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The phase folding optimization is a circuit optimization used in many quantum compilers as a fast and effective
way of reducing the number of high-cost gates in a quantum circuit. However, existing formulations of the
optimization rely on an exact, linear algebraic representation of the circuit, restricting the optimization to
being performed on straightline quantum circuits or basic blocks in a larger quantum program.

We show that the phase folding optimization can be re-cast as an affine relation analysis, which allows the
direct application of classical techniques for affine relations to extend phase folding to quantum programs

with arbitrarily complicated classical control flow including nested loops and procedure calls. Through the
lens of relational analysis, we show that the optimization can be powered-up by substituting other classical
relational domains, particularly ones for non-linear relations which are useful in analyzing circuits involving
classical arithmetic. To increase the precision of our analysis and infer non-linear relations from gate sets
involving only linear operations — such as Clifford+t — we show that the sum-over-paths technique can be
used to extract precise symbolic transition relations for straightline circuits. Our experiments show that our
methods are able to generate and use non-trivial loop invariants for quantum program optimization, as well
as achieve some optimizations of common circuits which were previously attainable only by hand.
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1 Introduction
The optimization of quantum programs is an increasingly important part of quantum computing
research. On the one hand, quantum computers are scaling towards regimes of practical utility,
and with it compilation tool chains are increasing in complexity. On the other hand, while the
theoretical applications of quantum computers have been well established, the compilation to
fault-tolerant architectures which is necessary for such applications due to the intrinsically high
error rates of quantum processors induces a massive amount of time and space overhead. In order
to bring these overheads down to levels where a quantum algorithm can outperform a classical one
in practical regimes, researchers have spent much effort optimizing quantum circuits and programs.
A major driver of the overhead is the high cost of magic state distillation needed to implement

certain gates. In fault-tolerant quantum error correction (FTQEC), logical gates — gates which act
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on the encoded logical state rather than physical qubits — are typically divided into those that
can be implemented directly on the code space via a small number of physical gates, and those
which require gate teleportation [25] to implement. A classic result in quantum computing [17]
states that at least one operation of the latter type is needed to achieve approximate universality.
In standard codes, the Clifford group generated by the h, s, and cnot gates can be implemented
efficiently on the code space by transversal operations [17], braiding [23], or lattice surgery [36] in
modern schemes. The non-Clifford t := diag(1, 𝜔 := 𝑒

𝑖𝜋
4 ) gate is typically chosen as the additional

gate needed for universality, and is implemented by using magic state distillation to produce a
high-fidelity |t⟩ := th |0⟩ state and then teleporting it into a t gate. As a result, the physical
footprint of a t gate is often orders of magnitude larger than other gates [36].
A common problem for compilers targeting fault-tolerant quantum computation is hence to

reduce the number of t gates in a Clifford+𝑇 quantum circuit, called its t-count, and many methods
[5, 6, 16, 27, 35, 40, 46, 59] have been devised to do so. One standard method originating in [5] is
colloquially known as phase folding, which optimizes circuits by finding pairs of t gates which can
be canceled out or otherwise merged into Clifford gates via the identity t2 = s. The optimization is
crucially efficient and monotone, in that it operates in polynomial time in the size of the circuit, and
is non-increasing on any meaningful cost metric. As a fast, effective, and monotone optimization,
many existing quantum compilers [3, 28, 30, 34, 49] implement some variant of this algorithm.
However, the optimization and its variants rely on the linear-algebraic semantics of a quantum
circuit, and hence can only be applied to circuits, not programs. As quantum tool chains scale
up, intermediate representations are necessarily leaving the strictly quantum-centric view and
incorporating classical computation directly into compiled code [13], making the integration of
such circuit optimizations challenging at best and ineffective at worst.
In this work we develop a phase folding algorithm which applies to quantum programs which

involve both classical and quantum computation. We do this by re-framing the phase folding
algorithm as a relational analysis which computes a sound approximation of the classical transitions
in a quantum program via an affine subspace defined over the pre- and post-state. In this way we can
directly apply existing techniques for affine relation analysis (ARA) such as Karr’s seminal analysis
[31]. Moreover, our optimization can handle arbitrarily complicated classical control including
nested loops and procedure calls, as it amounts to a process of summarization. Framing the phase
folding algorithm as an approximation of the affine relations between the pre- and post-states
in a program further allows us to generalize the optimization to non-linear relations. We give a
non-linear relational analysis for quantum programs which abstracts the classical transitions as
an affine variety over F2, represented via the reduced Gröbner basis of a polynomial ideal. As
most common quantum gates implement affine transitions in the classical state space and generate
non-linear behaviour via interference, we further develop a method of generating precise non-linear
transition formulas for the basic blocks in a control-flow graph via symbolic path integrals.

Contributions. In summary we make the following contributions:

• We show that quantum phase folding is effectively an affine relation analysis (Section 4).
• We give the first phase folding algorithm which applies non-trivially to programs involving
both quantum and classical computation (Section 4).
• We give a novel phase folding algorithm which makes use of non-linear relations and is
again applicable to general programs. We do so by showing that over F2, precise polynomial
relations are relatively simple to compute via Gröbner basis methods (Section 5).
• We show that (relatively) precise transition relations can be extracted from the symbolic path
integral of a basic block and used to increase precision in either domain (Section 6).
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Fig. 1. The relational approach to phase folding. If every classical state | ®𝑥 ′⟩ in the support of𝑈 | ®𝑥⟩ satisfies
𝑥 ′
𝑗
= 𝑥𝑖 , a phase gate on |𝑥𝑖 ⟩ can be commuted through 𝑈 . More generally, a phase conditional on some

function 𝑓 : F𝑛2 → F2 commutes with𝑈 if and only if 𝑓 ( ®𝑥) = 𝑔( ®𝑥 ′) for all ®𝑥 ′ in the support of𝑈 | ®𝑥⟩.

• Conceptually, we demonstrate that classical program analysis techniques may be productively
applied to classical data in superposition. This is in contrast to most existing work on quantum
program analysis, which treat quantum data with quantum domains.

2 Overview
Figure 1 gives the high-level intuition of our approach. We recall1 that a qubit — a quantum bit
— in a pure state is described as a unit vector |𝜓 ⟩ ∈ C2. A quantum gate 𝑈 acts on the combined
state |𝜓 ⟩ ∈ C2𝑛 of 𝑛 qubits as a unitary (i.e. invertible) linear transformation |𝜓 ⟩ ↦→ 𝑈 |𝜓 ⟩. A
quantum circuit is a sequence of quantum gates acting on subsets of the qubits, drawn as a
circuit diagram where horizontal wires carry qubits from left to right into gates. We fix a basis
{| ®𝑥⟩ | ®𝑥 ∈ F𝑛

2 := {0, 1}𝑛} ofC2𝑛 and call these the classical states; a state |𝜓 ⟩ = ∑
®𝑥∈F𝑛2 𝑎 ®𝑥 | ®𝑥⟩ is hence

in a superposition of the classical states {®𝑥 | 𝑎 ®𝑥 ≠ 0}, called the classical support of |𝜓 ⟩. We can then
describe the classical semantics of a quantum gate or circuit as the classical states which are in
superposition after applying the transformation. Our methods are based around approximating the

classical semantics of a quantum circuit as a set of relations or constraints which hold between ®𝑥 and

the support of𝑈 | ®𝑥⟩. If certain relations hold, then phase gates — gates which are diagonal in the
classical basis — can be commuted through the program as in Figure 1 and canceled or merged
with other phase gates — a type of quantum constant propagation.

To illustrate our methods, consider the circuit in Figure 2a which uses a repeat-until-success

(RUS) implementation of the gate v = (i + 2𝑖z)/
√
5 = diag( 1+2𝑖√

5
, 1−2𝑖√

5
) from [41]. The RUS circuit,

corresponding to the boxed loop, implements v by repeatedly initializing two additional (ancilla)
qubits in the |0⟩ state, performing a computation, then measuring the ancilla qubits to get 𝑎, 𝑏 ∈ F2.
The resulting transformation on the target qubit after every iteration of the loop is a diagonal gate:
i if 𝑎𝑏 ≠ 00, and v if 𝑎𝑏 = 00. The (diagonal) t gate before entering the loop can thus cancel out
with the t† at the end of the loop, as for any diagonal operators𝑈 ,𝑉 we have𝑈𝑉 = 𝑉𝑈 .

Achieving this optimization is challenging for existing methods, as the circuit has no finite
interpretation as a linear operator. Instead, our method works by generating a (classical) loop
invariant, namely that for any initial state |𝑧⟩ where 𝑧 ∈ F2, the state at termination has support
{𝑧} — i.e. the loop is diagonal in the computational basis. To achieve this, we view the classical
semantics of a gate as a non-deterministic transition relation 𝑅 ⊆ F𝑛

2 × F𝑛
2 on the classical states

and compute a transition for the entire loop body by composing each relation. The relations for the
gates involved are given below, where |𝑥⟩ ↦→ |𝑥 ′⟩ denotes the relation {(𝑥, 𝑥 ′) | 𝑥, 𝑥 ′ ∈ F2}:

𝐻 = h : |𝑥⟩ ↦→ |𝑥 ′⟩ •
• = tof : |𝑥,𝑦, 𝑧⟩ ↦→ |𝑥,𝑦, 𝑧 ⊕ (𝑥 ∧ 𝑦)⟩

1A full introduction to quantum computation and circuits can be found in Section 3.
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while 𝑎𝑏 ≠ 00

(a) A circuit using a repeat-until-success gate.
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𝐻

𝐻 𝑍

while 𝑎𝑏 ≠ 00

(b) The same circuit with Toffoli gates expanded as

ccz gates conjugated by h gates.

Fig. 2. Repeat-Until-Success circuits. The box denotes a loop which terminates exactly when the measurement

result 𝑥𝑦 of the first two qubits is 00.

𝑆 = s : |𝑥⟩ ↦→ |𝑥⟩ 𝑍 = z : |𝑥⟩ ↦→ |𝑥⟩ .
Composing the relations corresponding to each gate on an initial state |𝑧⟩ and we have

|𝑧⟩ init−−→ |0, 0, 𝑧⟩ h⊗h⊗i−−−−−→ |𝑥,𝑦, 𝑧⟩ tof−−→ |𝑥,𝑦, 𝑧 ⊕ (𝑥 ∧ 𝑦)⟩ i⊗i⊗s−−−−→ |𝑥,𝑦, 𝑧 ⊕ (𝑥 ∧ 𝑦)⟩ tof−−→ |𝑥,𝑦, 𝑧⟩ h⊗h⊗z−−−−−→ |𝑥 ′, 𝑦′, 𝑧⟩ meas−−−→ |𝑧⟩

We then take Kleene closure of the loop body transition RUSbody : |𝑧⟩ ↦→ |𝑧⟩, which approximates
(in this case, precisely) the composition RUS𝑘body of any number 𝑘 of loop iterations as |𝑧⟩ ↦→ |𝑧⟩.
Hence for any number of iterations of the loop RUSbody, the state of the qubit in the computational
basis is unchanged and so the t gate commutes through and cancels out the t† = t−1 gate.
The problem becomes more challenging when the circuit is written in the Clifford+t gate set,

or similar gate sets such as Clifford+ccz which implement classical non-linearity via interference.
Figure 2b gives an alternative implementation of the RUS circuit over the Clifford+ccz. The tof
gates have been replaced with ••• = ccz gates conjugated by Hadamard gates, via the circuit
equality tof = (i ⊗ i ⊗ h)ccz(i ⊗ i ⊗ h). The ccz is diagonal, and hence its classical semantics is
given by the identity relation ccz : |𝑥,𝑦, 𝑧⟩ = |𝑥,𝑦, 𝑧⟩. Composing again the relations for each gate,
we now find that the loop body has the following classical relation

RUSbody : |𝑧⟩ ↦→ |𝑧′⟩ .
The relation above over-approximates the precise loop invariant |𝑧⟩ ↦→ |𝑧⟩. Over-approximation is
due to the fact that the relation (i ⊗ i ⊗ h)ccz(i ⊗ i ⊗ h) : |𝑥,𝑦, 𝑧⟩ ↦→ |𝑥,𝑦, 𝑧′⟩ over-approximates
the precise semantics of the tof gate, namely that 𝑧′ = 𝑧 ⊕ (𝑥 ∧ 𝑦) = 𝑧 ⊕ 𝑥𝑦, itself a consequence
of the quantum mechanical effect of interference which can cause classical transitions to cancel.
To recover the precise classical semantics, we use path integrals to analyze interference and

compute accurate transition relations. Computing the path integral for (i ⊗ i ⊗ h)ccz(i ⊗ i ⊗ h)
gives the quantum transition relation:

(i ⊗ i ⊗ h)ccz(i ⊗ i ⊗ h) : |𝑥,𝑦, 𝑧⟩ ↦→ 1
2

∑︁
𝑧′

( ∑︁
𝑧′′∈F2

(−1)𝑧𝑧′′⊕𝑥𝑦𝑧′′⊕𝑧′′𝑧′
)
|𝑥,𝑦, 𝑧′⟩ .

