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Abstract

Vilmart recently gave a complete equational theory for the balanced sum-over-paths over Toffoli-
Hadamard circuits, and by extension Clifford+diag(1, ζ2k ) circuits. Their theory is based on the phase-
free ZH-calculus which crucially omits the average rule of the full ZH-calculus, dis-allowing the local
summation of amplitudes. Here we study the question of completeness in unbalanced path sums which
naturally support local summation. We give a concrete syntax for the unbalanced sum-over-paths and
show that, together with symbolic multilinear algebra and the interference rule, various formulations of
the average and ortho rules of the ZH-calculus are sufficient to give complete equational theories over
arbitrary rings and fields.

1 Introduction

The balanced sum-over-paths representation of a linear operator Ψ : C2m → C2n introduced in [1] is a
symbolic representation of Ψ over Boolean-valued variables, having the form

Ψ |x⃗⟩ = N
∑
y⃗∈Zk

2

e2πiP (x⃗,y⃗) |f(x⃗, y⃗)⟩ (1)

where P : Zm
2 × Zk

2 → R/2π and f : Zm
2 × Zk

2 → Zn
2 are represented by (systems of) polynomials in m + k

variables. The expression of Equation (1) is interpreted as a sum over the paths a system may take beginning
from some initial configuration x⃗. If Ψ is taken as encoding some evolution of a physical (2k-level) system,
the expression Equation (1) coincides roughly with Richard Feynman’s path integral [7]. As with Feynman’s
path integral the sum in Equation (1) is balanced, in that each path — indexed by the values of x⃗ and y⃗
— has the same amplitude N but varies in the phase e2πiP (x⃗,y⃗). As standard operators used in quantum
computation can be represented in this form and the representation is closed over composition and tensor
products, typical quantum computational processes admit representations by balanced path sums.

It was previously shown [1] that with a concrete representation in terms of polynomials, the balanced sum-
over-paths admits a simple equational theory. This equational theory was shown to be relatively complete,
and with a small modification complete [9], for Clifford operators. As the number of superfluous variables yi
in the sum, called internal and corresponding to a pair of paths between two end-points, offers an intuitive
notion of complexity of the expression, the equational theory further gives rise to a natural re-write system
which iteratively removes such variables from the sum. This re-write system was shown to terminate in
polynomial time with a unique normal form for Clifford operators [2], and was further shown to perform well
in practice on Clifford+T circuits and channels for verification [1].

Vilmart [10] gave an equational theory for the balanced sum-over-paths over Toffoli and Hadamard gates
and showed its completeness via translation of the phase-free ZH-calculus [11]. The phase-free ZH-calculus
crucially restricts the ZH-calculus [4] to balanced generators, allowing the direct translation of its equational
theory into balanced sums — while the full ZH-calculus admits an encoding in the balanced sum-over-paths
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[8, 9], existing equational theories [4, 5] necessarily make use of unbalanced generators and the average rule.
It was further shown that this equational theory is complete for operators over Clifford and Rk := diag(1, ζ2k)
gates through an embedding into the Toffoli+Hadamard fragment. However, their re-writing system lacks
the desirable properties of confluence, normal forms, and a primitive equational theory for Clifford+Rk.
Moreover, the question of a complete equational theory for the sum-over-paths over C was left open, as well
as the development of a direct analogue of the full ZH-calculus in the sum-over-paths model.

In this work we address these questions, introducing a concrete representation of the unbalanced sums-
over-paths and give complete equational theories for such sums over rings and fields. We consider general
rings as fault-tolerantly constructible circuits are typically restricted to linear operators over subrings of C [3].
Inspired by the ZH-calculus, completeness is attained by symbolically re-writing a sum to a unique normal
form explicitly encoding the matrix entries. In essence, our system internalizes the method of falling back
to explicit evaluation in cases where no progress can be made with re-writing [1]. As a result, the practical
applicability of our equational theory is limited — our goals are instead to provide representations and
complete theories for general sums-over-paths so that effective re-writing systems may be further developed.

The paper is organized as follows. In Section 2 we review the balanced sum-over-paths and its equational
theories. In Section 3 we define a representation of the unbalanced sum-over-paths and give an equational
theory which is complete for arbitrary rings. In Section 4 we give a weaker equational theory which is not
sound over rings, but is shown to be complete over any field.

2 The balanced sum-over-paths

In the path integral viewpoint, the action of a linear operator Ψ : H1 → H2 between Hilbert spaces H1 and
H2 on a state |i⟩ of some orthonormal basis {|i⟩} of H1 can be described as a sum over some collection Π of
paths, where the path π ∈ Π has amplitude ψ(π) ∈ C and ends in a state |f(π)⟩ of an orthonormal basis of
H2:

Ψ |i⟩ =
∑
π∈Π

ψ(π) |f(π)⟩ .

In contrast to the operator representation Ψ |i⟩ =
∑

j αij |j⟩, in general there may be many superimposed
paths leading to a particular basis state, their amplitudes adding in these cases and resulting in interference.
Likewise, the sequential composition of two operators is described by composing paths along their endpoints
and multiplying the amplitude along each segment, in essence delaying evaluation of any interfering paths.
This provides flexibility in the evaluation of individual amplitudes, but on the flip side requires effective
means of representing and reasoning about a system of paths to be useful.

