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Abstract
We propose a new model called the “composite model” to
represent spectral functions. This model is built on the
idea of decomposing all spectral functions into smooth
and spiky components, each with its own distinct
representation. A smooth spectrum can be expressed with
coefficients of a set of given basis functions, and the
discrete spikes in a spiky spectrum with their locations
and heights. For the smooth part, we propose re-sampling
functions that are reconstructed from the coefficients in a
linear combination to improve efficiency. Spectral
multiplication is thus greatly reduced in complexity. This
new model shows remarkable advantages in representing
spectral functions with aspect to accuracy, compactness,
computational efficiency, portability, and flexibility, and it
has a great application potential in color science, realistic
image synthesis, and color image analysis. Here we apply
it to rendering images involving real spiky illuminants as
well as objects with light dispersion.  The composite model
is shown to surpass other models in these applications.

1. Introduction

Spectral functions, such as spectral power distributions
(SPDs) of lights and reflectances of materials, are essential
in realistic image synthesis, color image analysis, and
color science. Because natural spectral functions can be of
arbitrary shape, they may need an infinite number of
parameters to describe exactly. In practice, however,
describing every spectral function with even a finite but
large number of parameters is not feasible. For example, a
photograph usually involves hundreds or even thousands
of spectral functions. Therefore, it is highly desirable that
we develop a method that can represent all spectral
functions through a small number of parameters while
guaranteeing sufficient accuracy.

Specifically, spectral representations should meet the
following criteria:
� Accuracy: A representation must be capable of

achieving very high accuracy.
� Compactness: Spectral functions should be represented

with as few parameters as possible. This can greatly
reduce the memory required in computations.

� Efficiency: In many cases, the overall performance
efficiency is largely determined by the efficiency of
multiplying two spectral functions (a computation
associated with each reflection and transmission).

� Portability: The data representing spectral functions
should be portable. This facilitates exchanges and
aggregations of spectral data from various sources.

� Flexibility: A representation should allow convenient
adjustment according to application requirements (e.g.,
accuracy is a priority in realistic image synthesis while
efficiency is more important in real-time simulations).
In this paper, we propose a new model called the

composite model [20] to represent spectral functions. The
basic idea is that we classify all spectral functions into
smooth and spiky spectra, and represent the two categories
differently. A smooth spectrum can be effectively
expressed as a linear combination of a finite set of given
basis functions and therefore be represented through the
coefficients in the expansion. The discrete spikes of a
spiky spectrum can be represented through their locations
and heights, and the smooth background (if any) can be
represented in the same way as if it were a smooth
spectrum. This new model demonstrates remarkable
advantages in representing spectral functions and has great
application potential in color science, realistic image
synthesis and color image analysis.

2. Previous Spectral Representations

2.1. Color models

Color models, such as the CIE XYZ or RGB models,
are spectral representations based on projections from the
infinite-dimensional spectrum space to three-dimensional
color spaces. The CIE XYZ model is described by
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where S(λ) is a spectral function, xk(λ) are the CIE XYZ
color matching functions, [λmin, λmax] is the visible
wavelength range, and κ is a constant. Color models are
advantageous in compactness, efficiency and portability.
Their disadvantage is insufficient accuracy [11,12], as
much information can be lost during the transformation



from a spectral function into a color. As most natural
spectral functions are very smooth, color models seem to
work fine in many applications [1]. But in general they are
not accurate and provide no potential for achieving
reliable accuracy. Finally, they provide little flexibility.

2.2. Point sampling method

This method represents a spectrum through sample
values at a set of discrete wavelengths, with sampling
intervals typically from 1 nm to 10 nm. An advantage of
this method is its capability of achieving high accuracy if
the sampled points are dense enough. This method is also
efficient in performance in that products of spectral
functions are computed by simply multiplying
corresponding functional values at sample points,
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with cost O(N). Moreover, the point sampling method is
portable and is flexible (one can use different numbers of
sampled points). Its disadvantage is poor compactness. In
particular, this method is not suitable for representing
spectra with spikes such as in fluorescent SPDs.

2.3. Analytical method

Typically, we can represent spectral functions with
fitting polynomials [6,18]. The accuracy and compactness
are thus determined by the polynomial degree M.
Unfortunately, when M becomes large (M ≥ 7), a
computational instability arises [5]. Therefore, the fitting
polynomials have to be of low degree, which limits the
potential in achieving accuracy. Also, this method is not
very efficient because multiplying two spectral functions
is O(M2). Finally, although portable, it is not flexible. If
we increase M for better accuracy, all the polynomial
coefficients have to be recomputed.