From the expression above we see that whenever 𝑧′ ≠ 𝑧 ⊕ 𝑥𝑦 in the outer sum, the paths corre-
sponding to the inner sum over 𝑧′′ have opposite phase (±1) and hence cancel out, so the circuit
satisfies the additional relation 𝑧 ⊕ 𝑥𝑦 ⊕ 𝑧′ = 0. Performing this analysis for the loop in Figure 2b we
get the following system of equations, where 𝑡1, . . . , 𝑡4 denote intermediate variables corresponding
to the outputs of the 4 h gates on the target qubit:

𝑧 ⊕ 𝑥𝑦 ⊕ 𝑡2 = 0 𝑡2 ⊕ 𝑥𝑦 ⊕ 𝑡4 = 0 𝑧′ ⊕ 𝑡4 = 0

Solving the system of polynomial equations above for 𝑧′ over the input variable 𝑧 we find that
𝑧′ = 𝑧, as was the case for Figure 2a. While simple back substitution suffices in this case, in more
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𝑇 𝑇 †

while ★

Fig. 3. A circuit with eliminable t gates. The strongest affine loop invariant on the classical support is the

relation 𝑥 ′ ⊕ 𝑦′ = 𝑥 ⊕ 𝑦, which implies that the total phase contribution of both t gates is 1.

general cases the primed output variables may not have a simple solution in terms of the input
variables (or indeed, may have no solution at all). We solve the system of polynomial equations
by computing a Gröbner basis of the ideal generated by the system of equations, and then using
elimination theory to project out temporary variables. Doing so for the above system of equations
produces the polynomial ideal ⟨𝑧 ⊕ 𝑧′⟩ ⊆ F2 [𝑧, 𝑧′] which in particular implies that 𝑧′ = 𝑧.

In the case of the RUS circuit, the loop invariant is simply 𝑧′ = 𝑧, but in more exotic cases we can
make use of more interesting loop invariants to eliminate of merge phase gates. Consider the circuit
in Figure 3 which contains a single non-deterministic while loop which swaps the two qubits. It can
be observed that as a function of the classical basis, the loop body either sends |𝑥,𝑦⟩ ↦→ |𝑥,𝑦⟩ or to
|𝑦, 𝑥⟩ depending on the parity of the number of iterations, and so neither 𝑥 ′ nor 𝑦′ has a solution
over the input state. However, it can be observed that the relation 𝑥 ′ ⊕ 𝑦′ = 𝑥 ⊕ 𝑦 holds in either
case, and is hence a classical invariant of the loop. Moreover, as this is an affine relation we can
compute the Kleene closure over a weaker (but computationally more efficient) domain of affine

relations. This invariant then suffices to eliminate both t gates, as they contribute conjugate phases
of 𝜔 and 𝜔 when 𝑥 ⊕ 𝑦 = 1 and 𝑥 ′ ⊕ 𝑦′ = 1, respectively, hence the total phase is 1.

3 Preliminaries
We begin by reviewing the basics of quantum computing and Dirac notation, followed by our
program model and the phase folding optimization. For a more complete introduction to quantum
computation, the reader is directed to [41].

3.1 Quantum Computing
Let H denote a finite-dimensional Hilbert space with dimension dim(H). We typically assume
H = C𝑑 for some fixed dimension 𝑑 . A pure state of a quantum system is a unit vector |𝑣⟩ ∈ H .
The Hermitian adjoint of |𝑣⟩ inH ∗, denoted by ⟨𝑣 |, is the linear functional ⟨𝑣 | : |𝑢⟩ ↦→ ⟨𝑣 |𝑢⟩ where
⟨𝑣 |𝑢⟩ denotes the (Hermitian) inner product of |𝑣⟩ and |𝑢⟩. Concretely, the Hermitian adjoint is
given by the conjugate transpose, ⟨𝑣 | = |𝑣⟩† and ⟨𝑣 |𝑢⟩ = ⟨𝑣 | · |𝑢⟩. The outer product of |𝑣⟩ and |𝑢⟩ is
similarly written |𝑣⟩⟨𝑢 |. Given two vectors |𝑣⟩ ∈ H1, |𝑢⟩ ∈ H2 in Hilbert spacesH1,H2, we write
|𝑣⟩ ⊗ |𝑢⟩ ∈ H1 ⊗ H2 for their combined state, where ⊗ is the tensor product. If |𝜓 ⟩ ∈ H1 ⊗ H2
can not be written as a tensor product of states ofH1 andH2 then |𝜓 ⟩ is said to be entangled or
non-separable. Recall that dim(H1 ⊗ H2) = dim(H1) dim(H2), and given orthonormal bases {|𝑒𝑖⟩},
{|𝑓𝑗 ⟩} ofH1 andH2, respectively, {|𝑒𝑖⟩ ⊗ |𝑓𝑗 ⟩} forms an orthonormal basis ofH1 ⊗ H2. We often
write |𝑣,𝑢⟩ for the tensor product |𝑣⟩ ⊗ |𝑢⟩ when the meaning is clear. Given a set of quantum
variables Q, corresponding to distinct subsystems 𝑞 with local Hilbert space H𝑞 , we denote the
Hilbert space of the combined system asHQ :=

⊗
𝑞∈QH𝑞 . Tensor factors may be rearranged at

will, and so we will sometimes use the notation |𝜓 ⟩ ®𝑞 ⊗ |𝜑⟩Q−®𝑞 to denote a separable state where
|𝜓 ⟩ is the state of the qubits listed in ®𝑞 = 𝑞1 · · ·𝑞𝑘 and |𝜑⟩ is the state of the remaining qubits.
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•
• =

𝑇 𝑇 † 𝑇 𝑇 †

𝑇 • • • •
𝐻 • 𝑇 † • 𝑇 𝐻

Time

Fig. 4. An example of a quantum circuit, implementing the Toffoli gate tof : |𝑥1, 𝑥2, 𝑥3⟩ ↦→ |𝑥1, 𝑥2, 𝑥3 ⊕ 𝑥1𝑥2⟩

x = 𝑋 =

[
0 1
1 0

]
z = 𝑌 =

[
1 0
0 −1

]
r𝑍 (𝜃 ) = 𝑅𝑍 (𝜃 ) =

[
1 0
0 𝑒𝑖𝜃

]
h = 𝐻 =

1
√
2

[
1 1
1 −1

]
s = 𝑆 =

[
1 0
0 𝑖

]
t = 𝑇 =

[
1 0
0 𝜔 := 𝑒𝑖

𝜋
4

]
cnot =

•
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 swap = =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Fig. 5. Standard gates and their circuit notation.

The Hilbert space associated to a 2-dimensional quantum state — called a qubit — is C2 and we
denote the standard or computational basis of C2 by {|0⟩ , |1⟩}. The 𝑛-fold tensor product of C2

is C2 ⊗ C2 ⊗ · · · ⊗ C2 ≃ C2𝑛 with computational basis {| ®𝑥⟩ | ®𝑥 ∈ F𝑛
2 } where |𝑥1𝑥2⟩ = |𝑥1⟩ ⊗ |𝑥2⟩

and F2 = ({0, 1}, ⊕, ·) is the 2-element finite field. Written over the computational basis, a pure
state of 𝑛 qubits |𝑣⟩ = ∑

®𝑥∈F𝑛2 𝛼 ®𝑥 | ®𝑥⟩ is said to be in a superposition of the classical states ®𝑥 ∈ F𝑛
2

for which 𝛼 ®𝑥 ≠ 0. We call this set the classical support or just support of a pure state |𝑣⟩, denoted
supp( |𝑣⟩). Given the pure state |𝑣⟩ above, measuring |𝑣⟩ in the computational basis projects the
state down to some | ®𝑦⟩ ∈ supp( |𝑣⟩) with probability |𝛼 ®𝑦 |2. More generally we may measure just
a single qubit or subset of qubits — known as a partial measurement — which sends a pure state∑
®𝑦 𝛼 ®𝑦 | ®𝑦⟩ ®𝑞 ⊗ |𝜓 ®𝑦⟩Q−®𝑞 to the pure state | ®𝑦⟩ ®𝑞 ⊗ |𝜓 ®𝑦⟩Q−®𝑞 with probability |𝛼 ®𝑦 |2.

3.2 Quantum Circuits
A quantum gate is a unitary operator𝑈 on a Hilbert spaceH . By unitary we mean that its inverse
is equal to its Hermitian adjoint 𝑈 †, i.e. 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 . A quantum gate 𝑈 sends a pure state
|𝑣⟩ to the pure state𝑈 |𝑣⟩. If 𝑈 : H1 →H1 and 𝑉 : H2 →H2 are unitary gates, then their tensor
product𝑈 ⊗𝑉 : H1 ⊗ H2 →H1 ⊗ H2 is likewise unitary. A quantum circuit is a well-formed term
over the signature (G, ·, ⊗, †) where G is a finite set of gates. We use 𝑈 ®𝑞 to denote a unitary on
HQ where 𝑈 is applied to the sub-systems ®𝑞 and the identity gate i is applied to the remaining
sub-systems. Circuits are drawn graphically as in Figure 4, with time flowing left to right and
individual wires corresponding to qubits. Vertical composition corresponds to the tensor product
⊗, while horizontal composition corresponds to functional composition (·).
Standard gates are shown in Figure 5. The Clifford+𝑇 gate set is defined as {h, cnot, s, t} where

s = t2 is included as an explicit generator since, being Clifford, it is typically orders of magnitude
less expensive than the t gate. It is often illuminating to study quantum gates by their actions on
classical states, which suffices due to the linearity of quantum mechanics. The gates of Figure 5
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expressed as functions of classical states are shown below. In this view, it is clear that x and cnot
both perform classical functions, while the z, s and t operate in the (orthogonal) phase space,
and the h is a form of quantum branching gate, sending a classical state |𝑥⟩ to both |0⟩ and |1⟩
with equal probability but varying phase. By orthogonal here we mean that computations in the
state space (or 𝑍 -basis in quantum mechanical terms) don’t affect the phase, and vice versa with
computations in the phase space or 𝑋 -basis.

x : |𝑥⟩ ↦→ |1 ⊕ 𝑥⟩ z : |𝑥⟩ ↦→ (−1)𝑥 |𝑥⟩ r𝑍 (𝜃 ) : |𝑥⟩ ↦→ 𝑒𝑖𝜃𝑥 |𝑥⟩

h : |𝑥⟩ ↦→ 1
√
2

∑︁
𝑦∈F2

(−1)𝑥𝑦 |𝑦⟩ s : |𝑥⟩ ↦→ 𝑖𝑥 |𝑥⟩ t : |𝑥⟩ ↦→ 𝜔𝑥 |𝑥⟩

cnot : |𝑥,𝑦⟩ ↦→ |𝑥, 𝑥 ⊕ 𝑦⟩ swap : |𝑥,𝑦⟩ ↦→ |𝑦, 𝑥⟩
The interpretation of quantum mechanical processes as classical processes happening in super-

position is central to Feynman’s path integral formulation of quantum mechanics [22], and the
above expressions can be thought of as symbolic path integrals.

3.3 Programming Model
We adopt the standard QRAM model of quantum computation, where data can be quantum or
classical, but control is strictly classical. We illustrate our techniques on a non-deterministic version
of the imperative quantum WHILE language [20, 57] with procedures, the syntax of which is
presented below:

𝑇 ∈ QWhile :: = skip | 𝑞 := |0⟩ | 𝑈 ®𝑞 | meas 𝑞 | call 𝑝 ( ®𝑞) | 𝑇1; 𝑇2
| if ★ then 𝑇1 else 𝑇2 | while ★ do 𝑇

We assume a fixed set of quantum variables Q and a set of primitive gates G. Variables 𝑞 ∈ Q
denote qubit identifiers, while 𝑈 ∈ G denote primitive gates. Note that the syntax corresponds
precisely to the syntax of regular expressions over a grammar consisting of reset instructions,
unitary applications, measurements in the computational basis, and procedure calls.
We are interested in relational properties of quantum WHILE programs — that is, properties

which relate the post-state of a program𝑇 to the pre-state. Such analyses often operate by computing
a summary or abstract transformer J𝑇 K♯ : D → D for the program over an abstract domain D of
relevant properties. Tarjan [52] introduced a compositional approach to these types of analyses,
sometimes called algebraic program analysis, in which summarization proceeds by first solving the
path expression problem — representing a program’s control-flow graph as a regular expression
— and then reinterpreting the regular expression over a suitable algebraic domain of abstract
transformers, notably one equipped with the regular algebra notions of choice (denoted + or ⊔),
composition (· or ;), and iteration (★). Our methods are based on this algebraic style of program
analysis, and in particular can be applied more to any control-flow graph with quantum instructions
by first mapping it to a path expression via Tarjan’s algorithm [51].
To this end, we define the semantics of a quantum WHILE program in terms of control-flow

paths. We define a set of actions Σ as either the application of a unitary or the post-selection of a
variable 𝑞 on a classical value 𝑥 , with a special n-op action for convenience:

Σ ::= skip | 𝑈 ®𝑞 | assume 𝑃𝑥𝑞
A control-flow path 𝜋 ∈ Σ∗ is a sequence of actions. We denote the sequential composition of paths
by 𝜋 ; 𝜋 ′ and extend ; to sets of paths. We define the semantics J𝜋K : HQ →HQ of a control-flow
path 𝜋 as a composition of linear operators corresponding to the individual actions, where for
instance J𝑈 ®𝑞K = 𝑈 ®𝑞 and 𝑃𝑥 = |𝑥⟩⟨𝑥 | is the projection onto the basis state |𝑥⟩. We say a path 𝜋 is
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T JskipK = {skip}
T J𝑞 := |0⟩K = {assume 𝑃0

𝑞} ∪ {assume 𝑃1
𝑞 ; 𝑋𝑞}

T J𝑈 ®𝑞K = {𝑈 ®𝑞}
T Jmeas 𝑞K = {assume 𝑃0

𝑞} ∪ {assume 𝑃1
𝑞}

T Jcall 𝑝 ( ®𝑞)K = T J𝑝 ( ®𝑞)K
T J𝑇1; 𝑇2K = T J𝑇1K ; T J𝑇2K

T Jif ★ then 𝑇1 else 𝑇2K = T J𝑇1K ∪ T J𝑇2K

T Jwhile ★ do 𝑇 K = ∪𝑘≥0T J𝑇 K𝑘

Fig. 6. Path collecting semantics for the non-deterministic quantum WHILE language.

feasible if it is non-zero as a linear operator — that is, there exists |𝑣⟩ ∈ HQ such that J𝜋K |𝑣⟩ ≠ 0.
An example of an infeasible path is one which first projects on to the |0⟩ state of a qubit, then the
|1⟩ state:

Jassume 𝑃0
𝑞 ; assume 𝑃1

𝑞K = 𝑃1
𝑞𝑃

0
𝑞 = 0.

