
Preliminary Report. Final version to appear in:
QPL 2018

c© M. Amy
This work is licensed under the
Creative Commons Attribution License.

Towards Large-scale Functional Verification of
Universal Quantum Circuits

Matthew Amy
Institute for Quantum Computing and David R. Cheriton School of Computer Science

University of Waterloo, Canada
meamy@uwaterloo.ca

We introduce a framework for the formal specification and verification of quantum circuits
based on the Feynman path integral. Our formalism, built around exponential sums of
polynomial functions, provides a structured and natural way of specifying quantum operations,
particularly for quantum implementations of classical functions. Verification of circuits over
all levels of the Clifford hierarchy with respect to either a specification or reference circuit is
enabled by a novel rewrite system for exponential sums with free variables. Our algorithm
is further shown to give a polynomial-time decision procedure for checking the equivalence
of Clifford group circuits. We evaluate our methods by performing automated verification
of optimized Clifford+T circuits with up to 100 qubits and thousands of T gates, as well as
the functional verification of quantum algorithms using hundreds of qubits. Our experiments
culminate in the automated verification of the Hidden Shift algorithm for a class of Boolean
functions in a fraction of the time it has taken recent algorithms to simulate.

1 Introduction

Verification is a fundamental aspect of modern electronic design. Without a high level of assurance
that a circuit design conforms to a particular specification, chip makers stand to lose hundreds of
millions of dollars when their product is inevitably recalled. The consequences in the quantum
computing realm aren’t quite as clear, as the largely software-like nature of quantum circuits
alleviates much of the risk associated with design flaws. On the other hand, quantum resource
analyses, which typically vary wildly between compilers [19], are currently being used to assess
and guide real security policies [3,18], so it is highly desirable to attain some degree of assurance
that these resource analyses are indeed correct.

Due to the absence of large, universal quantum computers and the inherent difficulty of
simulating quantum circuits, testing is generally not a viable option for verification. By contrast,
various methods of formal verification have been developed for quantum circuits and programs,
including equivalence checking [7, 30,31], diagrammatic methods [13,15], model checkers [6, 16],
program logics [32] and formal proof [27]. However, two questions remain: how can the intended
effect of a quantum program be specified in a clear, human readable and verifiable way, and how
can we scale automated verification to large circuits?

Typical functional verification methods – verification of the precise input-output relation –
either verify equivalence against a simpler circuit or diagrammatic implementation (e.g., [15,
30,31]), or a matrix representation such as a unitary or superoperator (e.g., [27]). With either
approach, errors can creep in on the specification side, as both circuit and matrix presentations
can be difficult for humans to write and understand. Moreover, in the former case it is assumed
that a certified implementation exists in the first place, and in the latter case the matrix either

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards Large-scale Functional Verification of Universal Quantum Circuits

requires exponential space to write and store, or is left abstract [27], relying on structural proofs
which are generally not suitable for verifying heavily optimized circuits.

In this work we propose a novel framework for the formal specification and functional
verification of unitary (i.e., measurement-free) quantum circuits over a universal gate set –
specifically, the Clifford group extended with Z-axis rotations taken from the Clifford hierarchy
[17]. Our framework is built around Richard Feynman’s path integral technique, which has been
used recently to prove results in complexity theory [12,24], and to perform circuit simulation [10,21]
and optimization [1,2,4]. Specifically, we develop a concrete representation of quantum operators
as path-sums – exponential sums of basis states over a finite set of Boolean path variables. Our
path-sums directly coincide with the standard mathematical presentation of common quantum
circuits and algorithms (e.g., [25]), and further allow the direct use of classical functions, which
can themselves be tested or otherwise verified, to formally specify quantum operations.

To verify quantum circuits, we give a computable, compositional semantics of quantum
circuits as path-sums. We show that over Clifford+Rk circuits for any fixed k, this interpretation
is efficiently computable and compact. We then present a reduction system for path-sums which
iteratively reduces the number of path variables until a (non-unique) normal form is reached.
Our reduction system together with an efficient initial transformation is complete for Clifford
group circuits, giving a polynomial-time equivalence checking algorithm. Experimentally, we use
our reduction system to perform the automated verification of optimized Clifford+T circuits, as
well as Clifford+Rk implementations of various quantum algorithms against formal specifications
as path-sums for up to 200 qubits.

Preliminaries We work in the strictly unitary picture of quantum computing [25] – that is,
quantum computations are modelled by unitary operators on a complex vector space of dimension
2n. While we do not consider measurements, we allow qubit initialization, corresponding to
partial isometries on a complex vector space. We denote the computational basis vectors as |x〉
for binary strings x = x1x2 . . .xn ∈ Zn2 .

A circuit is defined as a sequence of quantum gates applied to individual qubits. We primarily
consider three quantum gates:

H = 1√
2

(
1 1
1 −1

)
, Rk =

(
1 0
0 e

2πi
2k

)
, and CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For k ≥ 1, all three gates lie in the kth level of the Clifford hierarchy, denoted Ck, where
Ck = {U |UC1U

† ⊆ Ck−1} and C1 is the Pauli group. Two important cases are the Clifford group
(C2) and Clifford+T (C3). While for k≤ 3 the above gates suffice to generate Ck, it is not generally
known whether Ck = 〈H,Rk,CNOT〉.

Much of our formalism involves polynomial representations of pseudo-Boolean functions –
functions from Zn2 into some set S. In particular, we are interested in pseudo-Boolean functions
into the ring of dyadic fractions D = { a2b |a,b ∈ Z}, which correspond uniquely to multilinear
polynomials in DM [x] = D[x]/〈x2

i −xi〉. In our context the ring of dyadic fractions arises from the
phase factors of Rk gates, and are needed to precisely represent the quantum Fourier transform.

M. Amy 3

B

A

Figure 1: The paths of a particle from point A to B.

2 The path-sum framework
The path-sum dates back to Feynman and the path integral formulation of quantum mechanics [14].
In a general sense, the idea is to describe the amplitude of a particular state (say, of a particle)
by an integral over all possible paths leading to that state. Figure 1 shows the trajectories of a
particle moving from states A to B – in the path integral formulation, the final amplitude is
described as the sum of the amplitudes of each path. The output amplitudes of a quantum circuit,
as a quantum mechanical system, can likewise be described as the sum over all trajectories of the
system. However, as quantum gates are typically modelled as operators on a finite dimensional
Hilbert space, a discrete sum rather than integral is typically used [8, 12,21,24].

We can describe a path-sum abstractly as a discrete set of paths S ⊆ Zm2 , together with an
amplitude function φ and state transformation f representing the operator

U : |x〉 7→
∑
y∈S

φ(x,y)|f(x,y)〉.

In this form, the path-sum is not particularly useful as a computational representation, as the
representations of φ and f are not fixed – indeed φ itself may be a unitary matrix with φ(x,y)
indexing a particular entry. Instead, we fix a concrete representation based on multivariate
polynomials which suffices to exactly represent most interesting quantum operations.
Definition 2.1 (path-sum). An n-qubit path-sum ξ consists of
• an input signature |x = x1x2 · · ·xn〉 where each xi is a (distinct) variable or Boolean constant,
• a phase polynomial P ∈ DM [x,y] over input variables x and path variables y = y1y2 . . .ym,
and
• an output signature |f(x,y) = f1(x,y) · · ·fn(x,y)〉 where each fi ∈ Z2[x,y] is a Boolean

polynomial.
The associated operator of a path-sum is the partial linear map Uξ where

Uξ : |x〉 7→ 1√
2m

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉.

We say a path variable is internal if it does not appear in the output signature. Our
presentation is inspired by descriptions of quantum operators in mathematical texts [20, 25],
and as such we write a path-sum informally by the action of its associated operator. By an
abuse of notation, we use |x〉 to refer to either an input signature or an arbitrary Boolean vector
corresponding to an input signature.