2.4. Linear model

The key point of linear model is to express a spectrum
as a linear combination of a set of basis functions Bm(λ)
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so that spectra are represented using coefficients a1,…, aM.
In principle, any set of basis functions can be used as long
as they are linearly independent. In practice, however, the
basis functions are usually derived numerically in such a
way that they can best represent all spectral functions for a
specified domain [4,13,16,19], e.g., choosing the basis
functions to minimize
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where the summation is over all relevant spectral functions
within the domain, including SPDs, reflectances and
transmittances, and perhaps their combinations.

The linear model demonstrates advantages in both
accuracy and compactness. It is also flexible because, once
the basis functions are determined, one can use various
numbers of the basis functions. However, this model is not
efficient. First, computing the product of two spectral
functions is O(M2). Second, there is a computational cost
in determining the basis functions. If we use a fixed set of
basis functions for different scenes, the basis functions
may possibly not work well for some spectra outside the
spectral domain from which the basis functions are
derived [4]. On the other hand, if we determine the basis
functions every time for different scenes, the repetitive
computations can be a significant bottleneck. Also, the
model is not very portable because the basis functions are
domain-dependent.

2.5. Summary

As shown in Table 1, the previous representation
methods have different advantages but none of them meets
all the criteria. In comparison, the composite model
proposed in this paper can meet all the criteria.
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Color
models

Point
sampling

Analytical Linear
model

Composite
model

Accuracy No Yes No Yes Yes
Compactness Yes No Yes Yes Yes
Efficiency Yes Yes No No Yes
Portability Yes Yes No No Yes
Flexibility No Yes Yes Yes Yes

The color models, in spite that they are ubiquitous in
software, are not sufficient to be the foundation for various
applications because of their limited accuracy. For the
same reason, the analytical method is not appropriate
either. As for the point sampling method, its weakness in
compactness cannot be eliminated because neighboring
sampled points are inherently redundant. The linear model
offers freedom in choosing the basis functions according
to specific spectral domains, and this freedom could be
applied successfully in representing either smooth or spiky
spectral functions. However, it is this freedom that leads to
the model’s weaknesses in efficiency and portability. In
applications, to use the linear model efficiently we must
use a uniform format (the same basis functions) to
represent both smooth and spiky spectral functions, but
smooth and spiky spectra are inherently opposite to each
other. Smooth ones are dominated by low-frequency
components and are more effectively described in the
frequency (inverse of wavelength) space, while spikes
contain significant high-frequency components and are



more effectively described in the wavelength space. For
this reason, the linear model has to rely on statistical and
subjective calculations in choosing the basis functions
numerically, but cannot benefit from using simple and
neutral analytical functions (such as the Fouriers) as the
basis functions.

3. New Method: the Composite Model

3.1. Basic concept

Fig. 1 shows examples of smooth and spiky spectral
functions. The curves in (a) and (b) are reflectances of
seven MacBeth Checkers [8,14] and they are smooth
spectral functions. The spectrum in (c) is the SPD of the
CIE “daylight” fluorescent lamp [22] and it is a spiky
spectral function. Note that the spikes are actually 10
times higher, but for better visibility they are drawn with
width of 10 nm while maintaining the same areas (or
weights) of the spikes.

The composite model [20] is built on the idea of
classifying all spectral functions into smooth and spiky
categories, and representing them differently. A smooth
spectrum can be expressed as a linear combination of a set
of basis functions and represented through the
corresponding coefficients. For a spiky spectral function,
its smooth background (if any) can be represented
likewise, and its discrete spikes can be represented
through the locations and heights of the spikes.

If S(λ) is an smooth spectrum, we can express it as a
Fourier series over the visible range [λmin, λmax] :
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where L = λmax−λmin and the coefficients are
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For smooth S(λ), we can ignore its high-frequency
components, say those above N, so that S(λ) is
approximated by
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with 2N+1 coefficients a0, a1, …, aN and b1, b2, …, bN. For
a spiky spectrum, we decompose it as
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where each spike is described by a delta function, which is
a good approximation because all spikes are very narrow
(typically under 1 nm). Thus, all spectral functions can be
represented through scheme A:

 weightsand locations spike ,),(),...,,(),,(  (2)
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(Scheme A)

