Technology Mapping of Reversible Circuits to
Clifford+1" Quantum Circuits

Abstract—The Clifford+T quantum gate library has attracted
much interest in the design of quantum circuits, particularly
since the contained operations can be implemented in a fault-
tolerant manner. Since fault tolerant implementations of the 7'
gate have very high latency, synthesis and optimization are aiming
at minimizing the number of 7 stages, referred to as the 7-depth.

In this paper, we present an approach to map mixed polar-
ity multiple controlled Toffoli gates into Clifford+7 quantum
circuits. Our approach is based on the multiple control Toffoli
mapping algorithms proposed by Barenco ef al. which are given
T-depth optimized Clifford+7 translations. Experiments show
that our approach leads to a significant 7-depth reduction of
54% on average.

I. INTRODUCTION

Quantum computing has shown promising results, e.g., for
solving certain problems exponentially faster than any known
classical algorithm by exploiting quantum mechanical effects.
In contrast to Boolean logic, quantum bits (qubits) not only
represent the classical 0 and 1 states but also any complex
combination or superposition of both, leading to a significant
speed-up in computing. The Deutsch-Jozsa algorithm [1] as
well as Shor’s factorization algorithm [2] are famous examples
showing the power of quantum computing.

Since many underlying quantum algorithms include a
Boolean component, the synthesis of such components is
typically conducted by a two-stage procedure: (i) a reversible
circuit realizing the Boolean component is generated for which
existing synthesis algorithms such as [3] are used, (ii) mapping
techniques are applied to transform the reversible circuit into
a functionally equivalent quantum circuit [4]-[6]. The second
stage is typically divided into further stages where a reversible
circuit is first mapped into NOT, CNOT and Toffoli gates;
those gates are then individually mapped to the relevant low-
level library. While this layered approach allows convenient
reuse of circuits between applications, the results are typically
non-optimal as the structure of the high-level circuit may allow
low-level gates to be omitted. As a result, researchers have
proposed [6], [9] optimized mappings directly from reversible
circuits into low-level or intermediate quantum gate libraries,
e.g., the NCV [4] library or NCT+Peres. Such mappings avoid
the overhead of applying primitive gate optimization and in
some cases achieve better results due to human insight.

Recently, there has been particular interest in quantum
circuits composed of Clifford+7" gates where a major objective
is to minimize the number of 7' gates and particularly the 7-
depth of the circuit. This is motivated by the importance of
fault tolerance in quantum computations [7] and by the fact
that the cost of the fault tolerant implementation of a 7' gate

can exceed the cost of implementing a Clifford gate by a factor
of 100 or more [8]. While automated Clifford+1" optimization
techniques exist [10], no optimized mapping approaches have
yet been developed for the Clifford+7" library.

In this paper we present mapping schemes based on existing
algorithms to produce circuits of low T'-depth. No previous
mapping scheme has considered this quantum cost metric
explicitly. We present

1) an improved algorithm to map c-control MPMCT gates

into Clifford+T circuits using (¢ — 2) helper lines, called
ancillas, and

2) an improved algorithm to map c-control MPMCT gates

into Clifford+T circuits using one ancilla
These algorithms are then used to map reversible circuits into
Clifford+7" quantum circuits, taking into account the ancillas
available at each reversible gate.

This optimized reversible circuit mapping approach, inte-
grated into our design flow for quantum circuits, allows for
significant T-depth reduction compared to existing mapping
approaches and Clifford+7" circuit optimization algorithms.
As confirmed by an experimental evaluation, improvements
of the T-depth of up to 65% can be observed. This clearly
demonstrates the efficiency of our approaches on optimizing
the cost of Clifford+7" quantum circuit.

II. BACKGROUND

This section briefly introduces the basics on reversible and
quantum circuits.

A. Reversible Circuits

Let B = {0,1} denote the Boolean values. We refer to
Bh.m ={f | f: B" — B™} as the set of all Boolean multiple-
output functions with n inputs and m outputs.

Definition 1 (Reversible function): A function f € B,, ,, is
called reversible if f is bijective, i.e., if each input pattern
is uniquely mapped to an output pattern, and vice versa.
Otherwise, it is called irreversible.