4 Towards Large-scale Functional Verification of Universal Quantum Circuits

Example 2.2. Path-sum representations of common quantum gates and circuits are listed below:

T :|x〉 7→ e2πix8 |x〉

H :|x〉 7→ 1√
2
∑
y∈Z2

e2πixy2 |y〉

Toffolin :|x1x2 · · ·xn〉 7→ |x1x2 · · ·(xn⊕
∏n−1
i=1 xi)〉

Addern :|x〉|y〉|0〉 7→ |x〉|y〉|x +y〉

QFTn :|x〉 7→ 1√
2n

∑
y∈Zn2

e2πi [x·y]
2n |y〉

Addition and multiplication of Boolean vectors are interpreted as integer operations at the bit
level. In the QFT above, [x ·y] denotes the integer value of x ·y. For any classical function
f , we can lift the polynomial representation of f to a quantum operator via the path-sum
|x〉|0〉 7→ |x〉|f(x)〉. Note that the polynomial representation of a classical function may grow
exponentially large, as in the case of addition. A practical implementation of path-sums as a
specification language would include a classical sub-language, along with a verified translation
from such programs into Boolean polynomials.

As a unitary or partial isometry may admit many distinct path-sum representations, we
define an equivalence between path-sums with the same associated operator.

Definition 2.3 (equivalence). Two path-sums ξ1, ξ2 are equivalent, denoted ξ1 ≡ ξ2, if and only
if their associated operators are equal – that is, Uξ1 = Uξ2 .

An additional point to note is that non-isometric path-sums are possible in our framework, as
for instance |x〉 7→ |0〉 is a valid path-sum. In this work we are concerned only with the unitary
circuit model and by extension isometric path-sums, hence we define a notion of well-formedness
for path-sums.

Definition 2.4 (well-formed). A path-sum is well-formed if its associated operator is a (partial)
isometry.

In practice, well-formedness is only an issue when writing path-sums directly as specifications,
and our verification methods work even when a path-sum is not guaranteed to be well-formed.
We leave it as a question for future research to determine methods for checking well-formedness
of path-sums.

2.1 Compositions of path-sums

As with quantum circuits, path-sums may be composed both vertically and horizontally – that
is, composed in parallel with another path-sum on a distinct subsystem or in sequence on the
same subsystem, respectively. Vertical composition is defined in the obvious way – concatenating
the inputs and outputs then adding the phase polynomials with appropriate renaming – but
horizontal composition requires more care.

Intuitively, as path-sums symbolically describe mappings between linear combinations of basis
vectors, we can compose the output |f(x,y)〉 of one path-sum with the input |x′〉 of another by
substituting each input value x′i with the corresponding output fi(x,y). For instance, we can

M. Amy 5

compute the composition of |x1x2x3〉 7→ |x1(x1⊕x2)x3〉 followed by |x′1x′2x′3〉 7→ |x′1x′2(x′2⊕x′3)〉
by substituting x′2 with x1⊕x2:

|x1x2x3〉 7→ |x1(x1⊕x2)(x1⊕x2⊕x3)〉.

However, this presents a problem when the path-sum on the left (i.e. right-to-left composition)
is a partial isometry, as we may end up composing a variable fi(x,y) = xj with a constant state
x′i = b for some b ∈ Z2, effectively post-selecting on xj = b. For this reason we require that only
compatible1 signatures are composed; in particular, an output |f(x,y)〉 is compatible with an
input |x′〉 if and only if for every i, either x′i is a variable or x′i = b= fi(x,y).

When the left-most path-sum has a non-zero phase polynomial, substitutions may extend
to the phase. As the phase and output polynomials are defined over different rings (D and Z2,
respectively), when substituting a variable with a Boolean polynomial in the phase we first
need to lift it into a functionally equivalent polynomial over D. For instance, for all x,y ∈ Z2,
1
4 (x⊕y) = 1

4x+ 1
4y−

1
2xy. We define the lifting of a Boolean polynomial P to a polynomial

P ∈ DM [x] recursively by

xα = xα,
P +Q= P +Q−2PQ,

where xα = xα1
1 xα2

2 · · ·xαnn for α ∈ Zn2 is a multi-index, and the first equation uses the natural
inclusion of Z2 in D. It can be easily verified that the lifting of a Boolean polynomial preserves
its action on elements of Z2.

Lemma 2.5. For any Boolean-valued polynomial P and all x ∈ Zn2 , P (x) = P (x) mod 2.

We can now formally define the functional composition of path-sums.

Definition 2.6. (sequential composition)
The sequential composition of two compatible path-sums

Uξ : |x〉 7→ 1√
2m

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉, Uξ′ : |x′〉 7→
1√
2m′

∑
y′∈Zm′2

e2πiP ′(x,y)|f ′(x′,y′)〉,

denoted ξ′ ◦ ξ, is given by

Uξ′◦ξ : |x〉 7→ 1√
2m+m′

∑
y∈Zm+m′

2

e2πi(P+P ′[yi←yi+m][x′i←fi])(x,y)|
(
f ′[x′i← fi]

)
(x,y)〉,

where P [x←Q] for polynomials P,Q over some ring R denotes the substitution of x with Q in
P .

Proposition 2.7. For any well-formed, compatible path-sums ξ,ξ′, ξ′ ◦ ξ is also well formed.
Moreover,

Uξ′◦ξ = Uξ′Uξ.

1Determining compatibility is at least as hard as detecting whether an ancilla is clean and is hence non-trivial
in general. For the verification tasks we consider this is not an issue, as in practice we only compose path-sums
with unitary operators.

6 Towards Large-scale Functional Verification of Universal Quantum Circuits

Remark 2.8. A useful property of path-sums is that they unify structurally equivalent circuits
without resorting to string diagrams, which can be difficult to reason about in automated ways [9].
By this we mean that circuits which are equivalent up to symmetric monoidal laws are strictly
equal in the path-sum picture. For instance, the bifunctoriality law and the naturality of SWAP,
stated respectively as the equivalences

f

g
≡

f

g

f ×
×
≡
×
× f

are both equality in the path-sum framework. While much progress has been made towards
computational methods for diagrammatic reasoning [9,11,13,15], our framework allows us to use
standard algebraic tools (e.g., rewriting) without explicitly managing structural laws.

Along with unifying the representation of structurally equivalent circuits, path-sums further
unify many semantic equivalences of quantum circuits – particularly allowing the long-distance
cancellation of phase gates applied to the same logical state [2]. In contrast, matrix representations
unify all equivalences between unitaries, at the expense of exponential space. Path-sums hence
provide an intermediary model, where many equivalences are “modded out” yet still generally
remain efficiently representable as we show next.

2.2 Path-sums as a circuit semantics

As path-sums admit both a symmetric tensor product and functional composition, we can give
a simple compositional path-sum semantics of measurement-free quantum circuits. Given a
path-sum representation of each gate in a basis B and their inverses, we can define the path-sum
interpretation of a circuit over B as the composition of each gate. In particular, we give a
path-sum interpretation to the Clifford+Rk basis {H,CNOT,Rk} for k > 0.
Definition 2.9. (Clifford+Rk path-sum)
The path-sum interpretation of an n-qubit circuit C over {H,CNOT,Rk}, denoted JCK, is defined
as follows:

JHK = |x〉 7→ 1√
2
∑

y∈{0,1}
e2πixy2 |y〉

JRkK = |x〉 7→ e
2πi x

2k |x〉

JR†kK = |x〉 7→ e
2πi−x

2k |x〉
JCNOTK = |x1x2〉 7→ |x1(x1⊕x2)〉
JC1;C2K = JC2K◦ JC1K.

We leave the appropriate vertical compositions implicit.
Proposition 2.10. For any circuit C over {H,CNOT,Rk} with unitary matrix UC , we have
UJCK = UC .

As a composition of linear Boolean functions, it can trivially be observed that each of the
outputs of a canonical path-sum is linear. Moreover, its phase polynomial has degree at most k.
To show this, we first introduce the notion of the order of a polynomial in DM which gives a
more precise characterization of the phase polynomials over a fixed level of the Clifford hierarchy.
Note that without loss of generality we can restrict our attention to phase polynomials with
coefficients in D/Z since e2πi = 1.