3.2. Classifying smooth and spiky spectra

Table 2 summarizes the occurrences and conditions of
smooth and spiky spectral functions [15, 21]. The smooth
category   includes   the   SPDs  of  thermal  light   sources
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Generations and conditions Smooth spectral functions Spiky spectral functions
Light sources Thermal sources (sunlight, incandescent lamps, and

ordinary flames)
Fluorescent light sources, mercury lamps and sodium lamps, and
lasers

Reflectances and
transmittances of materials

Non-fluorescent materials (the case of most natural
materials)

Fluorescent materials, very few

After reflections and
transmissions

The outgoing SPDs are smooth if the incident SPDs
are smooth and the materials are non-fluorescent

The outgoing SPDs are spiky if the incident SPDs are spike, or
the materials are fluorescent

Rayleigh scattering,
interference, diffraction

The outgoing SPDs are smooth if the incident SPDs
are smooth

The outgoing SPDs are spiky if the incident SPDs are spiky

After light dispersion The result SPDs are monochromatic; may vanish if the incident
SPDs are spiky but without smooth background

 (sunlight, incandescent lamps, and ordinary flames),
reflectances and transmittances of non-fluorescent
materials, and their combinations. Smooth spectral
functions usually remain within the category when
subjected to physical optical events such as Rayleigh
scattering, interference and diffraction. Typical examples
of spiky spectral functions are the SPDs of lights from
fluorescent sources, vapor discharge sources (mercury and
sodium lamps), and lasers. Spiky SPDs that undergo
reflections, transmissions, or the physical optical events
remain spiky. Finally, when lights interact with
fluorescent materials, even if the incident SPDs are
smooth the outgoing SPDs can be spiky. However, if the
incident SPDs are spiky but do not have a smooth
background, the resultant SPDs after dispersion may
vanish in certain outgoing directions.

Natural spectral functions seldom contain peaks as
narrow as between 1 nm and 10 nm. This can be
understood in terms of light coherence in physics. Suppose
a spectrum is dominated by a single peak, then the
coherence length of the corresponding light is give by [2]
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where λ0 is the peak center and ∆λ is the peak width.
According to this equation, the narrower the peak, the
larger the coherence length. If λ0 = 550 nm and ∆λ = 10
nm, then ∆l ~ 30000 nm, over which the light should be
regarded as coherent light. However, it is well known that
common light sources (i.e., except lasers) only generate
incoherent light, and incoherent light remains incoherent
while interacting with regular materials. An interesting
case is fluorescence, an effect in which light is absorbed
and then re-radiated at longer wavelengths. This effect
involves electronic transitions between discrete energy
levels and thus the outgoing spectra are characterized with
very narrow spikes, which can be treated separately in our
composite model. Overall, it is practically correct to
ignore the occurrences of peaks of widths between 1 nm
and 10 nm, and to regard the smooth (without peaks of
widths below 10 nm) and spiky (with peaks of widths
below 1 nm) categories as being complementary to each
other.

3.3. Proof: Sufficiency to represent all spectral
functions through a few parameters

It is important to show that all spectral functions can be
represented through a small number of parameters while
still achieving sufficient accuracy. Since a spectrum can
be decomposed into a smooth component and a collection
of spikes, where the number of spikes is small (typically
below 5) [22], we only need to show that the smooth
component can be sufficiently represented through a small
number of parameters.

We start by performing Fourier transformations for the
three CIE color matching functions
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where the coefficients are
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Substituting Eqs. (3.1) and (3.6) into (2.1), the tristimulus
values can be expressed as
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This implies that if the high-frequency coefficients of
either the color matching functions or the smooth
component are negligible, S(λ) can be represented with
good accuracy through its low-frequency Fourier
coefficients. Fig. 2 shows the first 21 Fourier coefficients
of the three CIE color matching functions plotted against
the coefficient ordinals (in the sequence a0, a1, b1, …, aN,
bN). Coefficients of color matching functions x1(λ), x2(λ),
and x3(λ) are represented by solid circles, empty circles
and empty squares, respectively. Their amplitudes become
negligibly small when the ordinals are above 11.
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Now let us characterize analytically precisely what
number of frequencies must be retained in smooth spectra,
when multiplying the color matching functions. First, we
have found that the CIE color matching functions can be
accurately approximated in terms of Gaussian functions