Reversible functions on n bits are realized by circuits consist-
ing of at least n lines over multiple controlled Toffoli gates [3].

Definition 2 (Toffoli gate): Given a set of variables X =
{z1,...,2,}, a mixed polarity multiple controlled Tof-
foli (MPMCT) gate T(C,t) has control lines C =
{zj,xj,,...,x;,} C X and a target line t € X \ C. The
gate maps t — ¢t @ (2f} Aaf Ao Aah)), with each
literal xi is either a propositional variable x; = x or its
negation xjo = Z. All remaining other lines are passed through
unaltered. Multiple controlled Toffoli gates (MCT) are a subset
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Fig. 1: Reversible and quantum circuits

from MPMCT gates in which the product terms can only
consist of positive literals. The NOT, CNOT, Toffoli (NCT)
library further restricts gates to have at most two control lines.

Example 1: Fig. 1a shows a Toffoli gate with mixed polarity
control lines, the control lines are either denoted by e to
indicate positive controls, or o to indicate negated controls.
The target line is denoted by @ Fig. 1b shows different
Toffoli gates in a cascade forming a reversible circuit. The
annotated values demonstrate the computation of the gate for
a given input assignment.

B. Quantum Circuits

Instead of bits, quantum circuits manipulate qubits which
can represent any complex combination of the classical
Boolean values. In particular, a qubit |p) is a vector (})
where a,b € C such that |a|> 4 |b|*> = 1. We typically denote
by 0) = (}) and [1) = (°) the computational basis vectors
of C?, and associate them with the classical values 0 and 1,
respectively.

Definition 3 (Quantum gate): In general, a quantum gate

acting on n qubits/lines is represented by a 2™ x 2™ unitary
(norm-preserving) matrix [5]. As in reversible circuits, input
lines may be designated as control lines, which have the effect
of applying the gate whenever (possibly in superposition) the
controlled qubit is in the |1) state.
The NCV and Clifford+7" gate libraries contain quantum
gates that realize the unitary matrices {NOT, CNOT, V, VT}
and {NOT, CNOT, H, Z, S, ST, T, T'}, respectively. Both
libraries are universal for reversible computation, though the
Clifford+7" library is more commonly used in fault tolerant
quantum computing as it has known, simple implementations
in most schemes. Details about the precise operations of the
gates are not relevant for the scope of this paper.

Definition 4 (NCV-cost): The NCV-cost is the total number
of NCV gates used in a quantum circuit.

Definition 5 (T-depth): The T-depth is the minimum num-
ber of T'-stages in a quantum circuit where each stage consists
of one or more T or T gates performed concurrently on
separate qubits.

Example 2: Figs. 1c and 1d present an optimal realization
of a Toffoli gate with two positive controls based on the NCV
library [4, Lemma 6.1] and Clifford+7" library [10, Fig. 13],
respectively. A Toffoli gate has an NCV-cost of 5 and a T-
depth of 3 as it is outlined with the dashed rectangles.

C. Mapping Reversible Circuits to Quantum Circuits

In order to derive a quantum circuit for a reversible function,
the following approach is typically applied: (i) use synthesis to
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(a) 4-controlled gate (b) Barenco et al. (Lemma 7.2)

Fig. 2: Mapping an MPMCT gate into Toffolis gates using
(c — 2) ancillas

obtain a reversible circuit description, e.g., based on MPMCT
gates; (ii) transform the circuit into one that consists only of
NCT gates; (iii) map each Toffoli gate (with 2 controls) locally
to a quantum circuit (all other gates in the NCT library are
already quantum gates in the standard libraries). State-of-the
art mapping approaches for the second step are inspired by
the following two approaches presented in [4], mapping MCT
gates into NCT circuits with linear complexity.