M. Amy 7

Definition 2.11. The order of a term a
2bx

α where a is co-prime to 2 and α ∈ Zn2 is b+ |α|−1.
The order of a polynomial P ∈ DM [x], denoted ord(P), is the maximum order of all terms in P .
Example 2.12.

ord
(1

2

)
= 0, ord

(1
2x1 + 1

2x2

)
= 1, ord

(1
23x2 + 1

2x1x2x3

)
= 3

An important fact, shown below, is that order is non-increasing with respect to substitution
of linear Boolean polynomials.
Lemma 2.13. Let P ∈ DM [x], and let Q ∈ Z2[x] be a linear polynomial. Then for any xi,

ord
(
P [xi←Q]

)
≤ ord(P)

Proof. Suppose Q=
∑
j∈S xj for some set S. It is easy to verify that∑

j∈S
xj =

∑
S′⊆S

(−2)|S′|−1 ∏
j∈S′

xj .

Substituting Q in for xi we see that for any term a
2bx

α in P such that αi = 1,

ord
(
a

2bxα[xi←Q]
)

= max
S′⊆S

ord

a2|S′|−1

2b xα[xi←
∏
j∈S′

xj]

≤max
S′⊆S

b−|S′|+ |α|+ |S′|−1

= ord
(
a

2bxα
)
.

Intuitively, since the output function of a Clifford+Rk path-sum is strictly linear, composing
Clifford+Rk path-sums does not increase the order of the phase polynomial. Moreover, the
path-sum interpretation of each gate over {H,CNOT,Rk} has a phase polynomial of order at
most k and maximum denominator 2k, hence we obtain the following result.
Proposition 2.14. The phase polynomial of a (canonical) Clifford+Rk path-sum has degree at
most k.
Corollary 2.15. The path-sum interpretation of an n-qubit Clifford+Rk circuit C has size
polynomial in the volume of C (n · |C|) and can be computed in polynomial time.

On representations of the phase polynomial While the representation of the phase as
a multilinear polynomial is indeed polynomial in the size of the circuit, at higher levels of the
Clifford hierarchy (i.e. large k) the degree of the polynomial can become prohibitively large.
Even for the standard Clifford+T gate set, the path-sum of a circuit requires space cubic in the
volume of the circuit [4]. In practice this makes verification of some larger circuits difficult.

The phase polynomial could instead be represented in linear space for any k by its Fourier
expansion [1,26]. This however complicates the process of verification as the Fourier expansion is
not necessarily unique modulo integer multiples [1]. A possible compromise would be to store
the Fourier expansion normally, and generate the multilinear form for small subsets on demand.

8 Towards Large-scale Functional Verification of Universal Quantum Circuits

3 A calculus for path-sums

The verification question we’re generally concerned with is given a circuit C and path-sum ξ,
is JCK≡ ξ?. From an automated perspective it is simpler to instead check that the path-sum
miter [31] JC†K◦ ξ is the identity transformation. In either case, we need a method of efficiently
establishing equivalence. To that end, in this section we present a system of reduction rules for
path-sums. A key feature of our calculus is that the reduction rules strictly decrease the number
of path variables, producing a (not necessarily unique) normal form in polynomial time.

3.1 Overview

Our calculus operates by reducing the number of paths when sets of paths interfere in recognizable
ways which we call interference patterns. As an illustration, consider the identity circuit HH.
Computing its canonical path-sum we get

HH : |x〉 7→ 1√
22

∑
y1,y2∈Z2

e2πixy1+y1y2
2 |y2〉.

To see that the above path-sum is equal to the identity, we can first expand the exponential sum
on the right by the values of the internal path variable y1:

1√
22

∑
y1,y2∈Z2

e2πixy1+y1y2
2 |y2〉= 1√

22

∑
y2∈Z2

(1+e2πix+y2
2)|y2〉

Since eπi = −1, it can be observed that if x+ y2 = 0 mod 2, the two paths corresponding to
y1 = 0 and y2 = 1 constructively interfere, whereas if x+y2 = 1 mod 2 they destructively interfere.
As Z2 = x⊕Z2 = {x,1⊕x} for any x ∈ Z, we can rewrite the sum over x⊕Z2 and explicitly
calculate the interference on either path:

1√
22

∑
y2∈x⊕Z2

(1+e2πix+y2
2)|y2〉= 1

2(1+e2πix+x
2)|x〉+ 1

2(1+e2πix+1+x
2)|1⊕x〉

= 2
2 |x〉+

0
2 |1⊕x〉

= |x〉

The reasoning above applies to any situation where an internal path variable yi only appears
with coefficients taken from the Boolean subgroup {0, 1

2} of D/Z, as the two branches of yi are
identical, except that yi = 1 path picks up a multiplicative factor of −1 whenever the quotient of
P/yi is odd. Specifically, it can be shown that

1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
2y0Q(x,y)+R(x,y))|f(x,y)〉= 1√

2m−1

∑
y∈Zm2 ,Q(x,y)=0 mod 2

e2πiR(x,y)|f(x,y)〉

Note that the polynomial Q(x,y) is Boolean-valued, as otherwise the y0 = 1 path can pick up
values not in {1,−1}. In practice, we only perform such reductions when the restricted sum can
be reified by solving Q(x,y) = 0 mod 2 for some path variable, as we did above with y2 = x.

M. Amy 9

1√
2m+2

∑
y0∈Z2

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉 −→ 1√
2m

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉 [Elim]

1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
4y0+ 1

2y0Q(x,y)+R(x,y))|f(x,y)〉 −→ 1√
2m

∑
y∈Zm2

e2πi(1
8−

1
4Q(x,y)+R(x,y))|f(x,y)〉 [ω]

1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
2y0(yi+Q(x,y))+R(x,y))|f(x,y)〉 −→ 1√

2m+1

∑
y∈Zm2

e2πi(R[yi←Q])(x,y)|(f [yi←Q]) (x,y)〉 [HH]

P (x,y) = 1
4yix+ 1

2yi(yj +Q(x,y))+R(x,y) = 1
4yj(1−x)+ 1

2yj(yi+Q′(x,y))+R′(x,y)
1√

2m+2

∑
y∈Zm+2

2
e2πiP (x,y)|f(x,y)〉 −→ 1√

2m
∑

y∈Zm2
e2πi((1−x)R[yj←Q]+xR′[yi←Q′])(x,y)|f(x,y)〉

[Case]

Figure 2: Path-sum reduction rules

3.2 Reduction rules

Figure 2 gives the rules of our calculus, presented as algebraic rewrite rules on exponential sums
for convenience and applied to path-sums in the obvious way. We write ξ −→ ξ′ to denote that ξ
reduces to ξ′, and denote by −→∗ the transitive closure of −→. For all rules, y0 is an internal
path variable, quotients Q are Boolean-valued and whenever yi←Q, yi does not appear in Q.
For the [Case] rule, both yi and yj are internal.

The rules were developed by translating known circuit identities into path-sums, then
minimizing the identities to obtain simple interference patterns which 1) strictly reduce the number
of path variables, and 2) can be efficiently matched. What we found was that most common
Clifford+T equalities reduce to a small set of rules – in particular, the [HH] rule derived from the
equality HH = I as described above is sufficient for the vast majority of path-sum reductions. The
[ω] rule arises from the identity (SH)3 = e

2πi
8 I, and the final rule [Case] is a specific case distinction

needed to prove the 2-qubit Clifford+T identity
(
CNOT(X⊗T)controlled-H(X⊗T †)

)2
[29]. The

[Elim] rule only appears to simplify the presentation of [HH] as well as in some contexts specific
to verification which we describe later.
Proposition 3.1 (Correctness). If ξ −→∗ ξ′′, then ξ ≡ ξ′.

The correctness of our rewrite system follows from direct calculation over symbolic exponential
sums. As the proof is quite tedious, we leave it to Appendix A.

It is a trivial fact that our calculus is terminating, as every rule reduces the number of path
variables. Moreover, each rewrite rule can be matched against in polynomial time, hence every
path-sum reduces to a normal form in polynomial time.
Proposition 3.2 (Strong normalization). Every sequence of rewrites terminates with an irre-
ducible path-sum. The sequence is linear in the number of path variables m and for an n-qubit
path-sum takes time polynomial in n and m.

3.3 Examples

To illustrate our rewrite system, we give examples below. Further examples can be found in
Appendix B.