In [1] a concrete representation of amplitude-balanced sums over 2n-dimensional Hilbert spaces was given
via multilinear polynomials. An amplitude-balanced sum is one in which every path π with non-zero am-
plitude has equal magnitude but may vary in the phase. By restricting to balanced sums, individual path
amplitudes are described by unit-norm complex numbers, whose multiplicative group is isomorphic to the
additive group R/2π. In particular, ψ(π) ≈ e2πiP (π) for some P : Π → R/2π which has a unique represen-
tation as a multilinear polynomial, and if ϕ(π′) ≈ e2πiQ(π′), then ψ(π) · ϕ(π′) ≈ e2πi[P (π)+Q(π′)] — i.e. the
phase along a composite path — is uniquely representable in polynomial time. We review this representation
below.

Definition 2.1 (Balanced sum-over-paths). A balanced path sum is an expression of the form

Ψ |x⃗⟩ = N
∑
y⃗∈Zk

2

e2πiP (x⃗,y⃗) |f(x⃗, y⃗)⟩ ,

where N ∈ C and P : Zm
2 × Zk

2 → R/2π and f : Zm
2 × Zk

2 → Zn
2 are represented as a multilinear polynomial

and a sequence of n multilinear polynomials in m+ k variables, respectively.

We use |Ψ⟩ to denote the sum-over-paths representation of Ψ, or just Ψ when it is clear from the context
that we mean the symbolic expression rather than the linear operator. The variables appearing in a sum-
over-paths expression |Ψ⟩ which are not summed over are called free variables. We denote the set of free
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variables of Ψ by FV (Ψ) and for the purpose of substitution use the notation |Ψ(x)⟩ to identify a variable
which may appear free in |Ψ⟩. Specifically, given a sum-over-paths |Ψ(x)⟩, |Ψ(f)⟩ denotes the (capture-
avoiding) substitution of f for every free occurrence of x in |Ψ⟩, of which there may be none. We say a
sum |Ψ⟩ is closed if FV (Ψ) = ∅, in which case |Ψ⟩ corresponds to a vector. As a convention, we often use
variable names xi to denote the free variables of a path sum and yi, zi to denote variables which are summed,
though it should be understood that this is not a rule and sum-over-paths expressions may contain arbitrary
variables in free or summed positions. We further use letters f , g, h to refer to Boolean-valued functions or
symbolic expressions, and uppercase letters P , Q, R to refer to symbolic expressions in other rings.

By linearity, compatible balanced sums may be sequentially composed through variable substitution:

ΦΨ |x⃗⟩ = N
∑
y⃗∈Zk

2

e2πiP (x⃗,y⃗)Φ |f(x⃗, y⃗)⟩ .

As substitution involves substituting symbolic expressions over Z2 in the phase, a lifting construction [1] is
used to embed polynomial arithmetic over Z2 into polynomials over R (or more generally, any unital ring
R). In particular, we define the lifting · of (Z2,⊕, ·) into (R,+, ·) recursively by

0 = 0R f · g = f · g
1 = 1R f ⊕ g = f + g − (2 · f · g).

The tensor product, or parallel composition, can be defined via

(Ψ⊗ Φ)(|x⃗⟩ ⊗ |y⃗⟩) = Ψ |x⃗⟩ ⊗ Φ |y⃗⟩ ,

where the phases of Ψ |x⃗⟩ and Φ |y⃗⟩ are multiplied and their final states are concatenated.

Example 2.2. The gates x and t admit the following representations as balanced sums:

• x |x⟩ = |1⊕ x⟩ and

• t |y⟩ = ωy |y⟩, where ω = e
2πi
8 .

Composing t after x, we can compute the sum-over-paths expression of tx by substituting y in the expression
of t with x⊕ 1, which lifts to 1⊕ x = 1− x in the exponent of ω:

tx |x⟩ = ω1−x |1⊕ x⟩

While the paths in a balanced path sum with non-zero amplitude all have the same magnitude N ,
matrices which have entries of different magnitudes can be represented as balanced sums with interfering
paths, as the following example illustrates.

Example 2.3. The controlled-Hadamard gate

Λ(h) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗H =
1√
2


√
2 0 0 0

0
√
2 0 0

0 0 1 1
0 0 1 −1


when viewed as a collection of unique transitions (i.e. non-interfering) in the computational basis is neces-
sarily unbalanced. However, the Λ(H) gate may be represented as a balanced sum-over-paths by using the
control bit to cause the intermediate paths to interfere when it is in the 0 state:

Λ(h) |x1x2⟩ =
1√
2

∑
y∈Z2

ω(1−x1)(2y−1)(−1)x1x2y |x1⟩ |(1⊕ x1)x2 ⊕ x1y⟩

Note that when x1 = 0 we have 1√
2

∑
y∈Z2

ω(2y−1) |0⟩ |x2⟩ = ω+ω†
√
2

|0⟩ |x2⟩ = |0⟩ |x2⟩, while when x1 = 1 we

have the sum 1√
2

∑
y∈Z2

(−1)x2y |1⟩ |y⟩ which is the representation of |1⟩ ⊗ (H |x2⟩).
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∑
y∈Z2

|Ψ⟩ ≡ 2 |Ψ⟩ (E)

∑
x,y∈Z2

(−1)y(x+f) |Ψ(x)⟩ ≡ 2 |Ψ(f)⟩ (H)

∑
y∈Z2

iy(−1)yf |Ψ⟩ ≡ ω
√
2(−i)f |Ψ⟩ (ω)

Figure 1: A Clifford-complete system of equations for the balanced sum-over-paths, denoted ≡Cliff . In all
rules above y /∈ FV (Ψ) and f is some Boolean expression such that x, y /∈ FV (f).

It has been shown that the balanced sum-over-paths is universal for linear operators over 2n-dimensional
Hilbert spaces, via a translation from the universal ZH-calculus [9]. Below we give a model of the universal
ZX-calculus [6] which is more natural to specify in the balanced sum-over-paths as the ZX-calculus is gen-
erated by balanced operators, while the h-boxes of the ZH-calculus are unbalanced when the amplitude is
non-unital.