],/))(2(ln4exp[)( 22 whg cλλλ −−= (3.9)

if the values of parameters h, λc, and w are chosen
appropriately. Here, parameters h, λc, and w correspond to
the height, center, and width (at half height) of a Gaussian
function, respectively. Note that the CIE color matching
function x1(λ) needs two Gaussian functions to fit it
because it has two peaks. Fitting parameter values that we
found are shown in Table 3. Using these values, the fitted
curves are very close to the original CIE color matching
functions, as shown in Fig. 3.
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small peak of x1(λ) large peak of x1(λ) x2(λ) x3(λ)

λc,1a = 445 λc,1b = 595 λc,2 = 560 λc,3 = 450

w1a = 45 w1b = 80 w2 = 100 w3 = 55

h1a = 0.38 h1b = 1.06 h2 = 1.0 h3 = 1.8
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Therefore, we represent the three color matching
functions analytically via
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Substituting into (3.7) and calculating the integrals (see
the Appendix), we obtain
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For smooth spectra, it is safe to assume
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because the Fourier coefficients should vanish in speed no
slower than 1/n. Step functions and linear functions with
non-zero slopes (triangular functions) are such worst
cases. From (3.11) and (3.12), we obtain the ratios of high-
frequency terms to the first term in Eq. (3.8)
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With L = 300 nm and the parameter values given in
Table 3, to make the above ratio less than 0.05, a sufficient
condition is that n be not less than 5. In other words, if we
keep the first 2×5+1 = 11 Fourier coefficients, the first
ignored term only causes a relative error less than 0.05,
and the following terms vanish rapidly (and they tend to
cancel each other because they are related to the sine and
cosine components of high frequencies). For most natural
smooth spectral functions, the Fourier coefficients vanish
much faster than 1/n and therefore the required number of
parameters will be less than 11. Thus we have proved that
we can represent all spectral functions through a small
number of parameters while achieving sufficient accuracy.
Note that a similar conclusion was obtained based on
statistical studies [13], but ours is the first analytical proof.

3.4. Improving performance by re-sampling

However, scheme A is not very efficient. First, the cost
for multiplying two smooth spectral functions is O(N2).
Second, the multiplication between spiky and smooth
spectra invokes evaluations of sine and cosine functions.
Let a spiky spectrum be expressed as
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where S1(λ) is smooth. If S2(λ) is a smooth spectrum, then
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To compute S2(lm), the value of S2(λ) at the location of
spike m, we need to evaluate several sine and cosine
functions using Eq. (3.3).

To improve the efficiency, we propose re-sampling the
functions that are reconstructed with the Fourier
coefficients in scheme A. Suppose S′(λ) is reconstructed
with 2N+1 coefficients, then the highest frequency
involved is N/L. According to the Shannon sampling
theorem, the re-sampling interval in the visible range
should be less than L/(2N+1) to avoid information loss. To
meet this requirement, we take 2N+2 sampled points in the
visible range. Therefore, a smooth spectral function can be
represented through s0, s1, …, s2N+1 that are functional
values of the reconstructed S′(λ) at the 2N+2 sampled
wavelengths λ0, λ1, …, λ2N+1
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Thus spectral functions can be represented in “scheme B”:
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(Scheme B)
In scheme B, products between smooth spectra can be
obtained by multiplying the corresponding functional
values, which involves 2N+2 multiplications. When
multiplying a spiky and a smooth function, the value of
S′(lm) in Eq. (3.15) can be given by a linear interpolation
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where m = 1,2,…M.
One may question the necessity of scheme A, as we

could use scheme B based on direct sampling on the raw
spectral data derived from measurements. However, we
believe that scheme A is necessary. First, direct sampling
on raw spectral data may result in significant errors due to
noises or local peaks or valleys. In contrast, the re-
sampling based on scheme A can mitigate such errors
because the noises, peaks or valleys can be filtered out.
Second, scheme A is useful for making tradeoffs between
accuracy and compactness, by changing the number of
representing parameters N for smooth spectra.

3.5. Representing concrete spectral functions

Table 4 displays the values of Fourier coefficients in
schemes A and B for the SPDs of the CIE light sources A
and C (smooth spectra), the fluorescent daylight (spiky
with a smooth background), and a 90w low-pressure
sodium lamp (spiky without smooth background).