10 Towards Large-scale Functional Verification of Universal Quantum Circuits

Example 3.3. Recall that the standard implementation of the Toffoli gate over Clifford+T has
the path-sum form [2]

Toffoli3 : |x1x2x3〉 7→
1√
22

∑
y1,y2∈Z2

e2πi 1
2 (x3y1+x1x2y1+y1y2)|x1x2y2〉.

We can verify that this is equivalent to the functional specification |x1x2x3〉 7→ |x1x2(x3⊕x1x2)〉
with the following sequence of reductions and algebraic manipulations:

|x1x2x3〉 7→
1√
22

∑
y1,y2∈Z2

e2πi 1
2 (x3y1+x1x2y1+y1y2)|x1x2y2〉

7→ 1√
22

∑
y1,y2∈Z2

e2πi 1
2y1(y2+x3+x1x2)|x1x2y2〉

7→ 1√
22

∑
y2∈Z2

|x1x2(x3⊕x1x2)〉 [HH]

7→ |x1x2(x3⊕x1x2)〉 [Elim]

Example 3.4. The controlled-T gate can be specified as the path-sum

controlled-T : |x1x2〉 7→ e2πix1x2
8 |x1x2〉.

An implementation of the controlled-T gate over Clifford+T is given below:

• S† T T • H T H • T † T † S •

• • • • • •

|0〉 H • T † T † T T • H

Computing the canonical path-sum and reducing we get

|x1x2〉|0〉 7→
1√
24

∑
y∈Z4

2

e2πi 1
8 (4x1x2y1+4x1y2+4y1y2+y2+4y2y3+4x1x2y3+4x1y4+4y3y4+4x1x2)|x1x2y4〉

7→ 1√
24

∑
y∈Z4

2

e2πi(1
2y1(y2+x1x2)+ 1

8 (4x1y2+y2+4y2y3+4x1x2y3+4x1y4+4y3y4+4x1x2))|x1x2y4〉

7→ 1√
22

∑
y3,y4∈Z2

e2πi 1
8 (4x1x2+x1x2+4x1x2y3+4x1x2y3+4x1y4+4y3y4+4x1x2)|x1x2y4〉 [HH, Elim]

7→ 1√
22

∑
y3,y4∈Z2

e2πi(1
2y3y4+ 1

8 (x1y4+x1x2))|x1x2y4〉

7→ e2πix1x2
8 |x1x2〉|0〉 [HH, Elim]

Hence the above circuit implements the controlled-T gate, and provably leaves the ancilla clean.

M. Amy 11

4 Completeness
While our calculus computes a normal form in polynomial time, the normal forms are not
necessarily unique2 and hence our reduction system is incomplete. For instance, the Clifford+T
identity

• X • X
2

T H T H T † T H T † H T †

from [29] gives the irreducible path-sum |x1x2〉 7→ 1√
28

∑
y∈Z8

2
e2πi 1

8P (x,y)|x1y8〉 with phase poly-
nomial

P (x,y) = 2+6x1x2 +x2 +y1 +4y1(x1 +x2 +y2)+6y2 +4y2y3 +2y2x1 +3y3 +4y3(x1 +y4)
+4y4y5 +6y4x1 +y5 +4y5(x1 +y6)+6y6 +4y6y7 +2y6x1 +3y7 +4y7(x1 +y8)+7y8.

A complete verification procedure could proceed by explicitly expanding the values of remaining
variables in the path-sum after all possible reductions have been made, and then checking
equivalence to the identity transformation. In practice we found that this is generally not necessary,
as our calculus, along with some additional observations, is sufficient to prove equivalence or
non-equivalence for the majority of circuits. Moreover, these heuristics combined with path-sum
reductions give a complete, polynomial-time procedure for determining equivalence of Clifford
group circuits.

4.1 Isometry restrictions

Our first heuristic reduces the number of path variables in a well-formed path sum when checking
equivalence. Specifically, we denote by ξ|f(x,y)=x the restriction of ξ to solutions x ∈ Zn2 ,y ∈ Zm2
such that f(x,y) = x, which we can write as the restricted sum

|x〉 7→ 1√
2m

∑
y∈Zm2 ,f(x,y)=x

e2πiP (x,y)|x〉.

Effectively, the sum 1√
2m
∑

y∈Zm2 ,f(x,y)=x e
2πiP (x,y) gives the amplitude of the basis state |x〉 in

the output for a given input state |x〉. If the path sum ξ is well-formed (i.e. isometric), then this
sum will be equal to 1 exactly if ξ is the identity transformation. We sum this up in the lemma
below:
Lemma 4.1. Suppose Uξ : |x〉 7→ 1√

2m
∑

y∈Zm2
e2πiP (x,y)|f(x,y)〉 is a well-formed path-sum. Then

ξ ≡ |x〉 7→ |x〉 if and only if ξ|f(x,y)=x ≡ |x〉 7→ |x〉.
Note that lemma 4.1 doesn’t hold if ξ is not well-formed, as Uξ may not be an isometry and

so it may be that Uξ|x〉= |x〉+ |ψ〉 for some residual state |ψ〉. To reify the restricted path-sum
ξ|f(x,y)=x we find path variable substitutions which give fi(x,y) = xi – in particular, if for some
index i we have fi(x,y) = yi⊕Q(x,y) where yi doesn’t appear in Q(x,y), we can substitute
Q(x,y) for yi to get fi(x,y) = xi and remove yi from the sum. Any restrictions which can’t be
reified are simply ignored. In practice this results in a significant simplification for some circuits,
instantly removing up to n path variables.

2It was pointed out by an anonymous referee that uniqueness would imply that equivalence checking of reversible
Boolean circuits is in P. As this problem is co-NP-complete, uniqueness of our normal forms would indeed imply
P = co-NP.

12 Towards Large-scale Functional Verification of Universal Quantum Circuits

4.2 Non-equivalence

As the reduction rules of fig. 2 only suffice to prove positive results, when no more reductions are
possible we apply an observation that was found to be effective for proving that a path sum ξ is
not the identity. In particular, recall that

1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
2y0Q(x,y)+R(x,y))|f(x,y)〉= 0

if Q(x,y) = 1 mod 2. If Q is a non-zero Boolean-valued polynomial in only input variables xi,
then there necessarily exists a solution x ∈ Zn such that Q(x) = 1 mod 2 [26], and in particular∑

y∈Zm2

e2πi(1
2y0Q(x,y)+R(x,y))|f(x,y)〉= 1√

2m+1

∑
y∈Zm2

(1−1)e2πiR(x,y)|f(x,y)〉= 0.

We sum this up in the following lemma.
Lemma 4.2. Suppose Uξ : |x〉 7→ 1√

2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
2y0Q(x,y)+R(x,y))|f(x,y)〉 where Q is

a non-zero integer-valued polynomial not containing any path variables. Then ξ 6≡ |x〉 7→ |x〉.
Hence we can use a variant of [HH] where Q contains only input variables to prove non-

equivalence of a path-sum to the identity.

4.3 Clifford completeness

We can now show that together with the above simplifications, our path-sum reductions are
complete for proving equivalence of Clifford group circuits. Recall that over the Clifford group,
the path-sum interpretation of a circuit has phase polynomial of order at most 2. Our proof of
completeness rests on the fact that progress can always be made for an identity path-sum with
only internal path variables and second-order phase polynomial, as shown below.
Lemma 4.3 (Clifford progress & preservation). If ξ is a path-sum such that ξ ≡ |x〉 7→ |x〉,
ord(P)≤ 2 and ξ contains only internal path variables, then there exists ξ′ such that ξ −→ ξ′ and
ord(P ′)≤ 2.

Proof. Since P is at most second-order, we can write P = y0Q+R for some internal path variable
y0 and polynomials Q,R where Q is at most first-order, and in particular has the form

a
1
4 + b

1
2Q
′

where a,b ∈ Z2 and Q′ is a linear Boolean-valued polynomial. We have 3 cases to consider,
corresponding to the [Elim], [HH] and [ω] rules respectively.

Case 1: a= b= 0. The variable yi does not appear in P , hence ξ −→[Elim] ξ
′ and ord(P ′) =

ord(P)≤ 2.