Example 2.4. A simple model of the ZX-calculus via balanced sums can be defined over the universal
generating set consisting of the Z-spider and Hadamard as so:

q
n ... α

...m
y
|x⃗⟩ = 1

2n

∑
y⃗∈Zn

2 ,z∈Z2

αz(−1)
∑n

i=1 yi(xi+z) |zz · · · z⟩ J K |x⟩ = 1√
2

∑
y∈Z2

(−1)xy |y⟩

Note that the sum for the Z-spider forces any path with non-zero amplitude to satisfy z = x1 = x2 = · · · = xn,
since for any i,

∑
yi∈Z2

(−1)yi(xi+z) = 0 whenever z ̸= xi, and 2 otherwise. Encodings of an arbitrary Z-

spider using fewer variables are possible, for example 1
2n

∑
y,z∈Z2

αz(−1)y(1+
∏n

i=1(xi+z+1)) |zz · · · z⟩ , but have
size exponential in n.

We use ≡T to denote the equivalence of two path sums up to a theory T defined by a set of (sound)
equations, together with the congruence

|Ψ⟩ ≡T |Φ⟩ =⇒ N
∑
y⃗∈Zk

2

e2πiP (x⃗,y⃗) |Ψ⟩ ≡T N
∑
y⃗∈Zk

2

e2πiP (x⃗,y⃗) |Φ⟩

We use ≡e to denote equivalence up to an individual equation e. We say an equational theory T is complete
for a subset C of path sums if whenever |Ψ⟩ , |Φ⟩ ∈ C,

Ψ = Φ =⇒ |Ψ⟩ ≡T |Φ⟩ .

Figure 1 gives the (E), (H), and (ω) rules of the sum-over-paths which define the equational theory ≡Cliff .
It was previously shown that ≡Cliff is complete for Clifford path sums [9, 2].

Example 2.5. The following equalities are derivable:∑
y∈Z2

|Ψ(y)⟩ ≡Cliff

∑
y∈Z2

|Ψ(y ⊕ f)⟩ where f is Boolean and y /∈ FV (f)

1√
2

∑
y∈Z2

ω(2y−1) |0⟩ |x2⟩ ≡Cliff |0⟩ |x2⟩

q
( )⊗m ◦ ... α

... ◦ ( )⊗n
y
|x⃗⟩ ≡Cliff

1

2n+m

∑
y∈Z2,z⃗∈Zm

2

αy(−1)
∑n

i=1 xiy(−1)
∑m

j=1 yzi |z⃗⟩
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The first equation is the variable change rule from the Clifford-complete equational theory of [9], whose
derivation by the (E) rule was shown in [2]. The second encodes the evaluation of Λ(h) |0⟩ |x2⟩ = |0⟩ |x2⟩
and follows from a single application of (ω). The third equation models the X-spider of the ZX-calculus by
the color change law [6].

Interference, algebraic varieties, and completeness for Toffoli+Hadamard As noted in [1], (H)
arises as an instance of a general (binary) interference rule,∑

y∈Z2

(−1)yF |Ψ⟩ ≡ 2 |Ψ F=0⟩ . (I)

where F is a polynomial over Z2. Viewing F as a proposition on the paths indexed by FV (F ), the sum∑
y∈Z2

(−1)yF |Ψ⟩ filters out paths satisfying F , while paths which do not satisfy F pass through with double

amplitude. However, to write the restriction |Ψ F=0⟩ as an expression, |Ψ⟩ = N
∑

y⃗ e
2πiP (x⃗,y⃗) |f(x⃗, y⃗)⟩ must

be expressed as a sum over the solutions of the equation F (x⃗, y⃗) = 0. Recall that the algebraic variety V(I)
of a polynomial ideal I consists of all points (a1, . . . , ak) such that f(a1, . . . , ak) = 0 for every polynomial f
in I. We may hence write the restricted sum as

N
∑

(x⃗,y⃗)∈V(I)

e2πiP (x⃗,y⃗) |f(x⃗, y⃗)⟩ ,

where I = ⟨F ⟩. Note that P and f may be canonically written modulo the ideal I using Gröbner bases,
though the resulting re-write system is not an equational theory in the sense we consider here. Instead we
may restrict f to cases which can be solved by substitution. The simplest such cases are when F = 0 which
is solved trivially for any point in the variety, and when F = x + g, x /∈ FV (g), which is solved by setting
x = g. These two cases result in the (E) and (H) rules. Moreover, both equations are complete relative to
the variety V(I) in that they completely characterize the solutions to f .

In [10] Vilmart gave a complete equational theory for path sums over Toffoli and Hadamard, via restricted
cases of (I). Such sums can be written in the form

Ψ |x⃗⟩ = 1√
2k

∑
y⃗

(−1)P (x⃗,y⃗) |f(x⃗, y⃗)⟩ .

We define ≡TH to be equivalence of balanced sums up to ≡Cliff as well as the additional rules of Figure 2.
As noted in [10], all three new equations arise as particular instances of the binary interference rule. The
(Hgen) rule, which subsumes (H), arises from (I) when F = x ·g+g ·f +1, in which case x+g+1 ∈ ⟨F ⟩ and
hence x = g + 1 is a partial solution to F = 0. Likewise, (Hrel) arises from the intersection of the varieties
f = 0 and g = 0, where since ⟨f, g⟩ = ⟨f + g + fg⟩ over Z2 the two equations to be combined into a single
one without affecting the variety. The (Z) rule arises when F = 1 and hence the variety is empty.