Barenco et al. (Lemma 7.2): According to [4, Lemma 7.2],
when the number of available ancillas is (¢ — 2), a c-control
MCT can be mapped directly to a circuit that consists of 4(c—
2) Toffoli gates. The circuit depicted in Fig. 2b presents the
circuit for the 4-control gate with 2 ancillas (see Fig. 2a).
Maslov et al. [9] further optimized this algorithm to improve
the NCV-cost by replacing each Toffoli with the more efficient
Peres gate (NCV-cost of 4 versus 5 for a Toffoli). The T-depth
remains the same in either case.

Barenco et al. (Lemma 7.3): According to [4, Lemma 7.3]
a Toffoli gate T(C,t) with |C| > 3 is mapped to a cascade

T(C1,a1)oT(CaU{a1},t)oT(Cr,a1)oT(CoU{ar},t) (1)

where C = C, UCy and C; N Cy = 0. The ancilla a;
can neither be in C, nor can it be t. If no free line is
available, an additional line a; must be added to the circuit.
Note that the cascade restores the value on a; and therefore
it can be reused for all gates. Fig. 3b shows the resulting
cascade after mapping a 7-controls MPMCT gate (see Fig. 3a).
Note that after applying this algorithm, there exist a sufficient
amount of ancilla lines for each gate to apply Lemma 7.2.
Hence, the final circuit contains 8(c— 3) Toffoli gates. Nielsen
and Chuang [5], show that if the ancilla in the previous
transformation is assigned to the O state, the fourth gate in (1)
can be omitted (see Fig. 3c)—however, the ancilla can not be
reused. The resulting circuit has 6(c — 3) Toffolis. gates.



e

e

Y aq

U
D N
N N

ax 1 a1

o

(a) 7-controlled gate (b) Barenco et al. (Lemma 7.3)

—-o0——o0— —0
o8-

—O——0— —

T 7 T

DG 1 /%

o4 Do S SO SO NI

: il

(c) Nielsen and Chuang (d) Miller et al.

Fig. 3: Mapping an MPMCT gate into smaller MPMCT gates using one ancilla

Finally, Miller et al. [6] present an improved mapping based
on Lemma 7.3 directly into quantum circuits by using the
controlled-V" gate (see Fig. 3d). In this case, the control set
C5 has one fewer line, at the expense of 4 controlled V/ yt
gates. The resulting circuit contains 8(c —4) Toffoli gates and
4 NCV gates, reducing the total NCV-cost from 5 - 4(¢ — 2)
to 4-4(c—2).

In the rest of the paper, we denote the one ancilla optimized
mapping algorithms of Barenco et al. given by Nielsen and
Chuang, and Miller et al. by B1, NC, and MI, respectively.
Also, we refer to the (¢ — 2) ancilla mapping algorithm from
Barenco et al. as B2.

III. CLIFFORD+71 AWARE REVERSIBLE CIRCUIT MAPPING

No effort has been spent on optimizing mapping approaches
to Clifford+7" quantum circuits. So far Clifford+1" circuits
have only been considered in pre- and post-mapping optimiza-
tions (see, e.g., [10]-[12]). In [13], the author has given a class
of circuits whose T'-depth can be reduced to one by using a
sufficient number of ancillas.

In this paper, we propose mapping schemes that for the first
time take into account the Clifford+7" quantum gate library and
the T'-depth cost metric to enable more efficient fault-tolerant
circuits. For a given reversible circuit on n lines consisting of
gates g; = T(C},t;) the algorithm maps each gate according
to the following case distinction, using ¢ = |C;]| to refer to the
number of controls and a = n — ¢ — 1 to refer to the number
of free lines.

Case 1: (c < 2) The gate g; is already contained in the
Clifford+7T" gate library and is directly added to the
quantum circuit.

Case 2: (c = 2) The gate g; is mapped to its (7T-depth) opti-
mal quantum circuit according to Fig. 1d.

Case 3: (a > [21]) We apply a mapping scheme based on
the B2 mapping that returns quantum circuits with a 7'-
depth of 4(c — 1) (see Section III-A).

Case 4: (otherwise) We map the gate with respect to a map-
ping scheme based on the B1, NC, or MI mapping (see
Section III-B).

If there exists a gate T(C},¢;) such that |C;| = n—1, we add
one additional line to the circuit before starting the mapping.