Case 2: a= 0, b= 1. If the polynomial Q′ contains a path variable yi, then Q′ = yi+Q′′ and
ξ −→[HH] ξ

′. Further, by lemma 2.13, ord
(
R[yi←Q′′]

)
≤ ord(R) ≤ 2 and ξ′ has only internal

paths since yi /∈ f .
If on the other hand Q′ only contains input variables, by lemma 4.2 ξ 6≡ |x〉 7→ |x〉, a

contradiction.

M. Amy 13

Case 3: a = 1. The sum matches the left hand side of [ω], hence ξ −→[ω] ξ
′. Further, by

lemma 2.13

ord
(
P ′
)

= ord
(1

8 −
1
4Q
′′+R

)
= max

{
ord
(1

8

)
,ord

(1
4Q
′′
)
,ord(R)

}
= 2.

Corollary 4.4. If C is a Clifford-group quantum circuit, then JCK≡ |x〉 7→ |x〉 can be decided in
time polynomial in the space-time volume of C.

Proof. Since JCK is well-formed, by lemma 4.1 it suffices to check JCK|f(x,y)=x ≡ |x〉 7→ |x〉.
Further, as f(x,y) is linear, we can compute via Gaussian elimination a solution y so that
f(x,y) = x for any x – if no such solution exists, JCK 6≡ |x〉 7→ |x〉. Since each fi is linear,
ord(P [yi← fi])≤ ord(P)≤ 2, hence by lemma 4.3 and proposition 3.2, either JCK|f(x,y)=x reduces
to |x〉 7→ |x〉 in polynomial-time or ξ′ 6≡ |x〉 7→ |x〉.

5 Case studies

We implemented our framework and verification algorithm in the open-source Haskell library
Feynman. To test the efficacy of our methods, we performed verification of circuit optimizations
(both correct and incorrect), as well as the verification of circuit implementations against formal
path-sum specifications. All experiments were run in Debian Linux running on a quad-core
64-bit Intel Core i7 2.40 GHz processor and 8 GB RAM, and can be executed from the command
line with ./feyn VerBench and ./feyn VerAlg for the translation validation and algorithm
benchmarks, respectively.

5.1 Translation validation

Translation validation is an important tool for verifying that the transformations a compiler
performs do not change the semantics of an input program. While it is generally desirable to
prove that a compiler operates correctly on all input programs, as with verified compilers like
CompCert [22] or ReVerC [5] in the reversible domain, in many cases this is infeasible since the
best optimizations are typically difficult to formally verify.

We used our algorithm to verify a suite of optimized benchmark circuits against their original
input. For the optimization algorithm we chose the GraySynth algorithm from [1] which is
implemented in Feynman and verified each benchmark reported in that paper. Table 1 reports
the results of our experiments. All but 3 of the benchmark circuits were successfully verified,
with the remaining 3 benchmarks running out of memory with a 6 GB limit. The high memory
usage may be mitigated in the future by switching to a linear-space representation of the phase
polynomial. The largest (completed) benchmark GF(232), containing 96 bits, 252 path variables
and over 25000 gates completed in under 10 minutes, with the remainder all taking under a
minute.

To test the algorithm’s ability to prove non-equivalence, we also performed the verification
of the optimized benchmark circuits after removing a randomly selected gate. Again, all but 3
benchmarks were proven to be not equivalent, with the negative verification results taking about
the same amount of time as positive results.

https://github.com/meamy/feynman

14 Towards Large-scale Functional Verification of Universal Quantum Circuits

Table 1: Translation validation results. n lists the number of qubits, Path vars gives the number
of path variables, and Clifford and T give the number of respective gates. Times for positive
and negative verification measure the time to prove equivalence or non-equivalence against
the optimized circuit or the optimized circuit with one random gate removed, respectively.
Benchmarks with no timing results ran out of memory.

Algorithm n Path vars Clifford T Time (s)

Positive Negative

Grover_5 9 200 1515 490 0.973 0.988
Mod 5_4 5 12 66 44 0.005 0.028
VBE-Adder_3 10 20 167 94 0.026 0.028
CSLA-MUX_3 15 40 289 132 0.099 0.055
CSUM-MUX_9 30 56 638 280 0.270 0.270
QCLA-Com_7 24 74 1237 297 0.530 0.543
QCLA-Mod_7 26 164 1641 650 9.446 10.517
QCLA-Adder_10 36 100 627 400 0.674 0.683
Adder_8 24 160 1419 614 1.968 2.018
RC-Adder_6 14 44 322 124 0.080 0.090
Mod-Red_21 11 60 392 192 0.110 0.119
Mod-Mult_55 9 28 180 84 0.028 0.009
Mod-Adder_1024 28 660 4363 3006 21.362 21.588
Cycle 17_3 35 1366 9172 6694 – –
GF(24)-Mult 12 28 263 180 0.063 0.061
GF(25)-Mult 15 36 393 286 0.143 0.141
GF(26)-Mult 18 44 559 402 0.279 0.291
GF(27)-Mult 21 52 731 560 0.501 0.527
GF(28)-Mult 24 60 975 712 0.837 0.881
GF(29)-Mult 27 68 1179 918 1.304 1.369
GF(210)-Mult 30 76 1475 1110 1.958 0.327
GF(216)-Mult 48 124 3694 2832 16.028 17.539
GF(232)-Mult 96 252 14259 11296 430.883 436.521
GF(264)-Mult 192 508 55408 45120 – –
Hamming_15 (low) 17 76 612 158 0.367 0.168
Hamming_15 (med) 17 184 1251 762 1.390 1.430
Hamming_15 (high) 20 716 5332 3462 24.360 24.303
HWB_6 7 52 369 180 0.200 0.207
HWB_8 12 2282 17583 8895 – –
QFT_4 5 84 218 136 0.084 0.089
Λ3(X) 5 12 52 36 0.004 0.011
Λ3(X) (Barenco) 5 12 66 44 0.007 0.046
Λ4(X) 7 20 87 58 0.009 0.008
Λ4(X) (Barenco) 7 20 127 84 0.014 0.024
Λ5(X) 9 18 112 80 0.015 0.017
Λ5(X) (Barenco) 9 28 160 124 0.030 0.031
Λ10(X) 19 68 297 190 0.110 0.111
Λ10(X) (Barenco) 19 68 493 324 0.219 0.210

M. Amy 15

Table 2: Results of verifying formally specified quantum algorithms.

Algorithm n Path vars Clifford T Time (s)

Positive Negative

Toffoli50 97 190 855 665 1.084 1.064
Toffoli100 197 390 1755 1365 5.566 5.275
Maslov50 74 192 481 384 0.801 0.778
Maslov100 149 392 981 784 3.987 3.983
Adder8 40 56 334 196 0.142 0.143
Adder16 80 120 710 420 25.527 92.607
QFT16 16 16 256 – 1.250 1.335
QFT31 31 31 961 – 16.929 15.295
Hidden Shift20,4 20 60 5254 56 1.067 0.862
Hidden Shift40,5 40 120 6466 70 3.383 2.826
Hidden Shift60,10 60 180 12784 140 13.217 12.351
Symbolic Shift20,4 40 60 5296 56 1.859 1.849
Symbolic Shift40,5 80 120 6638 70 6.953 7.905
Symbolic Shift60,10 120 180 12804 140 35.583 29.614

5.2 Verifying quantum algorithms

To evaluate our framework as a tool for functional specification and verification, we implemented
and verified several quantum algorithms (both without and with errors) directly against their
specification as a path sum. Table 2 reports the results of our experiments, and we describe the
algorithms and implementations below.

Reversible functions We implemented and verified a number of known algorithms for re-
versible functions. In particular, we performed verifications of Clifford+T implementations of
the generalized Toffoli and (out-of-place) addition functions,

Toffolin : |x1x2 . . .xn〉 7→ |x1x2 . . .(xn⊕x1x2 . . .xn−1)〉,
Addern : |x〉|y〉|0〉 7→ |x〉|y〉|x +y〉

We chose two implementations of the n-bit Toffoli gate – using the standard decomposition into
2(n−3) + 1 Toffoli gates and n−3 ancillas, and the Maslov decomposition [23] using relative
phase Toffolis and dn−3

2 e ancillas. For either implementation we were able to verify up to 100 bit
Toffoli gates in just seconds.