3 The unbalanced sum-over-paths

While computationally efficient for many problems, balanced sums are unwieldy for reasoning about vectors
and matrices with entries of varying magnitude. Such states often arise in probabilistic quantum compu-
tations and algorithms, such as Grover’s search or Shor’s algorithm. Moreover, canonical forms for such
operators are difficult to define and test for equality, as the following example illustrates.

Example 3.1. Consider the unit vector

|ψ⟩ = 1√
1 + p2

(|0⟩+ p |1⟩)
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∑
y∈Z2

∑
x∈Z2

(−1)y(x·g+g·f+1) |Ψ(x)⟩ ≡
∑
y∈Z2

(−1)y(g+1) |Ψ(1 + f)⟩ (Hgen)

∑
y∈Z2

∑
x∈Z2

(−1)y·f+x·g |Ψ⟩ ≡ 2
∑
y∈Z2

(−1)y(f+g+f ·g) |Ψ⟩ (Hrel)

∑
y∈Z2

∑
x∈Z2

(−1)y |Ψ⟩ ≡ 0 |Ψ⟩ (Z)

Figure 2: A complete equational theory ≡TH for path sums over Toffoli and Hadamard gates [10]. In all
rules y /∈ FV (Ψ) and f, g are Boolean expressions such that x, y /∈ FV (f) ∪ FV (g)

where p is an odd prime. Any representation of |ψ⟩ by a balanced sum with ±1 phases must satisfy ⟨0|ψ⟩ = 1,
⟨1|ψ⟩ = p, and hence must consist of at least p+ 1 distinct paths. Now let f and g be Boolean expressions
in free variables {yi} with 1 and p satisfying assignments, respectively. Then

1

2
√
1 + p2

∑
x∈Z2

∑
y⃗∈Zk

2

∑
z∈Z2

(−1)z[(1−x)(1+f(y⃗))+x(1+g(y⃗))] |x⟩

is a valid representation of |ψ⟩, as is the representation above where f and g are replaced with any other
Boolean expressions with the same number of solutions. By (I), we can re-write this sum over the variety
generated by the ideal I = ⟨(1−x)(1+f(y⃗))+x(1+g(y⃗))⟩ as |Ψ⟩ =

∑
(x,y⃗)∈V(I) |x⟩. However, if we take this

as a normal form it is surely not unique, as any other variety with the same number of points for each x —
for instance, any variety W equal up to a permutation of the coordinates of V — gives the same operator.

In order to allow the natural representation of linear algebraic objects with unbalanced magnitudes, we
now develop a generalization to amplitudes which may be expressed as Boolean powers of elements taken
from some ring R. Recall that integer powers may be defined in any unital ring R as

00 := 1, r0 := 1, rn := r · rn−1.

Our language of sums is comprised of expressions of three types: Boolean expressions used to denote
paths, R-valued expressions, and linear operators over R in the computational basis.

Definition 3.2 (Unbalanced sum-over-paths). An unbalanced sum-over-paths is an expression |Ψ⟩ of the
following language

f ::= 0 | 1 | x | f1 · f2 | f1 ⊕ f2 | ¬f := 1⊕ f

r ::= α, β ∈ R | rf | r1r2 | r1 + r2

|Ψ⟩ ::=
∑
y⃗

r |f1 · · · fn⟩ .

Variables x, y, z, . . . in all types of expressions range over Boolean values Z2 and R is a commutative ring.

Expressions f , r, and |Ψ⟩ are referred to as Boolean, R, and sum-over-paths expressions, respectively. We
denote by FV (f), FV (r), and FV (Ψ) the free variables appearing in the given expression. As with balanced
sums, variables y⃗ which are summed over are bound and hence not included in the set of free variables of an
unbalanced sum. An expression is closed if it contains no free variables. Note that closed unbalanced sums
correspond to vectors.

R-expressions in free variables {xi} may be interpreted as a non-standard syntax for the polynomial ring
R[x1, . . . , xk]/⟨x21 − x1, . . . , x

2
k − xk⟩ which favours multiplication over addition in terms of computational

efficiency. This allows our representation to coincide with balanced sums when possible, allowing a balanced
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representation to be used and manipulated normally, but providing an “escape hatch” in the form of ring
sums. In Section 4 we consider representations where the ring sum is dropped entirely.

In the balanced sum-over-paths it’s generally not obvious how a given matrix A ∈ Mn×m(R) may
be represented directly, hence universality is achieved via the construction of a known universal set of
generators. By contrast, unbalanced sums allow the direct representation of A, as the amplitude function
ψ(x⃗, y⃗) = ⟨y⃗|A |x⃗⟩ can be written directly as anR-expression. We first define the notation x⃗ = y⃗ as shorthand
for the bitwise equality of x⃗ and y⃗,

x⃗ = y⃗ :=
∏
i

xi ⊕ ¬yi.

Then we may write A as an unbalanced sum of the following form:

A |x⃗⟩ =
∑
y⃗

α00···0=x⃗y⃗
00···0 α00···1=x⃗y⃗

00···1 · · ·α11···1=x⃗y⃗
11···1 |y⃗⟩

where x⃗y⃗ denotes the concatenation of x⃗ and y⃗, and αx⃗y⃗ is equal to ⟨y⃗|A |x⃗⟩. Intuitively, for a given value
of y⃗ and x⃗, the (exponential-size) R-expression above evaluates to αx⃗y⃗ = ⟨y⃗|A |x⃗⟩, as the exponent of every

of other αx⃗′y⃗′ evaluates to zero. We write out the product explicitly rather than as Πz⃗α
z⃗=x⃗y⃗
z⃗ so as to avoid

confusion with the use of Π as mathematical syntax and Σ as a syntactical element of path sums.

