall, it is practically correct to of the three CIE color matching functions plotted against
ignore the occurrences of peaks of widths between 1 nmthe coefficient ordinals (in the sequergeay, by, ..., ay,

and 10 nm, and to regard the smooth (without peaks ofby). Coefficients of color matching functiomg(A), Xx(A),
widths below 10 nm) and spiky (with peaks of widths and xs(A) are represented by solid circles, empty circles
below 1 nm) categories as beingmplementaryto each  and empty squares, respectivélyieir amplitudes become
other. negligibly small when the ordinals are above 11.



0.8 Therefore, we represent the three color matching

functions analytically via
Dy (A) = by, expl-4(n (A = Ac1a)* [ Wis”]
0 *hyexpl4in2)(A —Ac,lbz)z /wzlbzl,
[%2(A) =hy exp[-4(In 2)(A = A¢ )" [ w,7],
X3 (A) = hy exp[-4(In 2)(A = A 3)* / w5’

- Substituting into (3.7) and calculating the integrals (see

(3.10)

Value

08 L v 1 the Appendix), we obtain
1 3 5 7 9 11 13 15 17 19 21 Ank:Box O expl-mn?w 2/ 4(In2)L2] (3.11)
Coefficient ordinal For smooth spectra, it is safe to assume
Fig. 2: Fourier coefficients of the CIE color matching anD%, an%, (3.12)

functions against the coefficient ordinals. ) o o
because the Fourier coefficients should vanish in speed no

Now let us characterize analytically precisely what slower than . Step functions and linear functions with
number of frequencies must be retained in smooth spectralon-zero slopes (triangular functions) are such worst
when multiplying the color matching functions. First, we cases. From (3.11) and (3.12), we obtain the ratios of high-
have found that the CIE color matching functions can befrequency terms to the first term in Eq. (3.8)

accurately approximated in terms of Gaussian functions lanAnk | _ 4 w2 14 2)1? (3.13)
g(A) = hexp[-4(In2)(A - A.)?/w?], (3.9) afk N
if the values of parameters, A, and w are chosen With L = 300 nm and the parameter values given in

appropriately. Here, parametérsi., andw correspond to Tablg '3, tQ make the above ratio less than 0.05, a sufficient
the height, center, and width (at half height) of a Gaussiancondition is than be not less than 5. In other words, if we
function, respectively. Note that the CIE color matching keep the first 25+1 = 11 Fourier coefficients, the first
function x,(A) needs two Gaussian functions to fit it ignored term iny causes a relatlvg error less than 0.05,
because it has two peaks. Fitting parameter values that w@nd the following terms vanish rapidly (and they tend to
found are shown in Table 3. Using these values, the fittegcancel each other because they are related to the sine and

curves are very close to the original CIE color matching €0Sine components of high frequencies). For most natural
functions, as shown in Fig. 3. smooth spectral functions, the Fourier coefficients vanish

much faster than @/and therefore the required number of
parameters will be less than 11. Thus we have proved that

Table 3: Fitting values of the color matching functions. ;
we can represent all spectral functions through a small

small peak oky(A) | large peak of(A) X2(A) X3(A) number of parameters while achieving sufficient accuracy.
Ac1a= 445 Ac1b = 595 Ae2=560 |Ac3=450 Note that a similar conclusion was obtained based on
Wia= 45 Wap = 80 W, =100 |Ws =55 statistical studies [13], but ours is the first analytical proof.
h13= 0.38 h1b =1.06 hz =1.0 h3 =1.8 . .
3.4. Improving performance by re-sampling
2.0 However, scheme A is not very efficient. First, the cost
for multiplying two smooth spectral functions is NB).
1.5 Second, the multiplication between spiky and smooth
e spectra invokes evaluations of sine and cosine functions.
E 1.0 Let a spiky spectrum be expressed as
M
0.5 SIA) =S () + Zwmw ~lm), (3.14)
m=
0.0 whereS,(A) is smooth. IfS(A) is a smooth spectrum, then
360 440 520 600 680 760 B M
W avelength (nm) S(N)S(A) = §(A)S(A) + Sz(A)ZWmCW\ ~Im)
m=1 (3.15)
Fig. 3: CIE color matching functions (thick lines) and =3NS A) + ) S(Im)Wnd(A =lm)

fitted Gaussian functions (thin lines). m=



To computeSs(l,,), the value ofS(A) at the location of  transmissions, because it can significantly improve
spike m, we need to evaluate several sine and cosineperformance.
functions using Eg. (3.3).