For the addition circuit, we used a standard out-of-place ripple-carry adder which uses n−1
ancilla bits to store intermediate carry values and an additional n bit register to store the output,
before copying out and uncomputing. The resulting circuit uses 5n−1 bits of space for an n
bit adder, and 4(n−1) Toffoli gates, which are then expanded to the Clifford+T gate set. The
specification itself was generated by implementing binary addition on symbolic vectors, and could
ostensibly be classically tested to verify its own correctness. In this case, the size of the bitwise
expansion of x+y made it difficult to push to implementation sizes (e.g., 32 bits), though smaller
sizes such as 16 bits were verifiable within a minute. Relational techniques – e.g., representing
the outputs of a path-sum as “primed” variables along with equations relating them – may help
to push verification of such functions to larger sizes.

16 Towards Large-scale Functional Verification of Universal Quantum Circuits

H Xs
• Og

Xs H
•

H
• • Og

(a) Hidden shift with a fixed shift s.

H X
• Og

X H
•

H
• • Og

|s〉 • •

(b) Hidden shift with a symbolic shift.

Figure 3: Circuits for the Quantum Hidden Shift algorithm.

The quantum Fourier transform To test our verification method against circuits using
higher-order rotations, we verified an implementation of the quantum Fourier transform. We use
a circuit from [20] together with a final qubit permutation correction and verified it against the
specification

QFTn : |x〉 7→ 1√
2n

∑
y∈Zn2

e2πi [x·y]
2n |y〉.

The phase polynomial [x ·y] was generated in the obvious way – by computing [x] = x1 +2x2 +
. . .+2n−1xn and multiplying the polynomials. In this case our implementation was able to verify
implementations up to 31 bits in size, after which integer overflow occurs due to our handling
of dyadic arithmetic. Given that the 31 bit implementation took only 16 seconds to verify, it
appears that with better methods for handling dyadic arithmetic much larger sizes of the QFT
are likely verifiable.

The quantum hidden shift algorithm To test our framework on more general quantum
algorithms, we implemented a version of the quantum hidden shift algorithm [28] which has
been previously used to test quantum simulation algorithms [10]. In particular, given oracles
Of ′ : |x〉 7→ f(x+s)|x〉 and Of̃ : |x〉 7→ f̃(x)|x〉 for the shifted and dual bent functions f ′, f̃ : Zn2 →
{−1,+1} respectively, the circuit H⊗nOf̃H⊗nOf ′H⊗n is known [28] to implement the mapping
|0〉 7→ |s〉.

Following [10], we generated random instances of Maiorana McFarland bent functions by
setting f ′(x,y) = f((x,y) + s) = (−1)g(x)+xy with dual f̃(x,y) = (−1)g(y)+xy for a random n

2
bit Boolean function g of degree 3. The circuit for f is generated by, for a given number of
alternations A, alternating between selecting 200 random Z and controlled-Z gates, then a
random doubly controlled-Z gate, expanded out to Clifford+T . We implemented two versions of
the algorithm, one where a concrete shift is given by a randomly generated Boolean vector, and
another where the shift is supplied symbolically via a quantum register. In the former case we
verify the circuit for a given shift s against the specification |0〉 7→ |s〉, and in the latter case we
verify the specification |0〉|s〉 7→ |s〉|s〉. Figure 3 shows both circuits.

Our verification algorithm actually found a bug in our first implementation, which was a direct
implementation of the circuit given in [10]. After reimplementing the circuit based on [28], we
were able to verify both versions of the hidden shift algorithm for sizes exceeding those simulated
in [10] with only a fraction of the time (seconds versus hours [10]). Our calculus further finds the
correct output |s〉 or |s〉|s〉 even without providing the specification, effectively simulating the
algorithm rather than verifying it. Moreover, our implementation is deterministic compared to
theirs which is probabilistic and only samples the output distribution, rather than compute it

M. Amy 17

outright. It is interesting to note that their algorithm also uses a similar technique of effectively
evaluating the circuit’s phase polynomial – however, by including the T gate phases directly in
the polynomial and solving around them, rather than pushing them into state preparations, we
save a massive amount of time for this algorithm. An interesting question for future research is
to determine whether there are quantum algorithms which can be simulated more efficiently by
their methods.

6 Conclusion

We have described a framework for the representation of partial isometries as sums over a discrete
set of paths. As an alternative to matrices, our path-sums admit a symbolic representation
using polynomials, for which there exists fixed-parameter polynomial size representations of
Clifford+Rk circuits. This allows the efficient computation and representation of the action
of such a quantum circuit on an arbitrary basis state. Further, we have given a system of
rewrite rules which can be used to reduce path-sums and perform functional verification. Our
experiments have shown this to be a powerful framework for verifying large quantum circuits,
particularly against formal mathematical specifications of quantum algorithms.

The work we have described here is only a preliminary step towards a fully-automated system
of formal specification and verification for quantum circuits, and as such there are many issues
for future work to address. One particularly appealing direction is to expand the path-sum
framework to more general quantum programs, and to give a concrete syntax so that modular
libraries of verified programs may be developed and used. Improvements can be made on the
algorithmic side, from using Fourier expansions and relational methods to more efficiently store
path-sums, to the use of algebraic decision diagrams or other mathematical tools to complete
verification once no more reductions can be made. Another interesting direction, motivated
by our experience writing path-sum proofs “by hand,” is to implement our framework in an
interactive proof assistant, allowing inductive and higher-order proofs over entire families of
quantum circuits.

7 Acknowledgements

The author wishes to thank Neil J. Ross and Michele Mosca for stimulating discussions on the
topic of path sums, as well as the anonymous referees for their helpful comments on an earlier
version. This work was supported in part by Canada’s NSERC and CIFAR.

References
[1] Matthew Amy, Parsiad Azimzadeh & Michele Mosca (2018): On the CNOT-complexity of CNOT-

PHASE circuits. Quantum Science and Technology, doi:10.1088/2058-9565/aad8ca. Available at
https://arxiv.org/abs/1712.01859.

[2] Matthew Amy, Dmitri Maslov & Michele Mosca (2014): Polynomial-Time T-depth optimization
of Clifford+T circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953. Available
at https://arxiv.org/abs/1303.2042.

http://dx.doi.org/10.1088/2058-9565/aad8ca
https://arxiv.org/abs/1712.01859
http://dx.doi.org/10.1109/TCAD.2014.2341953
https://arxiv.org/abs/1303.2042

18 Towards Large-scale Functional Verification of Universal Quantum Circuits

[3] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent & John Schanck
(2016): Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Proceedings of the 24th Conference on Selected Areas in Cryptography (SAC’16), pp. 317–337,
doi:10.1007/978-3-319-69453-5_18. Available at https://arxiv.org/abs/1603.09383.

[4] Matthew Amy & Michele Mosca (2016): T-count optimization and Reed-Muller codes. Available at
https://arxiv.org/abs/1601.07363.

[5] Matthew Amy, Martin Roetteler & Krysta M. Svore (2017): Verified Compilation of Space-Efficient
Reversible Circuits. In: Proceedings of the 29th International Conference on Computer Aided
Verification (CAV’17), pp. 3–21, doi:10.1007/978-3-319-63390-9_1. Available at https://arxiv.org/
abs/1603.01635.

[6] Linda Anticoli, Carla Piazza, Leonardo Taglialegne & Paolo Zuliani (2016): Towards Quantum
Programs Verification: From Quipper Circuits to QPMC. In: Proceedings of the 8th international
Conference on Reversible Computation (RC’16), pp. 213–219, doi:10.1007/978-3-319-40578-0_16.
Available at https://arxiv.org/abs/1708.06312.

[7] Ebrahim Ardeshir-Larijani, Simon J. Gay & Rajagopal Nagarajan (2014): Verification of Concurrent
Quantum Protocols by Equivalence Checking. In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14), pp. 500–514,
doi:10.1007/978-3-642-54862-8_42. Available at https://arxiv.org/abs/1312.5951.