Proposition 3.3 (Universality). Any linear operator R2n → R2m can be expressed as an unbalanced path
sum over R.

Example 3.4. The Λ(h) gate can be expressed as the unbalanced sum

Λ(h) |x1x2⟩ =
∑
y

0¬x1(x2⊕y)(1/
√
2)x1(−1)x1x2y |x1y⟩ .

Example 3.5. While the generalized h-boxes of the ZH-calculus [4] admit an indirect encoding in the
balanced sum-over-paths via Euler angles [9], the ZH-calculus can be directly encoded in the unbalanced
sum-over-paths as below.

q
n ...

...m
y
|x⃗⟩ =

∑
y⃗∈Zn

2

∑
z∈Z2

2−n(−1)
∑n

i=1 yi(xi+z) |zz · · · z⟩
q
n ... α

...m
y
|x⃗⟩ =

∑
y⃗∈Zn

2

αx1···xny1···ym |y⃗⟩

As is customary, to simplify the notation and proofs we view a linear operator A : Rn → Rm as a vector
A ∈ Rnm via the channel-state duality and define normal forms only on closed sums. Note that η =

∑
y |yy⟩

and its adjoint ϵ |xy⟩ = 1
2

∑
z(−1)z(x⊕y), i.e. a “cup and cap,” are well-defined over any unital ring R, hence

we can move between the operator and vector view freely.

Definition 3.6 (Normal form). A normal form is a closed, unbalanced sum of the following form:∑
x⃗

α00···0=x⃗
00···0 α00···1=x⃗

00···1 · · ·α11···1=x⃗
11···1 |x⃗⟩ (2)

Example 3.7. The Λ(h) gate has the normal form below, with 0’s suppressed:

1√
2

∑
x⃗

√
2
0000=x⃗√

2
0101=x⃗

11010=x⃗11011=x⃗11110=x⃗(−1)1111=x⃗ |x⃗⟩ .

Note that x1 and x2 correspond to the first and second input bits, respectively, while x3 and x4 correspond
to the first and second output.

We remark that normal forms are unique, which is a trivial consequence of the fact that they explicitly
represent vectors in the computational basis by a sequence of 2n amplitudes.

Proposition 3.8. Let Ψ be a vector in R2n . Then Ψ has a unique normal form.
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3.1 Equational theory of unbalanced sums over R
Figure 3 gives an equational theory, denoted ≡R, for unbalanced sums. We separate equations into three
classes: equations on Boolean expressions, R-expressions, and equations involving sums. The equational
theory of Boolean expressions is simply the well-known equational theory of commutative Boolean rings
and is only provided for completeness. The equational theory of R-expressions includes the axioms of
commutative, unital rings on the left, and equations specific to f -powers on the right. The two rules
involving path sums are the usual (H) rule, and the new sum rule (S) which internalizes sums over variables
as sums of R-expressions.

f ⊕ 0 ≡ f

f ⊕ f ≡ 0

(f1 ⊕ f2)⊕ f3 ≡ f1 ⊕ (f2 ⊕ f3)

f1 ⊕ f2 ≡ f2 ⊕ f1

f · 1 ≡ f

f · f ≡ f

(f1 · f2) · f3 ≡ f1 · (f2 · f3)
f1 · f2 ≡ f2 · f1

f1 · (f2 ⊕ f3) ≡ f1 · f2 ⊕ f1 · f3

(a) Rules for Boolean expressions

(r1 + r2) + r3 ≡ r1 + (r2 + r3)

r1 + r2 ≡ r2 + r1

r1 + 0 ≡ r1

r − r ≡ 0

(r1 · r2) · r3 ≡ r1 · (r2 · r3)
r1 · r2 ≡ r2 · r1
r · 1 ≡ r

r1 · (r2 + r3) ≡ r1 · r2 + r1 · r3

r0 ≡ 1 ≡ 1f

r1 ≡ r ≡ rfr¬f

rf1⊕f2 ≡ rf1 + rf2 − (2r)f1·f2

rf1·f2 ≡ (rf1)f2

rf1 r
f
2 ≡ (r1r2)

f

rf1 r
¬f
2 ≡ rf1 + r¬f

2 − 1

rf1 + rf2 ≡ (r1 + r2)
f + 0¬f

(b) Rules for R-expressions.∑
x,y

(−1)y(x⊕f) |Ψ(x)⟩ ≡ 2 |Ψ(f)⟩ (H)

∑
y

r(y) |Ψ⟩ ≡ (r(0) + r(1)) |Ψ⟩ (S)

(c) Rules for sum-over-paths expressions. In-scope variables are not free in any sub-expressions unless explicitly
included in parentheses.

Figure 3: Equational theory ≡R for unbalanced sums over rings R.

To show completeness, we proceed by first defining a normal form for R-expressions and showing that
every R-expression can be re-written in normal form. This forms the bulk of the proof, as the (S) rule can
be used to force the evaluation of any internal variable by the R-expression sub-language.

Definition 3.9 (R-expression normal form). An R-expression over the variables {xi} is in normal form if
it is of the form

α00···0=x⃗
00···0 α00···1=x⃗

00···1 · · ·α11···1=x⃗
11···1 .

Proposition 3.10 (R-expression normalization). An R-expression r can be brought into normal form over
the variables {xi} ⊇ FV (r) using the equations of Figure 3.