Thus, it is ensured that there exists at least one ancilla line
when applying the mapping in Case 4.

A. Mapping using (c — 2) Ancillas

This section describes a mapping scheme based on the B2
mapping, using ¢ — 2 ancillas. We present the mapping by
applying series of rewrites to the B2 mapping.

Lemma 1: A c-control MPMCT gate with ¢ > 4 can be
realized with a T-depth of

4(c—1) 2)
using the B2 mapping with ¢ — 2 ancillas.

Consider a c-control MPMCT gate mapped using the
B2 algorithm as shown in Fig. 2b. The standard mapping,
using a T-depth 3 circuit for each Toffoli, results in a total
T-depth of 3 - 4(c — 2) = 12(c — 2). We may however
rewrite the Toffolis with more efficient gates by noting that
each Toffoli shares two lines with another Toffoli, and no
gates occur in between. In particular, we first rewrite every
Toffoli with a doubly-controlled Z gate and two Hadamard
gates on either side of the target line. For matched pairs
of Toffolis sharing a target, the Hadamard gates cancel:

s [ e i [T h
= —4 —— = —4¢ >

z z z z
Recall that controlled phase gates are symmetric
in that the target behaves like a control [14], ie.,

By applying this fact (see Fig. 4a), we may observe that
each doubly-controlled Z gate now shares exactly two controls
with another gate. We may now use the iZ-gate construction
of Selinger [13] to rewrite each doubly-controlled Z gate using

fewer T gates. Explicitly, we define the :Z-gate as the operator
3)

iZ : |zyz) e whTYETREY gy )

where w = eT. We also denote the inverse of the iZ
gate by iZ'. The iZ gate implements the doubly-controlled
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Fig. 4: Optimization of Barenco et al.

Z gate up to some smaller phase using only 4 T-gates:

For each pair of doubly-controlled Z gates that share two
controls, one is written as an 2 gate and a singly-controlled
ST gate, and the other is written as an iZ' and a singly-
controlled S gate (see Fig. 4b) — the controlled S/ST gates
then cancel.

To further optimize this mapping, we give a refinement of
the 1Z gate — the iwZ gate

iwZ : |zyz) s wiTVFTRY T2 |y )

“4)

where w = e7 and iwZ' is its inverse. This gate

may be implemented in 7-depth 1, and together with
target

a T' gate on the implements the @7 gate:

Fig. 4b shows the B2 mapping of the 5 control MCT gate
where iZ gates have been replaced with iwZ/iwZ T gates, and
the T gates are either cancelled or parallelized (see Fig. 4c).
Note that the 4 “points” of the cascade are left as ¢Z gates
since they cannot be parallelized further. The extra phase gates
from the outermost cascades (see Fig. 4c) are also cancelled
despite being physically separated in the circuit, since each
ancilla is returned to its initial state as shown in Fig. 4d.

To complete the analysis, we note that each iZ/iZ f
gate can be mapped to 4 T gates in depth 2 [13], while
each iwZ/iwZ f gate can be mapped into a quantum circuit
with a T-depth of 1. Similarly for mixed polarity gates:
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(d)
algorithm (Lemma 7.2) wrt. T'-depth

Note that this bound beats out the T-depths achieved by the
state-of-the-art approach Tpar [10], showing that their heuristic
approach is non-optimal in some cases.

B. Mapping using One Ancilla

In this section we give optimized mapping schemes using
one ancilla based on the B1, NC and MI mappings. In each
case, a c-control MPMCT gate is decomposed into m-control
and (¢ —m + 1)-control (or (¢ — m)-control if the case of the
MI mapping) MPMCT gates, which are further decomposed
using the optimized B2 mapping explained above.