Note that with this interpretation, a path might not send a unit vector to another unit vector
(hence, pure state). As we are only interested in the support of a path, this definition suffices for
our purposes.

Figure 6 defines a collecting semantics for the quantumWHILE language in terms of paths. Paths
correspond to control-flow paths over two different types of classical non-determinism: classical
branching corresponding to if and while statements, and branching due to measurement outcomes
of quantum states. Measurements are modeled as a non-deterministic choice between the projector
𝑃0 = |0⟩⟨0| or the projector 𝑃1 = |1⟩⟨1|. Reset statements are modeled as a measurement followed
by an 𝑋 correction in the event of measurement outcome 1. The path semantics induces a collecting
semantics J𝑇 K : P(HQ) → P(HQ) in the obvious way. It can be observed that up to normalization,
|𝑢⟩ ∈ J𝑇 K{|𝑣⟩} if and only if it results from some sequence of measurements and (non-deterministic)
classical branches with non-zero probability. In particular, it can be observed that measuring a
qubit which has been reset to |0⟩ has no effect, as shown below where 𝑆 ∈ P(HQ):

J𝑞 := |0⟩ ; meas 𝑞K𝑆 = J𝑞 := |0⟩K𝑆 = {|0⟩𝑞 ⊗ |𝜓 ⟩Q−{𝑞} | |𝑥⟩𝑞 ⊗ |𝜓 ⟩Q−{𝑞} ∈ 𝑆}.

Example 1. Consider the program 𝐻𝑞; 𝑞 := |0⟩ which applies a Hadamard gate to qubit 𝑞 then
resets 𝑞 to |0⟩. Up to normalization we have

J𝐻𝑞; 𝑞 := |0⟩K{|0⟩} = {|0⟩ ⟨0| h |0⟩} ∪ {x |1⟩ ⟨1| h |0⟩} = {|0⟩}

We extend supp(·) to sets of quantum states in the obvious way. Given a set 𝑠 ∈ P(CQ) where
CQ := F | Q |2 is the set of classical states on Q we can conversely take the linear span of quantum
states {| ®𝑥⟩ | ®𝑥 ∈ 𝑠} as an element of P(HQ). We denote this operator simply as span(𝑠) ∈ P(HQ).
Note that supp(·) and span(·) form a Galois connection between (P(HQ), ⊆) and (P(CQ), ⊆):

(P(HQ), ⊆) −−−−−−→←−−−−−−
supp

span
(P(CQ), ⊆)

A conceptual contribution of this paper is the fact that we may productively analyze a quantum
program which includes both quantum and classical data flow (i.e. in and out of superposition) as a
purely classical program by abstracting its classical semantics CJ·K : P(CQ) → P(CQ).

3.4 Quantum Phase Folding
The phase folding algorithm originated in [5] from the phase polynomial representation of cnot-
dihedral operators. It was shown that any circuit over the cnot-dihedral gate set {cnot, x, r𝑍 (𝜃 ) |
𝜃 ∈ R} implements a unitary transformation which can be described as

𝑈 : | ®𝑥⟩ ↦→ 𝑒2𝜋𝑖 𝑓 ( ®𝑥 ) |𝐴®𝑥 + ®𝑐⟩
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where (𝐴, ®𝑐) : ®𝑥 ↦→ 𝐴®𝑥 + ®𝑐 is an affine transformation over F2, and 𝑓 ( ®𝑥) = ∑
𝑖 𝑎𝑖 𝑓𝑖 ( ®𝑥) ∈ R where

each 𝑓𝑖 : F𝑛
2 → F2 is a linear function of ®𝑥 . Note that a linear functional 𝑓𝑖 : F𝑛

2 → F2 is an element
of the dual space (F𝑛

2 )∗ and can hence be represented as a (row) vector. We use the two notions
interchangeably. We call the linear functionals {𝑓𝑖 }𝑖 ⊆ (F𝑛

2 )∗ for which 𝑎𝑖 ≠ 0 the support of 𝑓 . The
utility of the phase polynomial representation for circuit optimization relies on two facts [5]:
(1) for any cnot-dihedral circuit 𝑈 , the canonical phase polynomial of 𝑈 can be efficiently

computed and its support has size at most the number of r𝑍 gates in the circuit, and
(2) any unitary𝑈 : | ®𝑥⟩ ↦→ 𝑒2𝜋𝑖 𝑓 ( ®𝑥 ) |𝐴®𝑥 + ®𝑐⟩ can be efficiently implemented with exactly |supp(𝑓 ) |

r𝑍 gates, with parameters given by the Fourier coefficients 𝑎𝑖 .
Letting 𝜏 (𝑈 ) denote the number of r𝑍 gates in𝑈 , the two facts above give a poly-time method of
producing from𝑈 a circuit𝑈 ′ where 𝜏 (𝑈 ′) ≤ 𝜏 (𝑈 ) – notably, by computing𝑈 ’s phase polynomial
representation, then synthesizing a new circuit with at most supp(𝑓 ) ≤ 𝜏 (𝑈 ) r𝑍 gates.

Example 2. Consider the circuit, for which the intermediate states of the circuit as a function of
an initial classical state |𝑥,𝑦⟩ have been annotated, below:

𝑥 • • 𝑥 ⊕ 𝑦 𝑇 † 𝑥

𝑦 𝑥 ⊕ 𝑦 𝑇 𝑦 • • 𝑦

The effect of the first cnot is to map |𝑥,𝑦⟩ to |𝑥, 𝑥 ⊕ 𝑦⟩, at which point the t then applies a phase of
𝜔 conditional on the sum 𝑥 ⊕ 𝑦. After the third cnot the state is now |𝑥 ⊕ 𝑦, 𝑥⟩ at which point the
t† gate applies a phase of 𝜔 conditional on the sum 𝑥 ⊕ 𝑦. It can be readily observed that for any
𝑥,𝑦 ∈ F2 the total phase accumulated by the circuit is 1, as when 𝑥 ⊕𝑦 = 0 no phase is accumulated,
and when 𝑥 ⊕ 𝑦 = 1 the phase accumulated is 𝜔𝜔 = 1.

The phase polynomial based optimization was extended in [5] to a universal gate set by using path
integrals. In particular, a circuit over the universal gate set {h, cnot, x, r𝑍 (𝜃 )} can be represented
as the mapping

𝑈 : | ®𝑥⟩ ↦→
∑︁
®𝑦∈F𝑘2

𝑒2𝜋𝑖 𝑓 ( ®𝑥, ®𝑦) (−1)𝑄 ( ®𝑥, ®𝑦) |𝐴( ®𝑥, ®𝑦) + ®𝑐⟩

where 𝑓 and 𝐴 are as before, and 𝑄 : F𝑛
2 × F𝑘

2 → F2 is pure quadratic. While re-synthesis can be
performed by splitting the above into cnot-dihedral sub-circuits, often re-synthesis is not only a
bottleneck in efficiency, but may actually have the undesirable affect of increasing the circuit cost
in some other metric. For this reason, subsequent algorithms [2, 40] dropped re-synthesis in favour
of merging existing r𝑍 gates provided they contribute to the same term of 𝑓 . This also allowed r𝑍
gates with indeterminate parameters to be merged, as r𝑍 (𝜃 )r𝑍 (𝜃 ′) = r𝑍 (𝜃 + 𝜃 ′).

Example 3. Consider the circuit below with intermediate states annotated again:

𝑥 • 𝑦 • • 𝑧 • 𝑧

𝑦 𝑇 𝑥 ⊕ 𝑦 • 𝑥 𝐻 𝑧 𝑦 ⊕ 𝑧 • 𝑦 𝑇 𝑦

.

The circuit implements the transformation |𝑥,𝑦⟩ ↦→ 1√
2

∑
𝑧∈F2 𝜔

2𝑦 (−1)𝑥𝑧 |𝑧,𝑦⟩ where 𝑧 denotes to
the branch taken (in superposition) by the Hadamard gate. Here we can see that the𝑇 and𝑇 † gates
both contribute phases of 𝜔𝑦 , giving a combined phase of 𝜔𝜔2𝑦 = 𝑖𝑦 . Hence we can replace the
two t gates with a single s gate at either location.

In [2], one of the authors extended the optimization to include uninterpreted gates — gate symbols
where a concrete semantics exists but is not known to the compiler. Such gates can be used to
model gates from non-native gate sets, or opaque gates and library calls as in the openQASM
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language [13]. Intuitively, given an uninterpreted gate 𝑈 on 𝑛 qubits, 𝑈 can be assumed to map
a classical state |𝑥1𝑥2 · · · 𝑥𝑛⟩ to an arbitrary classical state |𝑥 ′1𝑥 ′2 · · · 𝑥 ′𝑛⟩. It was shown that this
interpretation is sound with respect to merging r𝑍 gates, as any rotation conditional on the
primed outputs can’t be commuted back through the uninterpreted gate. On the other hand,
(𝑈 ⊗ 𝐼 ) |𝑥1𝑥2 · · · 𝑥𝑛, 𝑦⟩ = |𝑥 ′1𝑥 ′2 · · · 𝑥 ′𝑛, 𝑦⟩ and so gates which involve qubits not modified by𝑈 may
commute and merge freely.

Example 4. The optimization in Example 3 can be observed to be valid even if the Hadamard gate
is replaced with an arbitrary (i.e. uninterpreted) gate 𝑈 , as regardless of the action of 𝑈 both t
gates act on the state |𝑦⟩. While the optimization of Example 3 is achievable by previous phase
folding and related techniques [5, 35, 40, 59] which rely on exact representations of the circuit
semantics, these techniques are generally insufficient for the above optimization.

In the context of program analysis, the mapping 𝑈 : |𝑥1𝑥2 · · · 𝑥𝑛⟩ ↦→ |𝑥 ′1𝑥 ′2 · · · 𝑥 ′𝑛⟩ asserts that no
relations hold between an input state and output state. Likewise, the cnotmapping cnot : |𝑥,𝑦⟩ ↦→
|𝑥,𝑦 ⊕ 𝑥⟩ asserts that the affine relations 𝑥 ′ = 𝑥 and 𝑦′ = 𝑥 ⊕ 𝑦 hold. As the output of a quantum
gate may in fact be a superposition of classical states ®𝑥 ′, a relation on the pre- and post-state holds
if it holds whenever ⟨®𝑥 ′ |𝑈 | ®𝑥⟩ ≠ 0. This observation serves as the basis of our work.

4 A Relational Approach to Phase Folding
In this section we formulate the phase folding optimization as a relational analysis computing
(an approximation of) the affine relations between the classical inputs and outputs of a quantum
circuit. We then use existing techniques [18, 31] for affine relational analyses to extend this to
non-deterministic quantum WHILE programs.