To improve the efficiency, we propose-samplingthe Table 4 (I): The first 7 Fourier coefficients in scheme A.
functions that are reconstructed with the Fourier

a0 al bl a2 b2 a3 b3

coefficients in scheme A. SuppoSg§A) is reconstructed Source A 1019 25 635 -17 296 25 -195
with 2N+1 coefficients, then the highest frequency SourceC 993 -54 157 -78 52 -7.0 -34
involved is N/L. According to the Shannon sampling Dalight 654 -327 136 65 204 0.7 -3.8
theorem, the re-sampling interval in the visible range odiumliam 00 00 00 00 00 00 00
should be less thd(2N+1) to avoid information loss. To L.

meet this requirement, we takB-€ sampled points in the Table 4 (1I): The spikes in the spectra.

visible range. Therefore, a smooth spectral function can be Locations and wehts of all pikes

represented throughky, Si, ..., S+t that are functional Source A No pikes

values of the reconstructed(A) at the AN+2 sampled Source C No pikes

Daylight (404.7, 50), (435.8, 132), (546.1, 66), (577.8, 14)

wavelengthslo, Ay, ..., Aons Sodium larp  (589.0, 31.95)

=S'(/\,)=S'(IAA +/\min)7 i :O,l,,ZN +1 (316)
=L/(2N+1) Table 4 (lll): Parameters in scheme B.

Thus spectral functions can be represented in “scheme B”:
(1) 9.S1:---,Son+1, Valuesof reconstruedfunctions

sl s2 s3 s4 s5 s6 s7 s8

- - : Source A 916 96 507 526 87.8 984 1363 143.6
(@) (I, w),(12,W3)....(Im . Wy ), spikelocationsandweights Source C 775 1115 1275 109.8 99.6 103.7 89.7 88.4
(Scheme B)  Daylight 241 67.8 86.2 826 756 1069 87.4 44.1

In scheme B, products between smooth spectra can hg&odiumlamp 0.0 00 00 00 00 00 00 00
obtained by multiplying the corresponding functional
values, which involves N+2 multiplications. When
multiplying a spiky and a smooth function, the value of
S(l,y) in EqQ. (3.15) can be given by a linear interpolation

4. Applications in Realistic Image Synthesis

, (=) Mz =10) In this paper, we focus on applying the composite
%(Im) =%5(}\i)+%5(/\iﬂ) (3.17) model to image rendering by ray tracihgirst, we show
B <lm<Aia that the composite model does indeed capture important
wherem=1.2,..M. spectral information correctly, by comparing with an RGB

One may question the necessity of scheme A, as wemnodel rendering of Gray Object Metamers 5 and 11, with
could use scheme B based on direct sampling on the raeflectances shown in Fig. 4, metameric with respect to the
spectral data derived from measurements. However, wet931 CIE Standard Observer for source C [22]. Our
believe that scheme A is necessary. First, direct sampling®ndering results show that a spectrum-based approach is
on raw spectral data may result in significant errors due tocrucial.
noises or local peaks or valleys. In contrast, the re-

sampling based on scheme A can mitigate such error: 0.8
because the noises, peaks or valleys can be filtered ou
Second, scheme A is useful for making tradeoffs betweer 0.6
accuracy and compactness, by changing the number ¢ §
representing parametexsfor smooth spectra. 8 0.4
2
3.5. Representing concrete spectral functions & 02
. . - . 0.0
Table 4 displays the values of Fourier coefficients in
schemes A and B for the SPDs of the CIE light sources A 400 500 600 700
and C (smooth spectra), the fluorescent daylight (spiky Wavelength (nm)

with a smooth background), and a 90w low-pressure
sodium lamp (spiky without smooth background).

In summary, the composite model satisfies all the
representation criteria. In particular, scheme A can
mitigate errors and is useful for making tradeoffs between
accuracy and compactness. Scheme B is recommended for

computations that involve many reflections and * The rendered color images with the composite model can be viewed at
URL: http://www.cs.sfu.ca/~graphics/pubs/pmcvg99/.