In summary, the composite model satisfies all the
representation criteria. In particular, scheme A can
mitigate errors and is useful for making tradeoffs between
accuracy and compactness. Scheme B is recommended for
computations that involve many reflections and

transmissions, because it can significantly improve
performance.
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a0 a1 b1 a2 b2 a3 b3
Source A 191.9 2.5 -63.5 -1.7 -29.6 -2.5 -19.5
Source C 99.3 -5.4 15.7 -7.8 5.2 -7.0 -3.4
Daylight 65.4 -32.7 13.6 -6.5 20.4 -0.7 -3.8
Sodium lamp 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Locations and weights of all spikes
Source A No spikes
Source C No spikes
Daylight (404.7, 50), (435.8, 132), (546.1, 66), (577.8, 14)
Sodium lamp (589.0, 31.95)
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s1 s2 s3 s4 s5 s6 s7 s8
Source A 91.6 9.6 50.7 52.6 87.8 98.4 136.3 143.6
Source C 77.5 111.5 127.5 109.8 99.6 103.7 89.7 88.4
Daylight 24.1 67.8 86.2 82.6 75.6 106.9 87.4 44.1
Sodium lamp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4. Applications in Realistic Image Synthesis

In this paper, we focus on applying the composite
model to image rendering by ray tracing.1 First, we show
that the composite model does indeed capture important
spectral information correctly, by comparing with an RGB
model rendering of Gray Object Metamers 5 and 11, with
reflectances shown in Fig. 4, metameric with respect to the
1931 CIE Standard Observer for source C [22]. Our
rendering results show that a spectrum-based approach is
crucial.
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1 The rendered color images with the composite model can be viewed at
URL: http://www.cs.sfu.ca/~graphics/pubs/pmcvg99/.
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Second, we compare the composite model with the
point sampling method with respect to fluorescent
illumination. We render images of seven spheres whose
reflectances are of the “red”, ”orange”, ”yellow”, ”yellow-
green”, ”bluish-green”, ”magenta”, and ”white” of the
MacBeth Checkers (refer to Fig. 1), respectively. For the
composite model, although there are noticeable errors
when using 6 sampling points, using 11 re-sampling points
is almost undistinguishable from the highly accurate
result, and increasing the re-sampling points does not
make much difference. In contract, in the point sampling
method, the results are substantially different from the
accurate one, even with 61 sampling points. Also, when
increasing the number of the sampling points, the results
are not stable but vibrating. The vibration is caused by
whether or not some sampling points happen to be inside
narrow spikes. This situation can be stabilized only when
we use a very large number of sampling points so that it is
guaranteed that there are a number of sampling points
inside every spike. Because all spikes in the fluorescent
SPD are made uniform with width of 10 nm, as shown in
Fig. 1(c), we need at least 61 sampling points to stabilize
the results. Note that we should not make the spike widths
wider, as that will introduce errors due to the different
distributions with respect to wavelength. This shows the
advantage of the composite model over the point sampling
method.

One special capability that the composite model offers
is rendering images for monochromatic illuminations.
Another special capability is rendering light dispersion.
For this purpose, a regular ray tracer should be generalized
to describe the refractive dependency on wavelength for
dispersive materials. In other words, a single refractive ray
in a regular ray tracer is now split into a series of
dispersive rays with consecutive wavelength and refractive
directions. Note that a split ray contains a spectral
component in a narrow wavelength range, which can be
represented naturally with the composite model. While
effects of monochromatic illuminations and light
dispersion are difficult (even impossible) to render with
other spectral models, they are very easy to render with
the composite model.

5. Future Directions and Conclusion

Much research effort has focused on generating
realistic computer images based on full spectral
information [10], such as using the point sampling method
[3,9,11,12], the polynomial method [6,18], and the linear
model [16,17]. However, due to their limitations, these
previous methods are effective only under restrictive
conditions but are not robust enough to be a universal
basis for various problems. Since the composite model
eliminates the limitations of previous methods, we expect

that this model will push forward both research and
applications in realistic image synthesis.

In above, we have shown the advantages of the
composite model in rendering effects of spiky
illuminations and light dispersion. Besides these effects,
other modeling situations that require at least a partial full-
spectrum mode may also benefit from the composite
model idea. These include such physical optics
phenomena as scattering, interference, diffraction, volume
absorption, and light reflection from rough surfaces.

The composite model can be further improved in
several ways. In our discussion above, all spikes are
regarded as having zero widths and infinite heights (but
their products are finite). This treatment can be
generalized so that all spikes have finite widths and
heights. With this generalization, the composite model can
more accurately and flexibly describe spectral peaks with
various widths and heights. Also, the range of wavelengths
could be extended beyond the visible to include the ultra-
violet region when a scene involves fluorescence. The
composite model provides a basis to effectively represent
spectra for fluorescence effects, which involve spectral
spikes; then the spectral multiplication in Eq. (2.2) is not
valid and a representation in form of a triangular matrix is
required [7,22].