4.1 From Phase Folding to Subspaces
In the phase folding algorithm, the (classical) support of the circuit | ®𝑥 ′⟩ at any given point in
the circuit is described as an affine function of the input variables ®𝑥 and intermediate variables
®𝑦. In particular, 𝑥 ′𝑖 = 𝐴𝑖 [®𝑥, ®𝑦]𝑇 + 𝑐𝑖 . A r𝑍 (𝜃 ) gate at this location then applies a phase of 𝑒𝑖𝜃𝑥 ′𝑖 =

𝑒𝑖𝜃 (𝐴𝑖 [ ®𝑥, ®𝑦 ]𝑇 +𝑐𝑖 ) , i.e. a phase of 𝑒𝑖𝜃 conditional on 𝑓𝑖 ( ®𝑥, ®𝑦) = 𝐴𝑖 [®𝑥, ®𝑦]𝑇 + 𝑐𝑖 = 1. Another phase gate
which applies a phase conditional on 𝑥 ′𝑗 = 𝐴 𝑗 [®𝑥, ®𝑦]𝑇 + 𝑐 𝑗 = 1 contributes to the same term of the
phase if and only if 𝐴𝑖 [®𝑥, ®𝑦]𝑇 = 𝐴 𝑗 [®𝑥, ®𝑦]𝑇 for all ®𝑥, ®𝑦. Note here that the affine factors of 𝑥 ′𝑖 and 𝑥

′
𝑗

may differ, in which case merging the phase gates results in an unobservable global phase.
Relations of the above form correspond [31] to an affine subspace over the variables (primed,

unprimed, and in our case, intermediate), in the sense that the set of solutions [®𝑥 ′, ®𝑥, ®𝑦]𝑇 ∈ F2𝑛+𝑘
2 to

the relations 𝑥 ′𝑖 = 𝐴𝑖 [®𝑥, ®𝑦]𝑇 +𝑐𝑖 form an affine subspace of F2𝑛+𝑘
2 , where 𝑛 is the number of program

variables and 𝑘 is the number of intermediate variables. This affine subspace can be represented
as the kernel of a constraint matrix 𝑇 ∈ F𝑛×2𝑛+𝑘+1

2 , where the rows of 𝑇 encode the relations or
constraints 𝑓𝑖 ( ®𝑥 ′, ®𝑥, ®𝑦) = 𝑐𝑖 for linear functions 𝑓𝑖 . In particular, the smallest affine subspace satisfying
the relations 𝑥 ′𝑖 = 𝐴𝑖 [®𝑥, ®𝑦]𝑇 + 𝑐𝑖 can be encoded as the constraint matrix 𝑇 =

[
𝐼 𝐴 ®𝑐

]
, noting

that 𝑇 [®𝑥 ′, ®𝑥, ®𝑦, 1]𝑇 = 0 if and only if 𝑥 ′𝑖 = 𝐴𝑖 [®𝑥, ®𝑦]𝑇 + 𝑐𝑖 for every 𝑖 . More generally, given a set of
affine constraints {𝑓𝑖 }𝑘𝑖 (i.e. affine functions), we denote the smallest affine subspace satisfying each
𝑓𝑖 by ⟨𝑓1, 𝑓2, . . . , 𝑓𝑘⟩ and encode it as the kernel of the constraint matrix with rows 𝑓𝑖 . As F2 is a field,
this subspace can further be uniquely represented by reducing the constraint matrix to reduced
row echelon form.

Given two phases conditional on linear functions 𝑓𝑖 , 𝑓𝑗 ∈ (F2𝑛+𝑘
2 )∗ of the primed, unprimed, and

intermediate variables, 𝑓𝑖 and 𝑓𝑗 correspond to row vectors over F2𝑛+𝑘
2 and 𝑓𝑖 ( ®𝑥 ′, ®𝑥, ®𝑦) = 𝑓𝑗 ( ®𝑥 ′, ®𝑥, ®𝑦)

for all ®𝑧 ∈ ker𝑇 if and only if as row vectors, 𝑓𝑖 + 𝑓𝑗 is in the row space of 𝑇 up to an (irrelevant)
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affine factor. Moreover, the restriction of 𝑓𝑖 and 𝑓𝑗 to ker𝑇 can be uniquely canonicalized by fully
row reducing them with respect to 𝑇 . Hence, to merge all phases conditional on linear functions
over ®𝑥 ′, ®𝑥 , and ®𝑦, we need only row reduce each one with respect to𝑇 and collect phases on identical
conditions.

Example 5. Consider the circuit below, reproduced from Example 2, with intermediate variables
𝑡1, 𝑡2 at distinguished points.

𝑥 • • 𝑡2 𝑇 † 𝑥 ′

𝑦 𝑡1 𝑇 • • 𝑦′

The non-zero transitions of this circuit lie in the subspace ⟨𝑥 ′ = 𝑥,𝑦′ = 𝑦, 𝑡1 = 𝑥 ⊕ 𝑦, 𝑡2 = 𝑥 ⊕ 𝑦⟩
which we can encode as the constraint matrix on the left below, reduced to row echelon form on
the right:

constraint 𝑥 ′ 𝑦′ 𝑥 𝑦 𝑡1 𝑡2 𝑐

𝑥 ′ = 𝑥 1 0 1 0 0 0 0
𝑦′ = 𝑦 0 1 0 1 0 0 0
𝑡1 = 𝑥 ⊕ 𝑦 0 0 1 1 1 0 0
𝑡2 = 𝑥 ⊕ 𝑦 0 0 1 1 0 1 0



−→

constraint 𝑥 ′ 𝑦′ 𝑥 𝑦 𝑡1 𝑡2 𝑐

𝑥 ′ = 𝑦 ⊕ 𝑡2 1 0 0 1 0 1 0
𝑦′ = 𝑦 0 1 0 1 0 0 0
𝑥 = 𝑦 ⊕ 𝑡2 0 0 1 1 0 1 0
𝑡1 = 𝑡2 0 0 0 0 1 1 0




The two phases of 𝜔 and 𝜔 are conditional on 𝑡1 and 𝑡2 respectively, corresponding to the linear
functionals

𝑓 =
[𝑥 ′ 𝑦′ 𝑥 𝑦 𝑡1 𝑡2
0 0 0 0 1 0

]
and 𝑔 =

[𝑥 ′ 𝑦′ 𝑥 𝑦 𝑡1 𝑡2
0 0 0 0 0 1

]
Row reducing both modulo (the linear part of) the reduced constraint matrix above yields the same
linear functional (𝑡2), hence both phases contribute to the same term and can be canceled.

4.2 Phase Folding as an Affine Relation Analysis
The previous observations are not new in either the classical or in the quantum context, but the
shift in perspective allows one to re-frame the phase-folding optimization as computing an affine
subspace S ⊆ F2𝑛

2 corresponding to the classical transitions of a circuit, for which many domains
have previously been devised [18, 31, 33, 39]. Before discussing concrete domains and their use in
the phase folding optimization, we first formalize phase folding as an affine relation analysis.
Using the terminology of [18], we say that S[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] ⊆ F2𝑛+𝑘

2 is an affine subspace in
three vocabularies — 𝑛 primed variables ®𝑋 ′ representing the post-state, 𝑛 unprimed variables ®𝑋
representing the pre-state, and 𝑘 intermediate variables ®𝑌 . The definition below formalizes the
notion of such a subspace as a sound abstraction of the classical transitions of a control-flow path.

Definition 6 (sound & precise). We say that an affine subspace S[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] is a sound abstraction
of a control-flow path 𝜋 ∈ Σ∗ if for any ®𝑥 ′, ®𝑥 ∈ F𝑛

2

®𝑥 ′ ∈ supp(J𝜋K | ®𝑥⟩) =⇒ ∃®𝑦.( ®𝑥 ′, ®𝑥, ®𝑦) ∈ S
We say that S is a precise abstraction if the reverse implication also holds.

The condition above that ∃®𝑦.( ®𝑥 ′, ®𝑥, ®𝑦) ∈ S states that ( ®𝑥 ′, ®𝑥) is contained in the affine subspace
S′ of F𝑛

2 × F𝑛
2 with the coordinates corresponding to ®𝑌 projected out. We denote this subspace

∃®𝑌 .S and observe that S[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] is a sound (resp. precise) abstraction of 𝜋 if and only if ∃®𝑌 .S
is. We denote a subspace in two vocabularies ®𝑋 ′, ®𝑋 — for instance, a three-vocabulary subspace
with intermediates projected out — by S[ ®𝑋 ′; ®𝑋 ].
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Intuitively, a subspace S[ ®𝑋 ′; ®𝑋 ] which soundly approximates a path 𝜋 over-approximates the
set of non-zero transitions ⟨®𝑥 | J𝜋K | ®𝑥⟩ and can be viewed as a state transition formula [32]. Note
that if 𝜋 is infeasible, then supp(J𝜋K | ®𝑥⟩) = ∅ for any ®𝑥 , hence the special empty subset ⊥ = ∅ is
a sound abstraction of 𝜋 . We can compose two state transitions S[ ®𝑋 ′; ®𝑋 ], S′ [ ®𝑋 ′; ®𝑋 ] by taking
their relational composition

( ®𝑥 ′, ®𝑥) ∈ S ; S′ ⇐⇒ ∃®𝑥 ′′ ∈ F𝑛
2 .( ®𝑥 ′′, ®𝑥) ∈ S ∧ (®𝑥 ′, ®𝑥 ′′) ∈ S′

which is again an affine subspace corresponding to the intersection of S[ ®𝑋 ′′; ®𝑋 ] and S′ [ ®𝑋 ′; ®𝑋 ′′]
taken as subspaces of the three-vocabulary space F3𝑛

2 followed by a projection of ®𝑋 ′′. We denote
the projection of ®𝑋 ′′ by ∃ ®𝑋 ′′ .S, and define

S ; S′ := ∃𝑋 ′′ .S[ ®𝑋 ′′; ®𝑋 ] ∩ S′ [ ®𝑋 ′; ®𝑋 ′′] .
Proposition 7. If S and S′ are sound abstractions of 𝜋 and 𝜋 ′, then S ; S′ is sound for 𝜋 ; 𝜋 ′.

Proof. Follows from linearity of J𝜋 ; 𝜋 ′K = J𝜋 ′KJ𝜋K. □

Remark 8. In contrast to classical contexts, composition is not precise due to the effects of interfer-
ence. Notably, the only sound abstraction of h is⊤ = F2

2 since we have non-zero transitions between
every |𝑥⟩ and |𝑥 ′⟩. Clearly ⊤ ; ⊤ = ⊤. On the other hand, ®𝑥 ′ ∈ supp(JhhK | ®𝑥⟩) =⇒ 𝑥 ′ = 𝑥 , and so
a sound abstraction of hh is the 1-dimensional affine subspace of F2

2 satisfying 𝑥
′ = 𝑥 .

We can’t generally expect to compute precise subspace abstractions in polynomial time, even
for circuits which implement affine transitions, as a polynomial-time solution to the problem of
strong simulation — computing ⟨®𝑥 ′ |𝑈 |𝑥⟩ given a circuit 𝑈 — would imply BQP = P [15]. While
the problem of determining a precise abstraction of a circuit as an affine transformation is slightly
weaker in that it only tells us when ⟨®𝑥 ′ |𝑈 |𝑥⟩ ≠ 0, it can be noted that this suffices to efficiently
simulate several deterministic quantum algorithms which exhibit exponential query complexity
separation between quantum and classical algorithms [8, 45].

The following proposition establishes a basis for merging phase gates over affine transition
relations. In particular, if 𝑥 ′𝑗 = 𝑥𝑖 in every non-zero transition of a control-flow path, then a phase
gate on qubit 𝑖 in the prefix may be merged with a phase gate on qubit 𝑗 in the suffix.

Proposition 9. LetS[ ®𝑋 ′; ®𝑋 ] be a sound abstraction of a path 𝜋 and suppose that for every ( ®𝑥 ′, ®𝑥) ∈ S,
𝑥 ′𝑗 = 𝑥𝑖 . Then Jr𝑍 (𝜃 )𝑞𝑖 ; 𝜋 ; r𝑍 (𝜙)𝑞 𝑗

K = Jr𝑍 (𝜃 + 𝜙)𝑞𝑖 ; 𝜋 ; skipK = Jskip ; 𝜋 ; r𝑍 (𝜃 + 𝜙)𝑞 𝑗
K.