Fig. 4: Reflectances of Gray Object Colors Metamers 5
and 11 [22].




Second, we compare the composite model with thethat this model will push forward both research and
point sampling method with respect to fluorescent applications in realistic image synthesis.
illumination. We render images of seven spheres whose In above, we have shown the advantages of the
reflectances are of the “red”, "orange”, "yellow”, "yellow- composite model in rendering effects of spiky
green”, "bluish-green”, "magenta”, and "white” of the illuminations and light dispersion. Besides these effects,
MacBeth Checkers (refer to Fig. 1), respectively. For the other modeling situations that require at least a partial full-
composite model, although there are noticeable errorsspectrum mode may also benefit from the composite
when using 6 sampling points, using 11 re-sampling pointsmodel idea. These include such physical optics
is almost undistinguishable from the highly accurate phenomena as scattering, interference, diffraction, volume
result, and increasing the re-sampling points does notabsorption, and light reflection from rough surfaces.
make much difference. In contract, in the point sampling The composite model can be further improved in
method, the results are substantially different from the several ways. In our discussion above, all spikes are
accurate one, even with 61 sampling points. Also, whenregarded as having zero widths and infinite heights (but
increasing the number of the sampling points, the resultstheir products are finite). This treatment can be
are not stable but vibrating. The vibration is caused bygeneralized so that all spikes have finite widths and
whether or not some sampling points happen to be insideheights. With this generalization, the composite model can
narrow spikes. This situation can be stabilized only whenmore accurately and flexibly describe spectral peaks with
we use a very large number of sampling points so that it isvarious widths and heights. Also, the range of wavelengths
guaranteed that there are a number of sampling pointsould be extended beyond the visible to include the ultra-
inside every spike. Because all spikes in the fluorescentviolet region when a scene involves fluorescence. The
SPD are made uniform with width of 10 nm, as shown in composite model provides a basis to effectively represent
Fig. 1(c), we need at least 61 sampling points to stabilizespectra for fluorescence effects, which involve spectral
the results. Note that we should not make the spike widthsspikes; then the spectral multiplication in Eq. (2.2) is not
wider, as that will introduce errors due to the different valid and a representation in form of a triangular matrix is
distributions with respect to wavelength. This shows the required [7,22].
advantage of the composite model over the point sampling In conclusion, we have proposed the composite model
method. to represent spectral functions based on decomposing

One special capability that the composite model offers smooth and spiky components. The smooth components
is rendering images for monochromatic illuminations. can be expressed as a linear combination of a set of given
Another special capability is rendering light dispersion. basis functions and the spikes can be represented through
For this purpose, a regular ray tracer should be generalizetheir locations and heights. Specifically, we have proposed
to describe the refractive dependency on wavelength fortwo schemes for representing the smooth components:
dispersive materials. In other words, a single refractive rayscheme A using low-frequency Fourier coefficients, and
in a regular ray tracer is now split into a series of scheme B using the re-sampled values of functions
dispersive rays with consecutive wavelength and refractivereconstructed with the Fourier coefficients. Scheme A
directions. Note that a split ray contains a spectral provides appropriate high accuracy and flexibility, while
component in a narrow wavelength range, which can bescheme B is recommended for achieving performance. As
represented naturally with the composite model. While the composite model meets all the representation criteria
effects of monochromatic illuminations and light of accuracy, compactness, computational efficiency,
dispersion are difficult (even impossible) to render with portability, and flexibility, it possesses great application
other spectral models, they are very easy to render withpotential in various application areas.
the composite model.

Appendix A
5. Future Directions and Conclusion With the color matching functions in Eq. (3.7) in terms
of the Gaussians in (3.9), we can replace the integrals over
Much research effort has focused on generatingthe interval Pnyin, Amad With (-, +00). This is a good
realistic computer images based on full spectral approximation because the Gaussian functions are
information [10], such as using the point sampling method negligibly small outside rang@ fin, Amin]. Thus, we obtain
[3,9,11,12], the polynomial method [6,18], and the linear 2h (4 -A) I w
model [16,17]. However, due to their limitations, these %Ah :TJ:OO exp )" cod2m(A = Apin)/ L] dA
previous methods are effective only under restrictive oh e 2w
conditions but are not robust enough to be a universal %ﬂ :TJ’_W exp M AU W sinf2m(A - Aryn) /L] A
basis for various problems. Since the composite model (A1)
eliminates the limitations of previous methods, we expect '