A proof of Proposition 3.10 is given in Appendix A. We next turn our attention to normalization of
expressions involving sums. Normalization proceeds by writing the closed sum as a sum over all basis
vectors by equating outputs with fresh variables, then summing along each internal variable and normalizing
the resulting R-expression.
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Theorem 3.11. ≡R is complete for unbalanced sums over any commutative ring R.

Proof. Let |Ψ⟩ =
∑

x⃗ r |f1f2 · · · fn⟩ be a closed, unbalanced sum. Then∑
x⃗

r |f1f2 · · · fn⟩ ≡
∑
x⃗

∑
y⃗

∑
z⃗

r(−1)y1(z1⊕f1)+y2(z2⊕f2)+···+yn(zn⊕fn) |z1z2 · · · zn⟩ by (H)

≡
∑
z⃗

∑
x⃗

∑
y⃗

r′(x⃗, y⃗) |z⃗⟩

≡
∑
z⃗

(r′(00 · · · 0) + r′(00 · · · 1) + · · ·+ r′(11 · · · 1)) |z⃗⟩ by (S)

≡
∑
z⃗

α00···0=z⃗
00···0 α00···1=z⃗

00···1 · · ·α11···1=z⃗
11···1 |z⃗⟩ by Proposition 3.10

4 Weakening the sum rule

The equational theory developed in the preceding section is too strong for use in practice. Indeed, re-writing
effectively amounts to explicit evaluation of the sum, e.g.,∑

x

|Ψ(x)⟩ = |Ψ(0)⟩+ |Ψ(1)⟩ ,

together with a set of rules for manipulating certain symbolic expressions over rings. This is made possible
by the highly-expressive sub-language of R-expressions, which allows for the summation of arbitrary R-
expressions and hence the super-powered sum rule. However, sums of R expressions are difficult to re-write
and generally require complete expansion of the expression to a normal form. In particular, with unrestricted
use of the sum rule we are not likely to discover efficient proofs of equality.

To limit the power of the sum rule, in this section we define a fragment of the unbalanced sum-over-paths
which eliminates sums of symbolic amplitudes, and give a complete equational theory over arbitrary fields.

Definition 4.1 (Multiplicative sum-over-paths). The multiplicative fragment of the unbalanced sum-over-
paths over a field F consists of unbalanced sums of the form

a ::= α, β ∈ F | af | a1a2
|Ψ⟩ ::=

∑
y⃗

a |f1 · · · fn⟩ .

Boolean expressions f are defined as in the unbalanced sum-over-paths.

We call amplitude expressions of the form a F-expressions. It can be readily observed that as normal
forms live in the multiplicative fragment, the multiplicative fragment is again universal, and is equivalent to
the full unbalanced sum-over-paths up to ≡R.

Figure 4 defines an equational theory, denoted ≡F , for the multiplicative fragment which is defined and
sound when F is a field. Note that the equation af1⊕f2 ≡ af1af2(a−2)f1·f2 , which coincides with the lifting
of f1 ⊕ f2 to f1 + f2 − 2f1 · f2, is not well defined in arbitrary rings. Otherwise, the equational theory
coincides with the equational theory of R-expressions with rules for sums of expressions removed. We omit
the equational rules for Boolean expressions as they are the same as those of Figure 3a.

Proposition 4.2 (F-expression normalization). An F-expression a can be brought into normal form over
the variables {xi} ⊇ FV (a) using the equations of Figure 4.
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(a1 · a2) · a3 ≡ a1 · (a2 · a3)
a1 · a2 ≡ a2 · a1
a · 1 ≡ a

a0 ≡ 1 ≡ 1f

a1 ≡ a ≡ afa¬f

af1⊕f2 ≡ af1af2(a−2)f1·f2

af1·f2 ≡ (af1)f2

af1a
f
2 ≡ (a1a2)

f

(a) Rules for F-expressions.∑
x,y

(−1)y(x⊕f) |Ψ(x)⟩ ≡ 2 |Ψ(f)⟩ (H)

∑
y,z

ax1(y)a
¬x
2 (z) |Ψ(x)⟩ ≡ 2

∑
y

ax1(y)a
¬x
2 (y) |Ψ(x)⟩ (O)

∑
y

(αyβ¬y)f |Ψ⟩ ≡ 2

(
α+ β

2

)f

|Ψ⟩ (A)

(b) Rules for unbalanced sums in the multiplicative fragment. In-scope variables are not free in sub-expressions unless
explicitly listed in parentheses.

Figure 4: Equational theory ≡F of multiplicative sums over fields F .

Proof. The proof follows identically to the proof of Proposition 3.10. The one different case of af1⊕f2 is
handled similar to the corresponding case in Proposition 3.10 by the fact that af1⊕f2 ≡ af1af2(a−2)f1·f2

where each of af1 , af2 , and (a−2)f1·f2 can be normalized by the inductive hypothesis and the case of af1·f2 .
The case is then finished by the normalization of products.

The (A) rule, which is a transliteration of the average rule of the ZH-calculus, replaces the (S) rule of ≡R.
Rather than summing “top-down” as in the normalization of the unbalanced sum-over-paths, the average
rule allows amplitudes to only be summed “bottom-up,” i.e. by summing pure elements of F . In particular,
we may think about the normalization of a sum in (almost) normal form over one internal variable:∑

x⃗

∑
y

α00···00=x⃗y
00···00 α00···01=x⃗y

00···01 · · ·α11···11=x⃗y
11···11 |x⃗⟩ .