Proof. By computation, noting that ®𝑥 ′ ∈ supp(J𝜋K | ®𝑥⟩) only if ( ®𝑥 ′, ®𝑥) ∈ S and hence 𝑥 ′𝑗 = 𝑥𝑖 :

Jr𝑍 (𝜃 )𝑞𝑖 ; 𝜋 ; r𝑍 (𝜙)𝑞 𝑗
K | ®𝑥⟩ = 𝑒𝑖𝜃𝑥𝑖

(
r𝑍 (𝜙)𝑞 𝑗

J𝜋K | ®𝑥⟩
)

= 𝑒𝑖𝜃𝑥𝑖
(
r𝑍 (𝜙)𝑞 𝑗

∑︁
®𝑥 ′∈supp(J𝜋K | ®𝑥 ⟩)

𝛼 ®𝑥 ′ | ®𝑥 ′⟩
)

= 𝑒𝑖𝜃𝑥𝑖
(∑︁

®𝑥 ′∈supp(J𝜋K | ®𝑥 ⟩)
𝑒
𝑖𝜙𝑥 ′𝑗𝛼 ®𝑥 ′ | ®𝑥 ′⟩

)
= 𝑒𝑖 (𝜃+𝜙 )𝑥𝑖 J𝜋K | ®𝑥⟩

The claim then follows by linearity. □

Note that Proposition 9 gives a method of merging phases applied along a path. In particular,
if we view 𝑥𝑖 and 𝑥 ′𝑗 as linear functionals 𝑓𝑖 ( ®𝑥 ′, ®𝑥) = 𝑥𝑖 , 𝑓𝑗 ( ®𝑥 ′, ®𝑥) = 𝑥 ′𝑗 , respectively, then we may
represent the condition 𝑓 ∈ (F2𝑛

2 )∗ of each phase gate via a canonical representative (if it exists) on
the subspace S[ ®𝑋 ′; ®𝑋 ]. If two conditions 𝑓𝑖 + 𝑓𝑗 ∈ kerS[ ®𝑋 ′; ®𝑋 ] where kerS is the subspace of
(F2𝑛

2 )∗ which annihilates S, then by definition 𝑓𝑖 ( ®𝑥 ′, ®𝑥) = 𝑓𝑗 ( ®𝑥 ′, ®𝑥) for all ( ®𝑥 ′, ®𝑥) ∈ S.
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AJxK = ⟨𝑥 ′𝑞 ⊕ 1 ⊕ 𝑥𝑞⟩
AJr𝑍 (𝜃 )𝑞K = ⟨𝑥 ′𝑞 ⊕ 𝑥𝑞⟩
AJh𝑞K = ⊤𝑞

AJcnot𝑞1𝑞2K = ⟨𝑥 ′𝑞1 ⊕ 𝑥𝑞1 , 𝑥
′
𝑞2 ⊕ 𝑥𝑞1 ⊕ 𝑥𝑞2⟩

AJ𝑃𝑏𝑞 K = ⟨𝑥 ′𝑞 ⊕ 𝑥𝑞, 𝑥𝑞 ⊕ 𝑏⟩
AJ𝑈 ®𝑞K = AJ𝑈 K[𝑋 ′®𝑞 ; 𝑋 ®𝑞]

AJ𝑞 := |0⟩K = ⟨𝑥 ′𝑞⟩
AJmeas 𝑞K = ⟨𝑥 ′𝑞 ⊕ 𝑥𝑞⟩
AJcall 𝑝 ( ®𝑞)K = AJ𝑝 ( ®𝑞)K
AJ𝑇1; 𝑇2K = AJ𝑇1K ; AJ𝑇2K

AJif ★ then 𝑇1 else 𝑇2K = AJ𝑇1K ⊔ AJ𝑇2K

AJwhile ★ do 𝑇 K = AJ𝑇 K★

Fig. 7. Affine relation analysis for quantum WHILE programs

4.3 Extending toQuantum Programs
The developments of the previous section allow the phase folding algorithm to be easily extended
to non-deterministic quantumWHILE programs. Given a set of paths Π, a two-vocabulary subspace
S ⊆ F2𝑛

2 is a sound abstraction of Π if and only if S is a sound abstraction of every 𝜋 ∈ Π.
Correctness of the phase folding condition, i.e. Proposition 9, carries over to sets of paths in this
way, as phase gates may be merged if and only if they can be merged along every path.

Given a concrete domain of subspaces of F2𝑛
2 , we may compute abstractions of sets of paths from

abstractions of individual paths in the standard way by taking the join, corresponding to the affine

hull of subspaces. In particular, if S1 and S2 are sound abstractions of 𝜋1 and 𝜋2, it is easy to see
that the smallest subspace which soundly abstracts both is the affine hull of S1 and S2, denoted
S1 ⊔ S2 where

S1 ⊔ S2 := span({®𝑥 | ®𝑥 ∈ S1 ∪ S2})
Moreover, as noted by [31], since the subspaces of F2𝑛

2 have finite and bounded dimension, there
can be no infinite strictly ascending chain S1 ⊊ S2 ⊊ · · · and so the join of infinitely many paths
stabilizes in finitely many (𝑂 (𝑛)) steps. As is customary [32] we define the Kleene closure S★ of a
two-vocabulary subspace S[ ®𝑋 ′; ®𝑋 ] to be the limit of the sequence {S𝑖 }∞𝑖=0 where

S0 = ⊥ = {0} S𝑖+1 = S𝑖 ⊔ (S𝑖 ; S)

which satisfies S𝑖 ⊆ S𝑖+1 for all 𝑖 ≥ 0 and hence stabilizes in at most 2𝑛 steps.
We now have all the pieces necessary to define an affine relation analysis for quantum WHILE

programs. Let
(S(F2𝑛

2 ), ⊆,⊔,⊓,⊥,⊤)
be some domain of affine transition relations whereS(F2𝑛

2 ) is the set of affine subspaces ofF2𝑛
2 with a

special element⊥ for the empty subset, ⊔ is the union of affine subspaces, ⊓ is subspace intersection,
and ⊤ = F2𝑛

2 . Additionally, let S(F2𝑛
2 ) be equipped with an additional composition operator ;.

Figure 7 gives an abstract semantics AJ𝑇 K ∈ S(F2𝑛
2 ) for computing a sound approximation of a

quantum WHILE program over typical gates as an affine transition function. Transition relations
for gates and projections are given as a function of the qubits they act on — we naturally extend
the transition relation of a gate on qubits ®𝑞 to a transition relation on Q by setting the pre- and
post-state for any qubit in Q − ®𝑞 to be equal.

The analysis of Figure 7 is defined without respect to a particular implementation of the subspace
domain. In principle any relational domain for affine subspaces suffices, the key element of relational
in this case being the ability to compose relations and hence abstract affine transfer functions rather
than sets of states. The KS domain of [18] is one such concrete implementation which suffices for

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 37. Publication date: January 2025.



37:14 Matthew Amy and Joseph Lunderville

the purpose of quantum ARA. In the next section we develop a concrete domain for performing
phase folding with an affine relation analysis which is based on the KS domain.

Theorem 10. Let 𝑇 be a quantum WHILE program. Then AJ𝑇 K is a sound abstraction of T J𝑇 K.

Proof. It can be readily observed that the abstractions of basic gates are all sound (and precise),
and likewise that the rules for unitary gate application, composition, non-deterministic choice and
iteration are sound. It remains to show that the transition relations for reset and measurement are
sound. For measurement, we note that T Jmeas 𝑞K = {assume 𝑃0

𝑞} ∪ {assume 𝑃1
𝑞}, and hence a

sound abstraction of meas 𝑞 isAJ𝑃0K ⊔AJ𝑃1K = ⟨𝑥 ′ ⊕ 𝑥, 𝑥⟩ ⊔ ⟨𝑥 ′ ⊕ 𝑥, 𝑥 ⊕ 1⟩ = ⟨𝑥 ′ ⊕ 𝑥⟩. Likewise,
for reset we have T J𝑞 := |0⟩K = {assume 𝑃0

𝑞} ∪ {assume 𝑃1
𝑞 ; 𝑋𝑞}, which is soundly abstracted by

the join AJ𝑃0K ⊔ AJ𝑋𝑃1K = ⟨𝑥 ′ ⊕ 𝑥, 𝑥⟩ ⊔ ⟨𝑥 ′, 𝑥 ⊕ 1⟩ = ⟨𝑥 ′⟩. □

4.4 Forward ARA with Summarization
We now give a concrete algorithm for phase folding with respect to affine transition relations over
quantum WHILE programs. We use the KS domain of [18, 33] for the affine relational analysis,
tailored to the pecularities of the phase folding context. Notably,
(1) programs are large: most quantum programs include large sections of straightline code

involving thousands, if not millions, of gates. To handle practical examples of quantum
circuits our analysis should scale to𝑚 = 103–106 gates.

(2) Projection is expensive: for a circuit involving𝑚 gates, there are 𝑂 (𝑚) phase terms which
need to be normalized when projecting out a variable.

(3) Variables are inexpensive: as our variables are binary, we can implement fast linear algebra
over many variables by storing (row) vectors as bitvectors.

To this end, our analysis is designed to avoid projection as much as possible, and to avoid whenever
possible applying projection to phase conditions. This amounts to performing a forward analysis
which maintains the current state as an affine subspace over the pre-state and intermediate variables,
together with summarization of loops and branches using KS domain operations.
We first recall the definition of the KS domain from [18]. An element of the KS domain in

vocabularies ®𝑋 ′, ®𝑋, ®𝑌 , denoted KS[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] where | ®𝑋 | = 𝑛 and | ®𝑌 | = 𝑘 , is a matrix 𝐴 ∈ F𝑚×2𝑛+𝑘+12
in reduced echelon form with all-zero rows dropped. An element of the domain represents an affine
3-vocabulary subspace S[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] of F2𝑛+𝑘

2 as the (affine) kernel of𝐴, ker𝐴, and its concretization
is equal to this subspace. The rows of 𝐴 are viewed as affine constraints 𝐴𝑖 ( ®𝑥 ′, ®𝑥, ®𝑦) + 𝑐𝑖 = 0 where
the first 𝑛 columns correspond to variables ®𝑋 ′, followed by the variables ®𝑋 and then the variables
®𝑌 . A special 1-row element, ⊥ =

[
0 0 0 | 1

]
is reserved to represent the empty subspace, and

whenever 𝐴 contains such a row which is necessarily the case when ker𝐴 = ∅, 𝐴 is automatically
reduced to ⊥. The top element ⊤ is the empty matrix corresponding uniquely to ker⊤ = F2𝑛+𝑘

2 .
Projection of ®𝑋 ′ for an element 𝐴 of KS[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] is implemented by removing any row

which is non-zero in one of the columns of ®𝑋 ′. Other variable sets may be projected out by re-
ordering the columns to place the variables to be projected in the left-most columns, writing in
row-echelon with the new variable order, and then projecting out those columns. The remaining
domain operations can be defined via projection as below, where 𝐴 =

[
𝐴Post 𝐴Post 𝐴Aux ®𝑐

]
,

𝐵 =

[
𝐵Post 𝐵Post 𝐵Aux ®𝑑

]
are elements of the KS domain and ∃. denotes the projection of

the left-most block:

𝐴 ⊓ 𝐵 =

[
𝐴

𝐵

]
𝐴 ⊔ 𝐵 = ∃.

[
𝐴 𝐴

𝐵 0

]
𝐴 ; 𝐵 = ∃.

[
𝐴Post 0 𝐴Pre 𝐴Aux 0 ®𝑐
𝐵Pre 𝐵Post 0 0 𝐵Aux ®𝑑

]
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PFAffJh𝑞K(𝑡, 𝐴) = (𝑡, 𝐴[𝑥 ′𝑞 ← 𝑦𝑘+1 ⊕ 1])
PFAffJcnot𝑞1𝑞2K(𝑡, 𝐴) = (𝑡, 𝐴[𝑥 ′𝑞2 ← 𝑥𝑞1 ⊕ 𝑥𝑞2 ])
PFAffJr𝑍 (𝜃 )ℓ𝑞K(𝑡, 𝐴) = (𝑡 ⊎ ((𝐴Pre+Post)𝑖 , {ℓ}), 𝐴)

PFAffJx𝑞K(𝑡, 𝐴) = (𝑡, 𝐴[𝑥 ′𝑞 ← 𝑥𝑞 ⊕ 1])
PFAffJ𝑞 := |0⟩K(𝑡, 𝐴) = (𝑡, 𝐴[𝑥 ′𝑞 ← 0])
PFAffJmeas 𝑞K(𝑡, 𝐴) = (𝑡, 𝐴)

𝑡1 ⊎ 𝑡2 = {(⊥, 𝐿) | (⊥, 𝐿) ∈ 𝑡1 ∪ 𝑡2} ∪ {(𝑓 , 𝐿1 ∪ 𝐿2) | (𝑓 , 𝐿1) ∈ 𝑡1 ∧ (𝑓 , 𝐿2) ∈ 𝑡2}

Fig. 8. Forward analysis of basic blocks.

We define one additional operation on the KS domain,

reduce : KS[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] × (F2𝑛+𝑘
2 )∗ → (F2𝑛+𝑘

2 )∗

where (F2𝑛+𝑘
2 )∗ denotes the dual space of F2𝑛+𝑘

2 . The operation reduce canonicalizes a linear func-
tional 𝑓 ∈ (F2𝑛+𝑘

2 )∗ with respect to an element 𝐴 of KS[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] by row reducing the matrix[
𝐴
𝑓

]
→

[
𝐴
𝑓 ′

]
and returning 𝑓 ′. Note that 𝑓1 ( ®𝑥 ′, ®𝑥, ®𝑦) = 𝑓2 ( ®𝑥 ′, ®𝑥, ®𝑦) for all ( ®𝑥 ′, ®𝑥, ®𝑦) ∈ ker𝐴 if and

only if reduce(𝐴, 𝑓1) = reduce(𝐴, 𝑓2), since the reduction of either gives a unique representation of
the kernel of

[
𝐴
𝑓1

]
and

[
𝐴
𝑓2

]
, respectively. Note that in contrast to [18], we write KS elements with

the post-state first so that ordinary Gaussian elimination will eliminate those first, as our goal is to
canonicalize over the pre- and intermediate- states. In practice, the pre- and intermediate-states are
separable in our analysis, so their order does not matter.