[8] Dave Bacon, Wim van Dam & Alexander Russell (2008): Analyzing algebraic quantum circuits using
exponential sums. Available at https://www.cs.ucsb.edu/~vandam/LeastAction.pdf.

[9] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, PawełSobociński & Fabio Zanasi (2016): Rewriting
Modulo Symmetric Monoidal Structure. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, pp. 710–719, doi:10.1145/2933575.2935316. Available at
https://arxiv.org/abs/1602.06771.

[10] Sergey Bravyi & David Gosset (2016): Improved Classical Simulation of Quantum Circuits Dominated
by Clifford Gates. Physical Review Letters 116, p. 250501, doi:10.1103/PhysRevLett.116.250501.
Available at https://arxiv.org/abs/1601.07601.

[11] Bob Coecke, Ross Duncan, Aleks Kissinger & Quanlong Wang (2016): Generalised Compositional The-
ories and Diagrammatic Reasoning, pp. 309–366. Springer Netherlands, Dordrecht, doi:10.1007/978-
94-017-7303-4_10. Available at https://arxiv.org/abs/1506.03632.

[12] Christopher M. Dawson, Andrew P. Hines, Duncan Mortimer, Henry L. Haselgrove, Michael A.
Nielsen & Tobias J. Osborne (2005): Quantum computing and polynomial equations over the finite
field Z2. Quantum Information and Computation 5(2), pp. 102–112, doi:10.26421/QIC5.2. Available
at https://arxiv.org/abs/quant-ph/0408129.

[13] Ross Duncan & Maxime Lucas (2013): Verifying the Steane code with Quantomatic. In: Proceedings
of the 10th International Conference on Quantum Physics and Logic (QPL’13), 171, pp. 33–49,
doi:10.4204/EPTCS.171.4. Available at https://arxiv.org/abs/1306.4532.

[14] Richard P. Feynman & Albert R. Hibbs (1965): Quantum mechanics and path integrals. McGraw-Hill.
[15] Liam Garvie & Ross Duncan (2017): Verifying the Smallest Interesting Colour Code with Quantomatic.

In: Proceedings of the 14th International Conference on Quantum Physics and Logic (QPL’17), 266,
pp. 147–163, doi:10.4204/EPTCS.266.10. Available at https://arxiv.org/abs/1706.02717.

[16] Simon J. Gay, Rajagopal Nagarajan & Nikolaos Papanikolaou (2008): QMC: A Model Checker
for Quantum Systems. In: Proceedings of the 20th International Conference on Computer Aided
Verification (CAV’08), pp. 543–547, doi:10.1007/978-3-540-70545-1_51. Available at https://arxiv.
org/abs/0704.3705.

[17] Daniel Gottesman & Isaac L. Chuang (1999): Quantum Teleportation is a Universal Computational
Primitive. Nature 402(6760), p. 390–393, doi:10.1038/46503. Available at https://arxiv.org/abs/
quant-ph/9908010.

http://dx.doi.org/10.1007/978-3-319-69453-5_18
https://arxiv.org/abs/1603.09383
https://arxiv.org/abs/1601.07363
http://dx.doi.org/10.1007/978-3-319-63390-9_1
https://arxiv.org/abs/1603.01635
https://arxiv.org/abs/1603.01635
http://dx.doi.org/10.1007/978-3-319-40578-0_16
https://arxiv.org/abs/1708.06312
http://dx.doi.org/10.1007/978-3-642-54862-8_42
https://arxiv.org/abs/1312.5951
https://www.cs.ucsb.edu/~vandam/LeastAction.pdf
http://dx.doi.org/10.1145/2933575.2935316
https://arxiv.org/abs/1602.06771
http://dx.doi.org/10.1103/PhysRevLett.116.250501
https://arxiv.org/abs/1601.07601
http://dx.doi.org/10.1007/978-94-017-7303-4_10
http://dx.doi.org/10.1007/978-94-017-7303-4_10
https://arxiv.org/abs/1506.03632
http://dx.doi.org/10.26421/QIC5.2
https://arxiv.org/abs/quant-ph/0408129
http://dx.doi.org/10.4204/EPTCS.171.4
https://arxiv.org/abs/1306.4532
http://dx.doi.org/10.4204/EPTCS.266.10
https://arxiv.org/abs/1706.02717
http://dx.doi.org/10.1007/978-3-540-70545-1_51
https://arxiv.org/abs/0704.3705
https://arxiv.org/abs/0704.3705
http://dx.doi.org/10.1038/46503
https://arxiv.org/abs/quant-ph/9908010
https://arxiv.org/abs/quant-ph/9908010

M. Amy 19

[18] Markus Grassl, Brandon Langenberg, Martin Roetteler & Rainer Steinwandt (2016): Applying
Grover’s Algorithm to AES: Quantum Resource Estimates. In: Proceedings of the 7th International
Workshop on Post-Quantum Cryptography (PQCrypto’16), pp. 29–43, doi:10.1007/978-3-319-29360-
8_3. Available at https://arxiv.org/abs/1512.04965.

[19] IARPA (2013): Quantum Computer Science. Available at http://www.iarpa.gov/Programs/sso/
QCS/qcs.html.

[20] Phillip Kaye, Raymond Laflamme & Michele Mosca (2007): An Introduction to Quantum Computing.
Oxford University Press.

[21] Dax Enshan Koh, Mark D Penney & Robert W Spekkens (2017): Computing quopit Clifford circuit
amplitudes by the sum-over-paths technique. Quantum Information and Computation 17(13&14), pp.
1081–1095, doi:10.26421/QIC17.13-14. Available at https://arxiv.org/abs/1702.03316.

[22] Xavier Leroy (2006): Formal Certification of a Compiler Back-end or: Programming a Compiler with
a Proof Assistant. In: Proceedings of the 34th International Symposium on Principles of Programming
Languages (POPL’06), ACM, pp. 42–54, doi:10.1145/1111037.1111042.

[23] Dmitri Maslov (2016): Advantages of using relative-phase Toffoli gates with an application to multiple
control Toffoli optimization. Physical Review A 93, p. 022311, doi:10.1103/PhysRevA.93.022311.
Available at https://arxiv.org/abs/1508.03273.

[24] Ashley Montanaro (2017): Quantum circuits and low-degree polynomials over F2. Journal of Physics
A: Mathematical and Theoretical 50(8), p. 084002, doi:10.1088/1751-8121/aa565f. Available at
https://arxiv.org/abs/1607.08473.

[25] Michael A. Nielsen & Isaac L. Chuang (2000): Quantum Computation and Quantum Information.
Cambridge University Press.

[26] Ryan O’Donnell (2014): Analysis of Boolean Functions. Cambridge University Press,
doi:10.1017/CBO9781139814782.

[27] Robert Rand, Jennifer Paykin & Steve Zdancewic (2017): QWIRE Practice: Formal Verification
of Quantum Circuits in Coq. In: Proceedings of the 14th International Conference on Quantum
Physics and Logic (QPL’17), 266, pp. 119–132, doi:10.4204/EPTCS.266.8. Available at https:
//arxiv.org/abs/1803.00699.

[28] Martin Rötteler (2010): Quantum Algorithms for Highly Non-linear Boolean Functions. In: Pro-
ceedings of the 21st International Symposium on Discrete Algorithms (SODA’10), pp. 448–457,
doi:10.1137/1.9781611973075.37. Available at https://arxiv.org/abs/0811.3208.

[29] Peter Selinger & Xiaoning Bian (2016): Relations for 2-qubit Clifford+T operator group. Available at
https://www.mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf.

[30] Robert Wille, Daniel Grosse, D. Michael Miller & Rolf Drechsler (2009): Equivalence Checking of
Reversible Circuits. In: Proceedings of the 39th International Symposium on Multiple-Valued Logic
(ISMVL’09), pp. 324–330, doi:10.1109/ISMVL.2009.19.

[31] Shigeru Yamashita & Igor L. Markov (2010): Fast Equivalence-checking for Quantum Circuits.
Quantum Information and Computation 10(9), pp. 721–734, doi:10.26421/QIC10.9-10. Available at
https://arxiv.org/abs/0909.4119.