Note that we have dropped the indexNow let us make
variable changel = A+A, and leta = 2(In2)%w, B =
2rm/L, y=2h/L, andA’ = Ac—Anyin. Thus we have

A, = yf:e‘“”z Cos[B(A + AY]dA

- ycos(@\) f : &% cos(@A)dA .
—ysin(B") J’_+ :e“”“z sin(B)dA '
= 2ycos([3}\')‘ro+£>° e cos(BA)A

Here we have used the fact that @3(is even while
sin(BA) is odd over €, +c0). Similarly,

B, = yf:e_az’\z SIN[B(A + A')]dA

+00
= ysin(B") I e cos@BA)dA

+00 2,2 (A3)
+)co(A") I e sin(BA)dA
oo+£>o
= 2ysin(B)") I e 9 cos(BA)A
0
Now using the fact that
J:)m e cosBA)dA = ge‘ﬁz“‘“z , (A.4)
we obtain
Eph _ Ny cosB) -p
0 (A.5)

a
% - \/EyS"'](ﬁA’) 6_32/402
n
a

Substituting with the original parameters, we have

a
Py = Jrhw Cod2rm(A — Amin) /L] €T /4 L2
u vIin2L (A.6)
hw . — 2/4(n2)L2
=2 ""Tsinl2m(A, - Ay )/ L]e W
n ‘\/EL [ C min ]
Specifically for the first coefficient,
_ Nmhw (M) /4(n2)12 (A7)

~2dinaL
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Comparison between the composite model and with an RGB model.

Images (a) and (b) are rendered with the composite model, and (c) and (d) with an RGB
model. In every image, the left sphere has the reflectance of Metamer 5 and the right one of
Metamer 11. The illuminant is source C for images (a) and (c) and source A for images (b)
and (d). The metamerism is preserved in image (a), which is generated using the composite
model. However, as expected, in the RGB-generated image (c) the two spheres are
substantially different in color. These results show that a spectrum-based approach is crucial.

Comparison between the composite model and the point sampling method.

Images of seven spheres whose reflectances from left to right are the "red", "orange",
"yellow", "yellow-green”, "bluish-green”, "magenta”, and "white" of the MacBeth Checkers
(refer to Fig. 1), respectively. Except for (e), illumination for all images is fluorescent
daylight (refer to Fig. 1). Image (a), which is highly the accurate, is rendered with the point
sampling method using 1201 sampled points with all spike widths of 1 nm. Images (b), (c)



and (d) are rendered with the composite model using 6, 11 and 21 sampling point for the
smooth background, respectively. Images (f)-(j) are rendered with the point sampling model
using 6, 11, 21, 31 and 61 sampling point, respectively. For the composite model, although
there are noticeable errors when using 6 sampling points, i.e., the 1st and 6th spheres in
image (b) are darker, image (c) using 11 re-sampling points is almost undistinguishable from
the highly accurate image (a), and increasing to 21 re-sampling points does not make much
difference. In contract, using the point sampling method, the results are substantially
different from the accurate one, even with 61 sampling points. Also, when increasing the
number of the sampling points, the results are not stable but vibrating (note the colors of the
white sphere). In fact, the white sphere in image (j) appearing "bluer” is caused by the larger
spike width used (i.e., 10 nm). These results clearly demonstrate the advantage of the
composite model over the point sampling method.

a b c d

Light dispersion rendered with the composite model.

The object is a transparent hexagon pyramid (i.e., the bottom face is a regular hexagon). The
camera points to the pyramid from its top, while a white surface light source is located below
the pyramid. The pyramid is non-dispersive in image (a) and dispersive for the rest. The
pyramid surface is not perfectly smooth for images (a), (b) and (c), which are the reason for
the non-highlight shades, but perfectly smooth for image (d), which has no non-highlight
shades. Image (b) has 6 dispersive spawned rays while image (c) has 10, which results in the
smoothness of the dispersive color bands in image (c). Note that the yellowish non-highlight
colors in image (b) and (c) are due to the overall effect that long-wavelength components are
more likely to penetrate.