We can now describe the phase folding analysis. We denote the set of program locations by Loc.
A condition Cond := (F2𝑛+𝑘

2 )∗ ∪ {⊥} is either ⊥ or 𝑓 ∈ (F2𝑛+𝑘
2 )∗, and a phase term is a pair 𝑓 (, 𝐿) of

a condition 𝑓 and a subset of program locations 𝐿. We define

PFAff = P(Cond × P(Loc)) × KS[ ®𝑋 ′; ®𝑋 ; ®𝑌 ] .
The intuition behind an element of PFAff is that it represents as program𝑇 as an affine subspace on
the pre-, post-, and intermediate-states, along with a partition of the r𝑍 gates of 𝑇 into disjoint
sets, each of which has a representative expressing the condition as a linear function of the pre-,
post-, and intermediate-states. If no such function exists, the set has representative ⊥.

The algorithm proceeds in an iterative fashion for basic blocks. The transfer functions PFAffJ𝑇 K :
PFAff → PFAff are given in Figure 8. The forward analysis maintains an element (𝑡, 𝐴) ∈ PFAff
where 𝐴 =

[
𝐼 𝐴Pre 𝐴Aux | ®𝑐

]
so that ®𝑥 ′ = 𝐴Pre®𝑥 + 𝐴Aux®𝑦 + ®𝑐 . When a phase gate is applied to

qubit 𝑖 at location ℓ , ℓ is added to 𝑡 with condition 𝑓 = (𝐴Pre+Post)𝑖 given by the 𝑖th row of 𝐴 with
the (irrelevant) affine factor dropped. If another phase term has the same (non-⊥) representative
function 𝑓 , the phase terms are merged by taking the union of their locations (denoted ⊎ in Figure 8).
Gates with transitions for which some 𝑥 ′𝑖 has no representative in terms of 𝑋 and 𝑌 , notably the h
gate, add a new intermediate variable 𝑌 ∪ {𝑦𝑘+1} and are modeled with the relation 𝑥 ′𝑖 = 𝑦𝑘+1 to
maintain 𝐴 in the above form. The initial value is defined as (∅, 𝐼 ).

Computing summaries. To deal with choice, iteration, and procedure calls, the algorithm first
analyzes the body or bodies and then produces a summary. Figure 9 gives our summarization rules,
where (𝑡1, 𝐴1) ⊔ (𝑡2, 𝐴2) := (𝑡1 ∪ 𝑡2, 𝐴1 ⊔𝐴2) and (𝑡, 𝐴)★ := (𝑡, 𝐴★). We distinguish summaries from
iterative values of PFAff as the summary generally won’t be of a form where ®𝑥 ′ has an explicit
representation in terms of ®𝑥 and ®𝑦 — we say such relations are solvable. For instance, at the end of a
loop ®𝑥 ′ may depend on a temporary value initialized in the loop body, which must then be projected
away to compute the Kleene closure. Moreover, phase gates applied inside a loop, conditional, or
procedure can’t cross the control-flow boundaries even if they apply on the same condition as
some phase gate outside the loop. The exception is phase gates conditional on the zero-everywhere
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PFSumJif ★ then 𝑇1 else 𝑇2K = PFAffJ𝑇1K(∅, 𝐼 ) ⊔ PFSumJ𝑇2K(∅, 𝐼 )
PFSumJwhile ★ do 𝑇 K = PFAffJ𝑇 K(∅, 𝐼 )★

PFSumJcall 𝑝 ( ®𝑞)K = ({(⊥, 𝐿) | (−, 𝐿) ∈ 𝑡}, 𝐴[𝑋 ′®𝑞, 𝑋 ®𝑞]) where(𝑡, 𝐴) = PFAffJ𝑇 K(∅, 𝐼 )

Fig. 9. Summary computations for choice, iteration, and procedure calls.

PFff (𝑡, 𝐴) (𝑡 ′, 𝐴′) = (𝑡 ⊎ 𝑡 ′null, 𝐴 ;ff 𝐴′), 𝑡 ′null =
{
(𝑟, 𝐿) | (𝑓 , 𝐿) ∈ 𝑡 ′ ∧ 𝑟 =

{
0 if reduce(𝐴, 𝑓 ) = 0
⊥ otherwise

}
Fig. 10. Summary application.

function, ®0𝑇 , which can safely be eliminated — to identify these cases, the summary preserves
any partitions whose condition is nullable when composed with a pre-condition, and maps the
representative of every other partition to ⊥.

Applying summaries. To apply summaries, we must compose a solvable relation 𝐴 with some
potentially non-solvable relation 𝐴′ into a once again solvable relation. To do so, we add an extra
vocabulary of intermediate variables ®𝑌 ′ and assert the equality between the post-state ®𝑋 ′ and ®𝑌 ′.
Explicitly, we define the summary composition operator ;ff as

𝐴 ;ff 𝐴′ = 𝐴 ; 𝐴′ ⊓ ⟨ ®𝑋 ′ = ®𝑌 ′⟩ = ∃.

𝐴Post 0 𝐴Pre 𝐴Aux 0 ®𝑐
𝐴′Pre 𝐴′Post 0 0 0 ®𝑑
0 𝐼 0 0 𝐼 ®0


In many practical contexts such as in Grover’s algorithm, an ancilla is often initialized in the
|0⟩ state prior to entering a loop, with the invariant that the ancilla is returned to the initial state
after each iteration. Such situations can be used to perform optimizations inside the loop body,
particularly if the assumption that the ancilla is in the |0⟩ leads to a phase condition becoming null
(i.e. 𝑓 = 0). To make use of these optimizations, when composing a domain with a summary for a
block we check whether the pre-state defined by the domain element implies any of the phase gates
in the summarized block are nullable. To do so, we reduce the phase terms inside the summarized
block with the pre-state and record the phases whose conditions have become null, as in Figure 10.

Theorem 11. Let PFAffJ𝑇 K = (𝑡, 𝐴). Then for every (𝑓 , 𝐿) ∈ 𝑡 , the phase gates at locations ℓ ∈ 𝐿 in𝑇

can be safely merged into a single gate, or eliminated if 𝑓 = 0. Moreover, PFAffJ𝑇 K can be computed in

time 𝑂 (𝑛3𝑚 + 𝑛𝑚2 log𝑚) where 𝑛 is the number of qubits and𝑚 is the number of program locations.

Proof. Correctness follows from Theorem 10 and Proposition 9. For the complexity we assume
that bit vectors are stored as packed integers, hence operations on bit vectors take time 𝑂 (1). At
each step in the analysis, 𝑡 has at most𝑚 terms, and 𝐴 is an 𝑛 × 2𝑛 + 𝑘 + 1 matrix represented as
a list of 𝑛 bit vectors. Row operations corresponding to gate applications hence take 𝑂 (1) time,
adding to 𝑡 takes time 𝑂 (log𝑚), while Gaussian elimination for computing joins takes 𝑂 (𝑛2) time.
Loop summaries stabilize in at most 𝑛 iterations, since the initial dimension of the loop transition
subspace is 𝑛, giving a total cost of𝑂 (𝑛3) to compute a loop summary. Finally, applying a summary
involves a Gaussian elimination at cost𝑂 (𝑛2) as well as reduction of all terms of 𝑡 , each at a cost of
𝑂 (𝑛) for a total cost of𝑂 (𝑛𝑚 log𝑚) to reduce and merge all terms of 𝑡 . The resulting complexity is
hence bounded by 𝑂 (𝑛3𝑚 + 𝑛𝑚2 log𝑚). □
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5 Non-linear Phase Folding
Re-casting the phase folding optimization as a relational analysis not only allows the original
affine analysis to be generalized to quantum programs, but also allows the optimization to be
easily generalized to non-linear analyses. Such analyses can be used to capture instances of phase
folding where the non-linear Toffoli gate tof gate is used like in the motivating example, as well as
situations where affine transition relations give rise to complicated non-linear loop invariants. Note
that by non-linear here we mean that the Toffoli gate, while linear as a unitary operator over C23 ,
computes a non-linear permutation of F3

2 expressed as the relation tof : |𝑥,𝑦, 𝑧⟩ ↦→ |𝑥,𝑦, 𝑧 ⊕ 𝑥𝑦⟩. In
this section we present one such analysis based on abstracting classical transitions via polynomial

idealswhich suffices to achieve both optimizations.While the connection between polynomial ideals
and loop invariants has been well-established [14, 44, 47], the simplistic nature of the underlying
finite field F2 allows us to do away with most of the complications involved in similar classical
program analyses. Moreover, our techniques are illustrative of the flexibility of our algorithm in
making use of classical techniques for relational analysis.

5.1 Polynomial Transition Ideals
We first recall some basic details of algebraic geometry [12]. An affine variety over F𝑛

2 is the set of
simultaneous solutions of a set 𝑆 ⊆ F2 [𝑋1 . . . , 𝑋𝑛] of polynomial equations:

𝑉 = V(𝑆) = {®𝑥 ∈ F𝑛
2 | 𝑓 ( ®𝑥) = 0 ∀𝑓 ∈ 𝑆}.

It is a basic fact that the polynomials which vanish on the variety 𝑉 form an ideal 𝐼 in F2 [ ®𝑋 ],
𝐼 = I(𝑉 ) = {𝑓 ∈ F2 [ ®𝑋 ] | 𝑓 ( ®𝑥) = 0 ∀®𝑥 ∈ 𝑉 }.

Given an algebraic variety𝑉 over ®𝑋 , the polynomial ideal I(𝑉 ) can be viewed as the set of polynomial

relations on ®𝑋 which are satisfied by 𝑉 , in the same way that an affine subspace can be viewed as a
set of affine (degree 1) relations satisfied by elements of the subspace, as in particular V(I(𝑉 )) = 𝑉 .
We say that an ideal 𝐼 has a basis if 𝐼 = ⟨𝑆⟩ for some 𝑆 ⊆ F2 [ ®𝑋 ]. By Hilbert’s basis theorem, an
ideal in F2 [ ®𝑋 ] necessarily has a basis. Note that V(𝑆) = V(⟨𝑆⟩), and hence for a variety 𝑉 defined
by a set of polynomials 𝑆 it suffices to represent𝑉 as V(⟨𝑆⟩). The union and intersection of varities
corresponds to the product and sum of their ideals, respectively:

V(𝐼 ) ∪ V(𝐽 ) = V(𝐼 · 𝐽 ) V(𝐼 ) ∩ V(𝐽 ) = V(𝐼 + 𝐽 ).
Moreover, given bases for 𝐼 and 𝐽 we can construct a basis for 𝐼 · 𝐽 and 𝐼 + 𝐽 , as

⟨𝑆⟩ · ⟨𝑇 ⟩ = ⟨{𝑓 𝑔 | 𝑓 ∈ 𝑆, 𝑔 ∈ 𝑇 }⟩ ⟨𝑆⟩ + ⟨𝑇 ⟩ = ⟨𝑆 ∪𝑇 ⟩.
We will be interested in a particular type of basis called a Gröbner basis, defined with respect

to a monomial order. Recall that a monomial order ≽ is a total well-order on monomials𝑚,𝑛 such
that for any monomials𝑚,𝑛,𝑤 ,𝑚 ≽ 𝑛 ⇐⇒ 𝑚𝑤 ≽ 𝑛𝑤 . A Gröbner basis for a polynomial ideal
𝐼 over the monomial ordering ≽ is a particular type of basis for 𝐼 over which reduction mod 𝐼

yields unique normal forms. For a particular monomial order, the reduced Gröbner basis of an ideal,
obtained by mutually reducing each element of the Gröbner basis with respect to one another, is
unique. Methods for computing (reduced) Gröbner bases exist [11, 19] and have been the subject of
much study in symbolic computation — though they require exponential time unlike the Gaussian
elimination used in ARA.

Given a polynomial ideal 𝐼 in disjoint variable sets ®𝑋, ®𝑌 , the elimination ideal of ®𝑋 is 𝐼 ®𝑌 := 𝐼∩F2 [ ®𝑌 ]
which can be viewed as the polynomial relations on ®𝑌 which are implied by 𝐼 . Elimination ideals,
which correspond to projection from the perspective of affine varieties, can be conveniently
computed via Gröbner basis methods. An elimination order for ®𝑋 is a monomial order such that
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any monomial involving a variable in ®𝑋 occurs earlier in the order than a monomial which does
not contain a variable in ®𝑋 . A standard result states that if 𝐺 is a Gröbner basis for some ideal
𝐼 ⊆ F2 [ ®𝑋, ®𝑌 ] in a monomial order eliminating ®𝑋 , then 𝐺 ∩ F2 [ ®𝑌 ] is a Gröbner basis for 𝐼 ∩ F2 [ ®𝑌 ].
As a final point we consider whether an ideal 𝐼 contains all polynomial relations implied by

the affine variety V(𝐼 ). In the case of algebraically closed fields this is the case, as I(V(𝐼 )) = 𝐼

due to Hilbert’s Nullstellensatz. While F2 is not algebraically closed and hence the Nullstellensatz
fails, when considering multilinear ideals — ideals in F2 [ ®𝑋 ]/⟨𝑋 2

𝑖 − 𝑋𝑖 | 𝑋𝑖 ∈ ®𝑋 ⟩ — we can recover
equality from Hilbert’s strong Nullstellensatz. Given an ideal 𝐼 in some polynomial ring, the radical
of 𝐼 , denoted

√
𝐼 is defined as the ideal

{𝑓 | 𝑓𝑚 ∈ 𝐼 for some integer𝑚 ≥ 1}

Hilbert’s strong Nullstellensatz asserts that I(V(𝐼 )) =
√
𝐼 . As shown in [24], over F2 an ideal’s

radical is obtained by adjoining the field equations 𝑋 2
𝑖 − 𝑋𝑖 , or equivalently reduce the ideal to

multilinear polynomials.