Lemma 2: A c-control MPMCT gate with ¢ > 5 controls
can be realized with a T-depth of

8(c — 2) based on the B1 mapping, (5)
6(c—2)+2 based on the NC mapping, and  (6)
8(c—3)+4 based on the MI mapping  (7)

Consider the B1 mapping as in Fig. 3b. In this case the
standard mapping (using a 7T-depth 3 Toffoli) gives a total
T-depth of 24(c — 3). However if we map the first two
MPMCT gates using the B2 mapping above, then use the
inverse (obtained by reversing the circuit and replacing each T'
gate with 7' of the B2 mapping for the remaining MPMCT
gates, we can cancel an additional 8 7' gates. Specifically,
for each pair of MPMCT gates (first and third or second and
fourth), the value on the target line of either dashed iZ gate
shown in Fig. 4d is constant. As in the proof of the B2 upper
bounds, we may then replace each dashed iZ gate with an iwZ
gate and cancel the extra 7" gates. The result is a total reduction
of 8 levels of T-depth, giving a total 7T-depth for a c-control
MPMCT gate of 2-4(m—1)+2-4(c+1-m—1)—8 = 8(c—2).

For the NC mapping we may use the same argument to
cancel an additional 2 T-gates each from the first and third
MPMCT gates. The resulting mapping has a T-depth of 6(c—
2) when ¢ is even and 6(c — 2) + 2 when c is odd, compared
to a T-depth of 18(c — 3) when using the standard mapping.
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Fig. 5: T-depth for MPMCT gates and reversible circuits

Finally, consider the MI mapping. The T-depth under the
standard mapping in this case is 24(c — 4) + 8. We arrive
at our T-depth 8(c — 3) + 4 by using the same argument to
reduce each of the 4 multiple control Toffolis by two layers
of T-depth. We further note that each controlled V' gate may
be mapped in T-depth 1. In particular, we first map each
controlled V' to controlled S’ gates conjugated by Hadamards:

& - aba

As in the B2 mapping, adjacent Hadamards cancel,
then the controlled S gates are alternately mapping
into wS and wS" gates with the following mapping:

where wS lzy) — w2 |zy2). The additional
T/TT gates cancel, leaving 4 wS/wST gates as follows:
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Each such gate is finally mapped to two T/TT gates in 7T'-
depth 1, giving a total 7T-depth for the MI mapping scheme
of 2-4m—1)+2-4(c—m—1)—8+4=8(c—3)+4.

While the NC mapping clearly gives the best T-depth, it
should be noted that it does so by using a zero-valued ancilla
and so may require an extra line to be added where the B1
and MI mappings do not.

IV. EXPERIMENTAL RESULTS

In this section we provide the experimental results of our
proposed approaches for mapping MPMCT gates into quantum
circuits with gates from the Clifford+7" gate library. The

mapping approaches above have been implemented in the
open source toolkit RevKit [15] and tested on a suite of
benchmarks taken from [16], [17]. The reversible functions
were synthesized with the approach outlined in [3].

A. Mapping of MPMCT Gates

The experimental results presented graphically in the plot
in Fig. 5a show the T-depth of mapped MPMCT gates with
up to 15 controls based on B2. The values of the z-axis and
the y-axis denote the number of controls and the T'-depth,
respectively. The plot contains three different scenarios: the
T-depth of the of MPMCT gates mapped using the original
B2 (in blue), the T-depth of the mapped MPMCT using B2
and then optimized with Tpar [10] (in red), and the T-depth
of the of MPMCT gates mapped using the optimized B2 (in
green) as described in Section III-A. We achieved the smallest
T-depth for each MPMCT gate in comparison with the two
others. The overall improvement of the 7'-depth reaches 60%
with respect to the original B2, while 14% with respect to
Tpar.

For the mapping based on one ancilla, we only report the
best mapping, i.e., the NC algorithm. The plots in Fig. 5b
shows the T-depth of mapped MPMCT for up to 15 controls
using NC. It is clear that the results of the enhanced mapping
approach are significantly better than the original NC mapping
approaches as well as the optimized realizations with Tpar.