In conclusion, we have proposed the composite model
to represent spectral functions based on decomposing
smooth and spiky components. The smooth components
can be expressed as a linear combination of a set of given
basis functions and the spikes can be represented through
their locations and heights. Specifically, we have proposed
two schemes for representing the smooth components:
scheme A using low-frequency Fourier coefficients, and
scheme B using the re-sampled values of functions
reconstructed with the Fourier coefficients. Scheme A
provides appropriate high accuracy and flexibility, while
scheme B is recommended for achieving performance.  As
the composite model meets all the representation criteria
of accuracy, compactness, computational efficiency,
portability, and flexibility, it possesses great application
potential in various application areas.

Appendix A

With the color matching functions in Eq. (3.7) in terms
of the Gaussians in (3.9), we can replace the integrals over
the interval [λmin, λmax] with (−∞, +∞). This is a good
approximation because the Gaussian functions are
negligibly small outside range [λmin, λmin]. Thus, we obtain

[ ]

[ ]








−=

−=

∫
∫

∞+

∞−

−−

+∞

∞−

−−

λλλπ

λλλπ

λλ

λλ

dLn
L

h
B

dLn
L

h
A

w
n

w
n

c

c

 /)(2sinexp
2

 /)(2cosexp
2

min
/))(2(ln4

min
/))(2(ln4

2

2

(A.1)



Note that we have dropped the index k. Now let us make
variable change λ = λ+λ0 and let α = 2(ln2)1/2/w, β =
2πn/L, γ = 2h/L, and λ′ =  λc−λmin. Thus we have
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Here we have used the fact that cos(βλ) is even while
sin(βλ) is odd over (−∞, +∞). Similarly,
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Now using the fact that
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we obtain
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Substituting with the original parameters, we have
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Specifically for the first coefficient,
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Comparison between the composite model and with an RGB model. 
Images (a) and (b) are rendered with the composite model, and (c) and (d) with an RGB
model. In every image, the left sphere has the reflectance of Metamer 5 and the right one of
Metamer 11. The illuminant is source C for images (a) and (c) and source A for images (b)
and (d). The metamerism is preserved in image (a), which is generated using the composite
model. However, as expected, in the RGB-generated image (c) the two spheres are
substantially different in color. These results show that a spectrum-based approach is crucial.

 

Comparison between the composite model and the point sampling method. 
Images of seven spheres whose reflectances from left to right are the "red", "orange",
"yellow", "yellow-green", "bluish-green", "magenta", and "white" of the MacBeth Checkers
(refer to Fig. 1), respectively. Except for (e), illumination for all images is fluorescent
daylight (refer to Fig. 1). Image (a), which is highly the accurate, is rendered with the point
sampling method using 1201 sampled points with all spike widths of 1 nm. Images (b), (c)



and (d) are rendered with the composite model using 6, 11 and 21 sampling point for the
smooth background, respectively. Images (f)-(j) are rendered with the point sampling model
using 6, 11, 21, 31 and 61 sampling point, respectively. For the composite model, although
there are noticeable errors when using 6 sampling points, i.e., the 1st and 6th spheres in
image (b) are darker, image (c) using 11 re-sampling points is almost undistinguishable from
the highly accurate image (a), and increasing to 21 re-sampling points does not make much
difference. In contract, using the point sampling method, the results are substantially
different from the accurate one, even with 61 sampling points. Also, when increasing the
number of the sampling points, the results are not stable but vibrating (note the colors of the
white sphere). In fact, the white sphere in image (j) appearing "bluer" is caused by the larger
spike width used (i.e., 10 nm). These results clearly demonstrate the advantage of the
composite model over the point sampling method. 

 

Light dispersion rendered with the composite model. 
The object is a transparent hexagon pyramid (i.e., the bottom face is a regular hexagon). The
camera points to the pyramid from its top, while a white surface light source is located below
the pyramid. The pyramid is non-dispersive in image (a) and dispersive for the rest. The
pyramid surface is not perfectly smooth for images (a), (b) and (c), which are the reason for
the non-highlight shades, but perfectly smooth for image (d), which has no non-highlight
shades. Image (b) has 6 dispersive spawned rays while image (c) has 10, which results in the
smoothness of the dispersive color bands in image (c). Note that the yellowish non-highlight
colors in image (b) and (c) are due to the overall effect that long-wavelength components are
more likely to penetrate. 