Proposition 12 ([24]). Let 𝐼 be an ideal over F2 [ ®𝑋 ]. Then

I(V(𝐼 )) =
√
𝐼 = 𝐼 + ⟨𝑋 2

𝑖 − 𝑋𝑖 | 𝑋𝑖 ∈ ®𝑋 ⟩.

Proposition 12 implies in particular that our straightforward methods are in fact precise, despite
working over a non-algebraically closed field.

5.2 The Pol Domain
Given a unitary 𝑈 such that 𝑈 | ®𝑥⟩ = |𝑓1 ( ®𝑥), 𝑓2 ( ®𝑥), . . . , 𝑓𝑛 ( ®𝑥)⟩ where 𝑓𝑖 are polynomial equations,
the set of non-zero transitions ⟨®𝑥 ′ |𝑈 | ®𝑥⟩ ≠ 0 of𝑈 forms an affine variety over F2𝑛

2 — in particular,
®𝑥 ′ ∈ supp(𝑈 | ®𝑥⟩) if and only if ( ®𝑥 ′, ®𝑥) ∈ V({𝑋 ′1 ⊕ 𝑓1 ( ®𝑋 ), . . . , 𝑋 ′𝑛 ⊕ 𝑓𝑛 ( ®𝑋 )}). Given an affine variety
𝑉 in two vocabularies ®𝑋 ′, ®𝑋 which contains all non-zero transitions of a quantum WHILE program,
we may hence represent 𝑉 precisely as the set of polynomial relations 𝐼 = I(𝑉 ). We call this
the Pol[ ®𝑋 ′; ®𝑋 ] domain, whose elements are (Boolean) polynomial ideals 𝐼 over two (or more)
vocabularies and whose concretization is given by V(𝐼 ). We implicitly adjoin the field equations
𝐼0 = ⟨𝑋 2

𝑖 −𝑋𝑖 , 𝑋
′2
𝑖 −𝑋 ′𝑖 | 𝑋𝑖 ∈ ®𝑋 ⟩ to elements of Pol “under the hood” as is standard in dealing with

ideals over F2 [10].
Elements 𝐼 , 𝐽 of Pol are stored as reduced Göbner bases, which allows checking equality of

transition ideals. The domain Pol is naturally equipped with an order corresponding to the (reverse)
subset relation on ideals 𝐼 ⊑ 𝐽 ⇐⇒ 𝐼 ⊇ 𝐽 , as well as greatest and least elements ⊤ = ∅ and
⊥ = ⟨1⟩, respectively, where ⊤ is the least precise element. The reverse order is chosen so that joins
correspond to the union of varieties. In that regard we define 𝐼 ⊔ 𝐽 = 𝐼 · 𝐽 and 𝐼 ⊓ 𝐽 = 𝐼 + 𝐽 , where the
concrete representation is again as a reduced Gröbner basis. Projection ∃ ®𝑋 .𝐼 [ ®𝑋 ; ®𝑌 ] corresponds
to the elimination ideal 𝐼 ®𝑌 , which as discussed in the previous section can be implemented by
computing a Gröbner basis over an elimination order and projecting out ®𝑋 . We can then define
sequential composition as in affine subspaces as

𝐼 [ ®𝑋 ′; ®𝑋 ] ; 𝐽 [ ®𝑋 ′; ®𝑋 ] = ∃ ®𝑋 ′′ .𝐼 [ ®𝑋 ′′; ®𝑋 ] ⊓ 𝐽 [ ®𝑋 ′; ®𝑋 ′′] .

The identity transition relation 1 = ⟨ ®𝑋 ′ ⊕ ®𝑋 ⟩ once again serves as the neutral element with respect
to composition.

Kleene iteration is surprisingly easy to define in our case, as we are working over the finite field
F2 with polynomials which are in fact multilinear. Specifically, it can be observed that F2 [ ®𝑋 ′, ®𝑋 ]/𝐼0
is finite, and so any ascending chain of ideals over this ring necessarily stabilizes. We can hence
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Fig. 11. A circuit with eliminable t gates. The loop satisfies the invariant (1 ⊕ 𝑥 ′0)𝑥
′
1 = (1 ⊕ 𝑥0)𝑥1.

define the Kleene iteration 𝐼★ of an ideal similarity to the affine subspace domain as the limit of the
sequence {𝐼𝑖 }∞𝑖=0 where

𝐼0 = ⊥ 𝐼𝑖+1 = 𝐼𝑖 ⊔ (𝐼𝑖 ; 𝐼 )
which again satisfies 𝐼𝑖 ⊑ 𝐼𝑖+1 for all 𝑖 ≥ 0. This avoids the need for solving recurrence relations
as in most work on polynomial invariant generation [14, 44], and is a significantly simplifying
assumption which leads to easy implementation of non-linear reasoning in quantum programs.

Remark 13. We use the ideal product for joins rather than the generally more precise ideal intersec-
tion 𝐼 ∩ 𝐽 , as the product is generally faster to compute [12], and by Proposition 12 and the fact that√
𝐼 · 𝐽 =

√
𝐼 ∩ 𝐽 asserts that the product is equal to the intersection in our case. We ran experiments

with both and while we did not find a significant difference in computation time, they consistently
produced the same ideal every time as expected.

5.3 A Non-linear Phase Folding Algorithm
The Pol domain now suffices for a drop-in replacement of the affine KS domain in the phase folding
algorithm of Section 4.4. We extend conditions of phases from linear functionals 𝑓 ( ®𝑥) to polynomial

equations 𝑓 ( ®𝑥), of which the linear functionals form a subset. Reduction of a phase conditionmodulo
a transition ideal 𝐼 represented as a reduced Gröbner basis 𝐺 amounts to multivariate polynomial
division by𝐺 which was previously noted to produce a unique canonical form 𝑓 ′ ∈ F2 [ ®𝑋 ′; ®𝑋 ]/𝐼 .
We denote the resulting analysis PFPolJ·K.
Theorem 14. Let PFPolJ𝑇 K = (𝑡, 𝐼 ). Then for every (𝑓 , 𝐿) ∈ 𝑡 , the phase gates at locations ℓ ∈ 𝐿 in 𝑇

can be safely merged into a single gate, or eliminated if 𝑓 = 0.

Example 15. Figure 11 gives an example of a looping quantum program which can be optimized
by using a non-linear loop invariant. The loop satisfies the invariant (1 ⊕ 𝑥 ′0)𝑥 ′1 = (1 ⊕ 𝑥0)𝑥1, as
the second qubit is not modified if 𝑥0 = 0. Noting that the t gates apply phases of 𝜔 (1⊕𝑥0 )𝑥1 and
(𝜔) (1⊕𝑥 ′0 )𝑥 ′1 , respectively, the total phase contributed is (𝜔𝜔) (1⊕𝑥0 )𝑥1 = 1 and both can hence be
eliminated.

Our algorithm proceeds to compute the loop invariant by first constructing the transition ideal
⟨𝑥 ′0 ⊕ 𝑥0, 𝑥 ′1 ⊕ 𝑥0 ⊕ 𝑥1⟩ of the loop body, corresponding to the cnot : |𝑥0, 𝑥1⟩ ↦→ |𝑥0, 𝑥1 ⊕ 𝑥0⟩ gate,
and then taking the Kleene closure

⟨𝑥 ′0 ⊕ 𝑥0, 𝑥 ′1 ⊕ 𝑥1 ⊕ 𝑥0⟩★ = ⟨𝑥 ′0 ⊕ 𝑥0, 𝑥 ′1 ⊕ 𝑥1⟩ ⊔ ⟨𝑥 ′0 ⊕ 𝑥0, 𝑥 ′1 ⊕ 𝑥1 ⊕ 𝑥0⟩.
Computing a Gröbner basis of the right hand side gives ⟨𝑥 ′0 ⊕ 𝑥0, 𝑥

′
1 ⊕ 𝑥1 ⊕ 𝑥0𝑥

′
1 ⊕ 𝑥0𝑥1⟩, which

notably reduces (1 ⊕ 𝑥 ′0)𝑥 ′1 to (1 ⊕ 𝑥0)𝑥1. After eliminating both t gates, the remaining gates can
be canceled via basic gate cancellations.

6 Increasing the Precision of Abstract Transformers
It was previously noted that composition of transition relations (affine or otherwise) does not
produce the most precise relation for a control-flow path, due to the effects of interference on
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classical states in superposition. In this section, we show that precise transition relations of entire
circuits can be generated automatically by symbolically identifying and reducing interfering paths
using the sum-over-paths technique. Such techniques are useful for generating abstract transformers
for gates which are defined as circuits over some small set of basic gates.

6.1 Symbolic Path Integrals

A path integral or sum is a representation of a linear operator Ψ : C2𝑛 → C2𝑚 having the form

Ψ : | ®𝑥⟩ ↦→
∑︁
®𝑦∈F𝑘2

Φ( ®𝑥, ®𝑦) |𝑓 ( ®𝑥, ®𝑦)⟩ (1)

where Φ : F𝑛+𝑘
2 → C and 𝑓 : F𝑛+𝑘

2 → F𝑛
2 are the amplitude and transition functions, respectively.

Intuitively, a path sum represents a linear operator (e.g. a quantum circuit) as a set of classical
transitions or paths from | ®𝑥⟩ to |𝑓 ( ®𝑥, ®𝑦)⟩ which are taken in superposition with amplitudes Φ( ®𝑥, ®𝑦).
It was shown in [1] that by restricting to balanced sums where Φ( ®𝑥, ®𝑦) = 𝑟𝑒𝑖𝑃 ( ®𝑥, ®𝑦) for some
global normalization constant 𝑟 ∈ C, the path sum admits symbolic representation by multi-linear
polynomials 𝑃 ∈ R[ ®𝑋, ®𝑌 ] and 𝑓 = (𝑓1, . . . , 𝑓𝑛), 𝑓𝑖 ∈ F2 [ ®𝑋, ®𝑌 ], which is moreover polynomial-time
computable from a quantum circuit or channel. In particular, for gate sets which do not include
non-linear classical functions — a class which includes, for instance, Clifford+𝑇 and the exactly
universal gate set {cnot, r𝑍 (𝜃 ), r𝑋 (𝜃 ) := hr𝑍 (𝜃 )h} — the number of non-zero terms in 𝑃 and 𝑓

remains bounded polynomially in the size of the circuit.
Example 16. Recall from Section 3 that the x, t, and h gates can be expressed as balanced path
sums x : |𝑥⟩ ↦→ |1 ⊕ 𝑥⟩, t : |𝑥⟩ ↦→ 𝜔 |𝑥⟩, and h : |𝑥⟩ ↦→ 1√

2

∑
𝑦∈F2 (−1)𝑥𝑦 |𝑦⟩. A path integral for the

circuit𝑈 = (hth) ⊗ x can be computed by composing the actions of each individual gate:

𝑈 |𝑥1, 𝑥2⟩ = (hth |𝑥1⟩) ⊗ (x |𝑥2⟩) =
(
1
√
2

∑︁
𝑦1

(−1)𝑥1𝑦1 (ht |𝑦1⟩)
)
⊗ |1 ⊕ 𝑥2⟩

=

(
1
√
2

∑︁
𝑦1

(−1)𝑥1𝑦1𝜔𝑦1 (h |𝑦1⟩)
)
⊗ |1 ⊕ 𝑥2⟩

=

(
1
2

∑︁
𝑦1,𝑦2

(−1)𝑥1𝑦1𝜔𝑦1 (−1)𝑦1𝑦2 |𝑦2⟩
)
⊗ |1 ⊕ 𝑥2⟩

=
1
2

∑︁
𝑦1,𝑦2

(−1)𝑥1𝑦1+𝑦2𝑦1𝜔𝑦1 |𝑦2, 1 ⊕ 𝑥2⟩ .

We use the notation LΨM to denote a path sum representation of Ψ and LΨM ; LΨM′ to denote the
composition of path sums LΨM, LΨ′M with compatible dimensions as above. We also drop domains
for variables in summations, as all variables are F2-valued.