Using the rules of ≡R, we may factor out the y exponents and evaluate the sum over y top-down as∑
x⃗

∑
y

α00···00=x⃗y
00···00 α00···01=x⃗y

00···01 · · ·α11···11=x⃗y
11···11 |x⃗⟩ ≡R

∑
x⃗

∑
y

(α00···0=x⃗
00···00 · · ·α11···1=x⃗

11···10 )¬y(α00···0=x⃗
00···01 · · ·α11···1=x⃗

11···11 )y |x⃗⟩

≡R
∑
x⃗

(α00···0=x⃗
00···00 · · ·α11···1=x⃗

11···10 + α00···0=x⃗
00···01 · · ·α11···1=x⃗

11···11 ) |x⃗⟩

Under the more restrictive rules of ≡F , the y exponents must be brought inwards and the amplitudes summed
in pairs:∑
x⃗

∑
y

α00···00=x⃗y
00···00 α00···01=x⃗y

00···01 · · ·α11···11=x⃗y
11···11 |x⃗⟩ ≡F

∑
x⃗

∑
y

(α¬y
00···00α

y
00···01)

00···0=x⃗ · · · (α¬y
11···10α

y
11···11)

11···1=x⃗ |x⃗⟩

In order to be able to apply the (A) rule to eliminate y with this factorization, a distinct variable is needed
for each pair, which can be achieved with the (O) rule — a transliteration of the ortho rule of the ZH-calculus
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— since every pair’s exponent varies in the polarity of at least one variable:∑
x⃗

∑
y

(α¬y
00···00α

y
00···01)

00···0=x⃗ · · · (α¬y
11···10α

y
11···11)

11···1=x⃗ |x⃗⟩

≡F
∑
x⃗

∑
y⃗

1

22n−1
(α¬y1

00···00α
y1

00···01)
00···0=x⃗ · · · (α¬yn

11···10α
yn

11···11)
11···1=x⃗ |x⃗⟩ by (O)

≡F
∑
x⃗

22
n

22n−1

(
α00···00 + α00···01

2

)00···0=x⃗

· · ·
(
α11···10 + α11···11

2

)11···1=x⃗

|x⃗⟩ by (A)

≡F
∑
x⃗

(α00···00 + α00···01)
00···0=x⃗ · · · (α11···10 + α11···11)

11···1=x⃗ |x⃗⟩

Note that in the final line above, each sum involves concrete values taken from F and hence can be evaluated
explicitly over F .

Theorem 4.3. ≡F is complete for multiplicative sums over any field F .

Proof. Let |Ψ⟩ =
∑

x⃗ a |f1f2 · · · fn⟩ be a closed, multiplicative sum and note that |Ψ⟩ ≡F
∑

x⃗

∑
y⃗ a

′ |x⃗⟩ by
(H). Then by Proposition 4.2, a′ can be normalized to give

|Ψ⟩ ≡F
∑
x⃗

∑
y⃗

α00···0=x⃗y⃗
00···0 α00···1=x⃗y⃗

00···1 · · ·α11···1=x⃗y⃗
11···1 |x⃗⟩ .

If y⃗ is empty, then we’re done. Otherwise, we can remove one variable at a time with the (O) and (A) rules
as above until no internal variables are left.

5 Discussion

We have now given a concrete syntax for sum-over-paths expressions with unbalanced amplitudes. We gave
equational theories for rings and fields, and showed that each is complete. While the equational theories
we give here are simplistic and inefficient, our hope is that a complete equational theory will allow the
development of effective, complete re-writing systems.

The equational theories we have developed — particularly ≡F — as well as our normal forms can be
viewed as translations of the ZH-calculus with varying levels of freedom in the expression of Boolean data.
In the ZH-calculus, propagation of Boolean expressions along wires is a semantic property, while in the
sum-over-paths it is syntactic. This allows the (H) rule to take a more general form allowing the substitution
of a variable with an expression, whereas in the ZH-calculus this logic is spread across several different rules.

As an exercise we could attempt to formulate a more ZH-like sum-over-paths by restricting the Boolean
expression language further, e.g.,

f ::= 0 | 1 | x, y, z, · · · | f1 · f2
a ::= α ∈ R | αf | a1a2

|Ψ⟩ ::=
∑
v∈V

a |x1 · · ·xn⟩ ,

and reformulate our equational theory for such a language. One natural formulation of the (H) rule is∑
x,y(−1)xy(−1)yfa(x) |Ψ⟩ ≡ 2a(f) |Ψ⟩, which corresponds to a slightly more general version of the HS1 rule

of the ZH-calculus, which would be more accurately translated as
∑

x,y(−1)xy(−1)yfαxg |Ψ⟩ ≡ 2αfg |Ψ⟩.
With either formulation, a secondary rule is needed to cover propagation of Boolean sums, corresponding to
expressions of the form ∑

x,y

(−1)xy(−1)yf1(−1)yf2 · · · (−1)yfka(x) |Ψ⟩ .
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Semantically, this is equivalent to the expression 2a(f1 ⊕ f2 ⊕ · · · ⊕ fk) |Ψ⟩, but since the language cannot
express Boolean sums, we must distribute a over the sum in a single step. One natural option to avoid
imposing restrictions on the underlying ring, as we did in this section, is to restrict a to the phase-free
fragment. In particular,∑

x,y

(−1)xy(−1)yf1 · · · (−1)yfk(−1)xg |Ψ⟩ ≡ 2(−1)f1g · · · (−1)fkg |Ψ⟩ ,

which is equivalent up to (H) to the BA2 rule of the ZH-calculus.
On the one hand, it is unclear what the utility of such an exercise might be, beyond as a symbolic syntax

for ZH diagrams. On the other hand, these investigations shed light on both the similarities and differences
between the graphical and symbolic approach. Notably, the symbolic approach naturally allows highly ex-
pressive languages, and the use of existing theories developed within the framework of non-categorical algebra
and symbolic computation. On the other hand, the use of an expressive symbolic language naturally makes
it more challenging to apply local reasoning than in graphical theories. For these reasons we hypothesize that
the sum-over-paths approach may be more amenable to automated reasoning, while the graphical approach
may be more amenable to interactive reasoning. We leave it for future work to explore this premise further.
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A Proof of Proposition 3.10

Proposition A.1 (R-expression normalization). An R-expression r can be brought into normal form over
the variables {xi} ⊇ FV (r) using the equations of Figure 3.