B. Mapping of Reversible Circuits

First, we compared the efficiency of each mapping algo-
rithm with respect to the obtained 7'-depth. The plot in Fig. 5S¢
shows the T'-depth of each circuit using the three different
mapping strategies B1 (blue), NC (green), and MI (red). As it
is expected, since the MI approach is an improvement of the
B1 algorithm, we clearly see that MI outperforms B1. While
NC beats each of the previous mentioned algorithms, this is
explained by the fact of omitting an MPMCT gate on the
mapping due to the use of an ancilla line set to the constant
value 0. An interesting question for future research is when



TABLE I: Experimental Results

V. SUMMARY AND CONCLUSIONS

In this work, we extended and improved the existing map-
ping algorithms of reversible circuits into quantum circuits
using the Clifford+7 quantum library. No such mapping
algorithm has been presented for the Clifford+1" gate library
before. As shown, the new mapping approaches lead to circuits
with lower T-depth compared to standard mappings, on aver-
age by more than 54% for the combined NC & B2 mapping
strategy.

Benchmark Nielsen Chuang [5] Mapping

ID L G TO T Time ITD

4.49_7 4 14 84 60 0.00 28.57%
4gt10 5 19 233 145 0.00  37.77%
decod24-en. 6 30 472 292 0.00  38.14%
majority 6 70 1154 726  0.00  37.09%
2 7 96 2811 1591 0.00  43.40%
sym6 7 163 4590 2566 0.01  44.10%
74 8 329 11756 5868 0.02  50.09%
hwb8 8 372 13000 6520  0.02  49.85%
wim 9 364 20583 9527 0.04  53.71%
squar5 9 394 21593 9985 0.04  53.76%
adr4 9 606 30182 14146 0.04  53.13%
sqrt8 9 666 34175 16027 0.05  53.10%
hwb9 9 807 36105 17089 0.05 52.67%
dcl 10 273 24596 10416  0.04  57.65%
Sxpl 10 1046 69920 29592 0.12  57.68%
root 10 1135 75087 31639 0.13  57.86%
dist 10 1283 85515 35915 0.14  58.00%
max46 10 1449 90958 38210  0.12  57.99%
urf3 10 1486 94924 39876  0.12  57.99%
life 10 1577 100216 42332 0.12  57.76%
9symml 10 1578 88227 36897 0.11  58.18%
sym9 10 1610 95896 40272 0.15  58.00%
rd84 11 2901 214922 92146 037  57.13%
clip 11 3138 224223 96555 0.41  56.94%
syml0 11 3539 263606 113062 044  57.11%
cml52a 11 3804 267836 115216 033  56.98%
urf4 11 3831 272048 116988 034 57.00%
plus63-4096 12 18 838 346 000 58.71%
cyclel0 12 27 1606 690  0.00 57.04%
sqr6 12 2365 287561 114281 045  60.26%
plus127-192 13 19 1018 422 0.00 58.55%
plus63-8192 13 20 1066 442 0.01  58.54%
cm42a 13 73 11952 4628 002 61.28%
dc2 13 5696 807824 320580 1.33  60.32%
0410184 14 193 7707 3295 0.01  57.25%
misex|1 14 5242 931174 357574 143 61.60%
ham15 15 1114 21555 11203 0.03  48.03%
urf6 15 2350 540128 201976  0.62  62.61%
C7552 20 274 80456 29040  0.12  6391%
bw 32 3709 | 2205808 769364 3.02  65.12%
Average | 54.75%

the cost of adding extra O-valued ancillas outweighs the extra
T-depth incurred by using the B1 or MI approach.

Due to lack of space, we report the numerical experiments
of the most interesting mapping (optimized NC together with
optimized B2). Obtained results are shown in Table 1. For each
benchmark we show the name (ID), the number of lines (L),
and the number of gates (G). Then we apply the mapping algo-
rithm NC when the gate has no sufficient ancillas to apply B2.
We give the T-depth of the original mapping algorithm (Tj),
the T-depth of the improved mapping algorithm (T;), the
needed run-time (Time), and the 7T-depth improvement ITp,
respectively. Experiments demonstrate the efficiency of the
proposed mapping methodologies wrt. original mapping algo-
rithms. Compared to the best previously introduced methods,
we show that our mapping yields substantially smaller circuits.
More precisely, improvements of around 54% can be achieved
on average for the optimized NC algorithm. In the best case,
the T'-depth of the circuits can even be reduced by more than
65% (bw).
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