[32] Mingsheng Ying (2012): Floyd–Hoare Logic for Quantum Programs. ACM Transactions on Pro-
gramming Languages and Systems 33(6), pp. 19:1–19:49, doi:10.1145/2049706.2049708. Available at
https://arxiv.org/abs/0906.4586.

A Correctness of rewrite rules

In this appendix we prove correctness for the rewrite rules of fig. 2.

http://dx.doi.org/10.1007/978-3-319-29360-8_3
http://dx.doi.org/10.1007/978-3-319-29360-8_3
https://arxiv.org/abs/1512.04965
http://www.iarpa.gov/Programs/sso/QCS/qcs.html
http://www.iarpa.gov/Programs/sso/QCS/qcs.html
http://dx.doi.org/10.26421/QIC17.13-14
https://arxiv.org/abs/1702.03316
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1103/PhysRevA.93.022311
https://arxiv.org/abs/1508.03273
http://dx.doi.org/10.1088/1751-8121/aa565f
https://arxiv.org/abs/1607.08473
http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.4204/EPTCS.266.8
https://arxiv.org/abs/1803.00699
https://arxiv.org/abs/1803.00699
http://dx.doi.org/10.1137/1.9781611973075.37
https://arxiv.org/abs/0811.3208
https://www.mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf
http://dx.doi.org/10.1109/ISMVL.2009.19
http://dx.doi.org/10.26421/QIC10.9-10
https://arxiv.org/abs/0909.4119
http://dx.doi.org/10.1145/2049706.2049708
https://arxiv.org/abs/0906.4586

20 Towards Large-scale Functional Verification of Universal Quantum Circuits

Proof of proposition 3.1. We verify each rewrite rule by direct calculation. Recall that by
lemma 2.5, for any Boolean-valued polynomial Q, Q(x,y) =Q(x,y) mod 2.

[Elim]: 1√
2m+2

∑
y0∈Z2

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉= 1√
2m+2

∑
y∈Zm2

(1+1)e2πiP (x,y)|f(x,y)〉

= 1√
2m

∑
y∈Zm2

e2πiP (x,y)|f(x,y)〉

[ω]: 1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
4y0+ 1

2y0Q(x,y)+R(x,y))|f(x,y)〉

= 1√
2m+1

∑
y∈Zm2

(
1+e2πi(1

4 + 1
2Q(x,y)))e2πiR(x,y)|f(x,y)〉

=

1√

2m+1

∑
y∈Zm2

(1+ i)e2πiR(x,y)|f(x,y)〉 if Q(x,y) = 0 mod 2
1√

2m+1

∑
y∈Zm2

(1− i)e2πiR(x,y)|f(x,y)〉 if Q(x,y) = 1 mod 2

=

1√
2m
∑

y∈Zm2
e2πi(1

8 +R(x,y))|f(x,y)〉 if Q(x,y) = 0 mod 2
1√
2m
∑

y∈Zm2
e2πi(1

8 + 3
4 +R(x,y))|f(x,y)〉 if Q(x,y) = 1 mod 2

= 1√
2m

∑
y∈Zm2

e2πi(1
8 + 3

4Q(x,y)+R(x,y))|f(x,y)〉

[HH]: 1√
2m+1

∑
y0∈Z2

∑
y∈Zm2

e2πi(1
2y0(yi+Q(x,y))+R(x,y))|f(x,y)〉

= 1√
2m+1

∑
y∈Zm2

(
1+e2πi(yi+Q(x,y))

)
e2πiR(x,y)|f(x,y)〉

= 1√
2m+1

∑
y∈Zm2 , yi=Q(x,y) mod 2

(
1+e2πi(2k)

)
e2πiR(x,y)|f(x,y)〉

+ 1√
2m+1

∑
y∈Zm2 , yi=1+Q(x,y) mod 2

(
1+e2πi(2k+1)

)
e2πiR(x,y)|f(x,y)〉

= 2√
2m+1

∑
y∈Zm2 , yi=Q(x,y) mod 2

e2πiR(x,y)|f(x,y)〉

= 1√
2m+1

∑
y∈Zm2

e2πi(R[yi←Q])(x,y)|(f [yi←Q]) (x,y)〉

[Case]: Recall the precondition

P (x,y) = 1
4yix+ 1

2yi(yj +Q(x,y))+R(x,y) = 1
4yj(1−x)+ 1

2yj(yi+Q′(x,y))+R′(x,y).

M. Amy 21

1√
2m+2

∑
y∈Zm+2

2

e2πiP (x,y)|f(x,y)〉

=

1√

2m+2

∑
y∈Zm+2

2
e2πi(1

2yi(yj+Q(x,y))+R(x,y))|f(x,y)〉 if x= 0
1√

2m+2

∑
y∈Zm+2

2
e2πi(1

2yj(yi+Q
′(x,y))+R′(x,y))|f(x,y)〉 if x= 1

=

1√
2m
∑

y∈Zm2
e2πi(R[yj←Q])(x,y)|(f [yj ←Q]) (x,y)〉 if x= 0

1√
2m
∑

y∈Zm2
e2πi(R′[yi←Q′])(x,y)|(f [yi←Q′]) (x,y)〉 if x= 1

by [HH] and [Elim]

= 1√
2m

∑
y∈Zm2

e2πi((1−x)R[yj←Q]+xR′[yi←Q′])(x,y)|f(x,y)〉 since yi,yj /∈ f

B Reduction examples
In this appendix we give further examples of the use of our reduction rules to prove circuit
identities.
Example B.1. To show the use of the [ω] rule, we reduce the circuit (SH)3 to the ω constant.

(SH)3 : |x〉 7→ 1
√

23
∑

y1,y2,y3∈Z2

e2πi 1
8 (4xy1+6y1+4y1y2+6y2+4y2y3+6y3+1)|y3〉

7→ 1
√

23
∑

y1,y2,y3∈Z2

e2πi(1
2 (1

2y1+y1(y2⊕1⊕x))+ 1
8 (6y2+4y2y3+6y3+1))|y3〉

7→ 1
√

22
∑

y2,y3∈Z2

e2πi 1
8 (1−2(y2+1+x−2y2−2x−2y2x+4y2x)+6y2+4y2y3+6y3+1)|y3〉 [ω]

7→ 1
√

22
∑

y2,y3∈Z2

e2πi 1
8 (2x+4y2x+4y2y3+6y3)|y3〉

7→ e2πi 1
8 (2x+6x)|x〉 [HH, Elim]

7→ ω|x〉.

Example B.2. The one-bit full adder has the reversible path-sum specification

|x1x2x3x4〉 7→ |x1(x1⊕x2)(x1⊕x2⊕x3)(x1x2⊕x1x3⊕x2x3⊕x4)〉.

The implementation below over Clifford+T was obtained by using the Reed-Muller decoding
method of [4] to reduce the number of T gates from the standard implementation using two
Toffoli gates.

P • T • T T P •

P T • T • • •

P • • •

H P T • T • H

22 Towards Large-scale Functional Verification of Universal Quantum Circuits

We can verify that this circuit implements the one-bit adder specification as follows:

|x1x2x3x4〉 7→
1
√

22
∑

y1,y2∈Z2

e2πi 1
2 (y1y2+y1x1x2+y1x1x3+y1x2x3+y1x4)|x1(x1⊕x2)(x1⊕x2⊕x3)y2〉

7→ 1
√

22
∑

y1,y2∈Z2

e2πi 1
2y1(y2+x1x2+x1x3+x2x3+x4)|x1(x1⊕x2)(x1⊕x2⊕x3)y2〉

7→ |x1(x1⊕x2)(x1⊕x2⊕x3)(x1x2⊕x1x3⊕x2x3⊕x4)〉 [HH, Elim]

	Introduction
	The path-sum framework
	Compositions of path-sums
	Path-sums as a circuit semantics

	A calculus for path-sums
	Overview
	Reduction rules
	Examples

	Completeness
	Isometry restrictions
	Non-equivalence
	Clifford completeness

	Case studies
	Translation validation
	Verifying quantum algorithms

	Conclusion
	Acknowledgements
	Correctness of rewrite rules
	Reduction examples