Proof. By induction on the structure of an R-expression.

Case: α. By induction on the number of variables m. If m = 0 then α is already in normal form. For
m > 0, let α ≡ αx⃗=00···0

00···0 · · ·αx⃗=11···1
11···1 and observe that r can be brought into normal form involving one

additional variable xm+1:

α ≡ αx⃗=00···0
00···0 · · ·αx⃗=11···1

11···1

≡ (αx⃗=00···0
00···0 · · ·αx⃗=11···1

11···1 )¬xm+1(αx⃗=00···0
00···0 · · ·αx⃗=11···1

11···1 )xm+1

≡ (αx⃗=00···0
00···0 )¬xm+1 · · · (αx⃗=11···1

11···1 )¬xm+1(αx⃗=00···0
00···0 )xm+1 · · · (αx⃗=11···1

11···1 )xm+1

≡ α
(x⃗=00···0)(xm+1=0)
00···0 · · ·α(x⃗=11···1)(xm+1=0)

11···1 α
(x⃗=00···0)(xm+1=1)
00···0 · · ·α(x⃗=11···1)(xm+1=1)

11···1

≡ α
x⃗xm+1=00···00
0···00 · · ·αx⃗xm+1=11···10

11···1 α
x⃗xm+1=00···01
00···0 · · ·αx⃗xm+1=11···11

11···1

Case: r1r2. Let r1 ≡ αx⃗=00···0
00···0 αx⃗=00···1

00···1 · · ·αx⃗=11···1
11···1 and r2 ≡ βx⃗=00···0

00···0 βx⃗=00···1
00···1 · · ·βx⃗=11···1

11···1 . Then

r1r2 ≡ αx⃗=00···0
00···0 · · ·αx⃗=11···1

11···1 βx⃗=00···0
00···0 · · ·βx⃗=11···1

11···1

≡ αx⃗=00···0
00···0 βx⃗=00···0

00···0 · · ·αx⃗=11···1
11···1 βx⃗=11···1

11···1

≡ (α00···0β00···0)
x⃗=00···0 · · · (α11···1β11···1)

x⃗=11···1
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Case: r1 + r2. Let r1 be written in normal form as r1 ≡ αx⃗=00···0
00···0 αx⃗=00···1

00···1 · · ·αx⃗=11···1
11···1 and factorize this

as s¬xm
1 sxm

2 . Likewise, let r2 ≡ βx⃗=00···0
00···0 βx⃗=00···1

00···1 · · ·βx⃗=11···1
11···1 ≡ t¬xm

1 txm
2 . Then we can observe:

r1 + r2 ≡ s¬xm
1 sxm

2 + t¬xm
1 txm

2

≡ s¬xm
1 + sxm

2 − 1 + t¬xm
1 + txm

2 − 1

≡ s¬xm
1 + sxm

2 − 1 + t¬xm
1 + txm

2 − 1

≡ (s1 + t1)
¬xm + 0xm + (s2 + t2)

xm + 0¬xm − 2

≡ (s1 + t1)
¬xm + (s2 + t2)

xm − 1 + 0¬xm + 0xm − 1

≡ (s1 + t1)
¬xm(s2 + t2)

xm + 0¬xm0xm

≡ (s1 + t1)
¬xm(s2 + t2)

xm

Now s1 + t1 and s2 + t2 are R-expressions in m − 1 variables, so induction on the number of variables
suffices to finish this case. Note that in the base case m = 0, r1 + r2 is an ordinary ring sum and hence can
be evaluated in R to the normal form α.

Case: rf . We proceed by induction on the structure of f . If f = 0 then rf ≡ 1 which can be brought into
normal form by the previous case. If f = 1 then rf ≡ r which is already in normal form. If f = xi then

rxi ≡ (αx⃗=00···0
00···0 αx⃗=00···1

00···1 · · ·αx⃗=11···1
11···1 )xi

≡ (αx⃗=00···0
00···0 )xi(αx⃗=00···1

00···1 )xi · · · (αx⃗=11···1
11···1 )xi

≡ 1x⃗=00···0 · · · 1x⃗=01···1αx⃗=10···0
10···0 · · ·αx⃗=11···1

11···1

For the inductive cases, if f = f1 · f2, then

rf1·f2 ≡ (rf1)f2

≡ (αx⃗=00···0
00···0 αx⃗=00···1

00···1 · · ·αx⃗=11···1
11···1 )f2

≡ (αx⃗=00···0
00···0 )f2(αx⃗=00···1

00···1 )f2 · · · (αx⃗=11···1
11···1 )f2

≡ r00···0r00···1 · · · r11···1

where each rx⃗ is in normal form and the r1r2 case suffices to finish this case.
Finally, if f ≡ f1 ⊕ f2, then r

f1⊕f2 ≡ rf1 + rf2 − (2r)f1·f2 where each term can be brought into normal
form by the inductive hypothesis and the previous case. The r1 + r2 case then completes this case.

14


	Introduction
	The balanced sum-over-paths
	The unbalanced sum-over-paths
	Equational theory of unbalanced sums over R

	Weakening the sum rule
	Discussion
	Acknowledgements
	Proof of prop:rexp