A sound rewriting theory for balanced sums was further given in [1]. The rewrite system of [1]
is presented in Figure 12, where rewrite rules are applied to the right-hand side of an expression
| ®𝑥⟩ ↦→ ∑

®𝑦 𝑒
𝑖𝑃 ( ®𝑥, ®𝑦) |𝑓 ( ®𝑥, ®𝑦)⟩. rewriting in the sum-over-paths can be interpreted as contracting

interfering paths. For instance, the (H) rule of Figure 12 arises from the fact that in the path integral∑︁
®𝑥,𝑦,𝑧
(−1)𝑦 (𝑧⊕𝑃 ( ®𝑥 ) )𝑒𝑖𝑄 ( ®𝑥,𝑧 ) |𝑓 ( ®𝑥, 𝑧)⟩ =

∑︁
®𝑥,𝑧

(∑︁
𝑦

(−1)𝑦 (𝑧⊕𝑃 ( ®𝑥 ) )
)
𝑒𝑖𝑄 ( ®𝑥,𝑧 ) |𝑓 ( ®𝑥, 𝑧)⟩ ,

the 𝑦 = 0 and 𝑦 = 1 paths have opposite phase and hence cancel whenever 𝑧 ⊕ 𝑃 ( ®𝑥) = 0. Hence
we can safely assume 𝑧 = 𝑃 ( ®𝑥) in any paths with non-zero amplitude. We say that this rule is a
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∑︁
®𝑥,𝑦

𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ −→Cliff 2
∑︁
®𝑥
𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ (E)∑︁

®𝑥,𝑦,𝑧
(−1)𝑦 (𝑧⊕𝑃 ( ®𝑥 ) )𝑒𝑖𝑄 ( ®𝑥,𝑧 ) |𝑓 ( ®𝑥, 𝑧)⟩ −→Cliff 2

∑︁
®𝑥
𝑒𝑖𝑄 ( ®𝑥,𝑃 ( ®𝑥 ) |𝑓 ( ®𝑥, 𝑃 ( ®𝑥))⟩ (H)∑︁

®𝑥,𝑦
𝑖𝑦 (−1)𝑦𝑃 ( ®𝑥 )𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ −→Cliff 𝜔

√
2
∑︁
®𝑥
(−𝑖)𝑃 ( ®𝑥 )𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ (𝜔)

Fig. 12. The rewrite rules of [1]. In all rules above 𝑃 is a Boolean polynomial and 𝑧,𝑦 ∉ 𝐹𝑉 (𝑃) and 𝑃 lifts 𝑃 to

an equivalent polynomial over R via the sound translation 𝑃 ⊕ 𝑄 = 𝑃 +𝑄 − 2𝑃𝑄 .

contraction on 𝑦 and witnesses the constraint 𝑧 = 𝑃 ( ®𝑥). More generally, given a sum of the form∑︁
®𝑥,𝑦
(−1)𝑦𝑃 ( ®𝑥 )𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ =

∑︁
®𝑥

(∑︁
𝑦

(−1)𝑦𝑃 ( ®𝑥 )
)
𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ ,

we see that any path where 𝑃 ( ®𝑥) ≠ 0 has zero amplitude, as the two paths corresponding to 𝑦 = 0
and 𝑦 = 1 again have opposite phase and destructively interfere. We again say that contraction on
𝑦 witnesses the constraint 𝑃 ( ®𝑥) = 0, though we can not in general rewrite the integral as 𝑃 ( ®𝑥) = 0
may not be solvable by substitution. The (H) rule arises as a particular instance of this binary
interference scheme where 𝑃 ( ®𝑥) = 0 admits a solution of the form 𝑧 = 𝑃 ′ ( ®𝑥) where 𝑧 is bound by a
summation.

We say an instance of (H) is affine if 𝑃 is some affine expression in its free variables — for instance,
𝑃 ( ®𝑥) = 1⊕𝑥1 ⊕𝑥2 ⊕𝑥5 — and more generally that it has degree 𝑘 if deg(𝑃) = 𝑘 . While the rewriting
system of Figure 12 is not complete nor even confluent for circuits over Clifford+𝑇 , it is complete
for Clifford circuits even when restricting (H) to affine instances [55].

6.2 Generating Precise Transition Relations with the Sum-Over-Paths
We now describe how path sums can be used to generate sound abstractions of the classical
semantics P(CQ) → P(CQ) of a circuit, and how the rewrite rules of Figure 12 can be used to
increase the precision of the abstraction.

As noted above, the sum-over-paths encodes a linear operator as a set of classical transitions

| ®𝑥⟩ ↦→ {|𝑓 ( ®𝑥, ®𝑦)⟩ | ®𝑦 ∈ F𝑘
2 }.

for some vector 𝑓 = (𝑓1, . . . , 𝑓𝑛) of polynomials 𝑓𝑖 . In particular, given a path sum expression
Ψ : | ®𝑥⟩ ↦→ ∑

®𝑦∈F𝑘2
Φ( ®𝑥, ®𝑦) |𝑓 ( ®𝑥, ®𝑦)⟩, there exists ®𝑦 ∈ 𝐹𝑘2 such that the relation ®𝑥 ′ = 𝑓 ( ®𝑥, ®𝑦) holds

whenever ⟨®𝑥 ′ | Ψ | ®𝑥⟩ ≠ 0. Hence, a sound abstraction of Ψ in the Pol domain is the polynomial ideal

∃®𝑌 .⟨ ®𝑋 ′ ⊕ 𝑓 ( ®𝑋, ®𝑌 )⟩ = ∃®𝑌 .⟨𝑋 ′1 ⊕ 𝑓1 ( ®𝑋, ®𝑌 ), . . . , 𝑋 ′𝑛 ⊕ 𝑓𝑛 ( ®𝑋, ®𝑌 )⟩.

Definition 17. Given a path sum LΨM = | ®𝑥⟩ ↦→ ∑
®𝑦∈F𝑘2

Φ( ®𝑥, ®𝑦) |𝑓 ( ®𝑥, ®𝑦)⟩, the abstraction of LΨM in
the Pol domain is

𝛼
(
LΨM

)
:= ∃®𝑌 .⟨ ®𝑋 ′ ⊕ 𝑓 ( ®𝑋, ®𝑌 )⟩

Proposition 18. For any path sum representation LΨM, 𝛼
(
LΨM

)
is a sound abstraction of Ψ.

Proposition 19. Let LΨM and LΨ′M be (composable) path sums. Then

𝛼 (LΨM ; LΨM′) ⊑ 𝛼 (LΨM) ; 𝛼 (LΨ′M).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 37. Publication date: January 2025.



37:22 Matthew Amy and Joseph Lunderville

Note that in the case when deg(𝑓𝑖 ) ≤ 1 for all 𝑖 , then the polynomial mapping is in fact an affine
map (𝐴, ®𝑐), and can be likewise soundly abstracted in a domain of affine relations as ®𝑋 ′⊕𝐴( ®𝑋, ®𝑌 ) ⊕ ®𝑐 .
The affine transition relations for gates in Figure 7 arise from the specifications of each gate as a
path sum in this way. If deg 𝑓𝑖 > 1, we can always soundly abstract the transition 𝑋 ′𝑖 = 𝑓𝑖 ( ®𝑋, ®𝑌 ) in
an affine relational domain simply as ⊤𝑖 .
Given a path sum LΨM, if LΨM −→Cliff LΨM′, then by the soundness of −→Cliff both represent the

same linear operator Ψ. In particular, 𝛼 (LΨM′) gives a sound abstraction of Ψ, which may be more

precise than 𝛼 (LΨM) as the next example shows.

Example 20. Recall that the h is self-inverse, and in particular hh = i, which leads to imprecision
in the phase folding analysis sinceAJhhK = AJhK ; AJhK = ⊤. If we compute the sum-over-paths
representation of hh by composition, we see that

LhM ; LhM = |𝑥⟩ ↦→ 1
2

∑︁
𝑦,𝑧

(−1)𝑥𝑦+𝑦𝑧 |𝑧⟩ .

Noting that
∑

𝑦,𝑧 (−1)𝑥𝑦+𝑦𝑧 |𝑧⟩ =
∑

𝑦,𝑧 (−1)𝑦 (𝑧⊕𝑥 ) |𝑧⟩ −→Cliff 2 |𝑥⟩ by (H), rewriting the above
expression gives the precise classical semantics hh : |𝑥⟩ ↦→ |𝑥⟩.

We show next that rewriting a path sum can only increase the precision of the abstraction, as it
results from eliminating some interfering paths:

Proposition 21. Let LΨM by a symbolic path integral and suppose LΨM −→Cliff LΨM′. Then

𝛼 (LΨM′) ⊑ 𝛼 (LΨM).

Proof. For the (E) and (𝜔) rules the proof is trivial as the output expression is unchanged in
either case. For the (H) rule it can be observed that

𝛼
©«| ®𝑥⟩ ↦→

∑︁
®𝑦,𝑧,𝑧′
(−1)𝑧′ (𝑧⊕𝑃 ( ®𝑥, ®𝑦) )𝑒𝑖𝑄 ( ®𝑥, ®𝑦,𝑧 ) |𝑓 ( ®𝑥, ®𝑦, 𝑧)⟩ª®¬ = ∃{ ®𝑌, 𝑍, 𝑍 ′}.⟨ ®𝑋 ′ ⊕ 𝑓 ( ®𝑋, ®𝑌, 𝑍 )⟩

⊒ ∃®𝑌 .⟨ ®𝑋 ′ ⊕ 𝑓 ( ®𝑋, ®𝑌, 𝑃 ( ®𝑋 ))⟩
□

Given a circuit or control-flow path 𝜋 in a quantum WHILE program, by Propositions 18, 19
and 21 we can synthesize an abstraction of 𝜋 which is at least as precise as (and often more precise
than) the methods of Sections 4 and 5 by computing a path sum representation L𝜋M of 𝜋 through
standard techniques (e.g. [1]), reducing it using Figure 12, then abstracting it into a transition
formula using a relevant domain (e.g. Pol). We summarize this process in Algorithm 1 below:

Algorithm 1 Synthesis of abstract transformers.
function Synthesize-transformer(𝜋 )

Compute a path sum L𝜋M expression of 𝜋
while L𝜋M −→Cliff L𝜋M′, set L𝜋M := L𝜋M′
return 𝛼 (L𝜋M)

end function

Algorithm 1 can be used to generate (relatively) precise relational abstractions of basic blocks in a
quantum WHILE program. As the infinite sum of path integrals however is not bounded, a suitable,
terminating representation of an entire program in terms of path sums is not easily possible.
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Complexity. While the computation of the path integral along a control-flow path is polynomial
time in the number of qubits, reduction of the path integral may in fact take exponential time as
the degree of the constituent polynomials may increase during reduction. If however rewriting is
restricted to affine relations, Algorithm 1 terminates in time 𝑂 (𝑚𝑐 |𝜋 |) where |𝜋 | is the length of
the path,𝑚 ≤ 𝑛 + |𝜋 | is the number of variables in the path sum, and 𝑐 is the maximum degree of
polynomials appearing in the path sum. For Clifford+𝑇 circuits, 𝑐 = 3 [1].

6.3 Phase Folding Modulo Path Integral Rewriting
Algorithm 1 can be used in phase folding to generate effective summaries of the classical semantics
for basic blocks. However, as in Section 4 we also wish to know which phase gates inside the block
can be merged.
Algorithm 2 presents the Strengthen algorithm, which gathers the constraints witnessed

through rewriting of the block’s path integral, and then uses them to further reduce the phase
conditions within the block. Strengthen attempts to construct as large of a transition ideal
as possible over the pre-, post-, and intermediate-variables in the block by repeatedly adding
constraints 𝑃 ( ®𝑥) = 0 witnessed by the hypothetical contraction of

∑
®𝑥,𝑦 (−1)𝑦𝑃 ( ®𝑥 )𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩ on

𝑦, before picking a specific contraction to apply (i.e. applying a rewrite rule).

Algorithm 2 Strengthening phase folding by symbolic interference analysis.
function Strengthen(𝜋, (𝑡, 𝐴) := PFJ𝜋K)

Compute a path sum L𝜋M expression of 𝜋
while L𝜋M −→Cliff L𝜋M′ do

Set 𝐴 := 𝐴 ⊓ ⟨𝑃 ( ®𝑋 ) = 0⟩ whenever L𝜋M has the form
∑
®𝑥,𝑦 (−1)𝑦𝑃 ( ®𝑥 )𝑒𝑖𝑄 ( ®𝑥 ) |𝑓 ( ®𝑥)⟩

L𝜋M := L𝜋M′
end while
𝑡 := ⊎(𝑓 ,𝑆 ) ∈𝑡 (reduce(𝐴, 𝑓 ), 𝑆)
return (𝑡, 𝐴)

end function

Example 22. Consider the circuit 𝑇 := t†hht. Denoting by 𝑥, 𝑥 ′ the pre- and post-states, and
𝑦 the output of the first Hadamard gate, the phase folding analysis with either domain (affine or
polynomial) returns

PFJ𝑇 K = (𝑡, 𝐴) = ( [𝑥 ↦→ {ℓ}, 𝑥 ′ ↦→ {ℓ ′}],⊤) .
where 𝑥 ↦→ {ℓ} denotes the pair (𝑥, {ℓ}). In particular, the analysis shows that the t gate at location
ℓ rotates the phase if 𝑥 = 1, and the t† at location ℓ ′ rotates the phase if 𝑥 ′ = 1, and no relation
between the pre- and post-state holds. Hence, neither gate can be merged with the other, despite
the circuit being equal to the identity. Computing the path sum representation of 𝑇 however, we
see that

𝑇 : |𝑥⟩ ↦→ 1
2

∑︁
𝑦,𝑥 ′
(−1)𝑥𝑦+𝑦𝑥 ′𝜔𝑥−𝑥 ′ |𝑥 ′⟩ .

The sum can be contracted on 𝑦, which witnesses the equality 𝑥 ′ = 𝑥 :
1
2

∑︁
𝑦,𝑥 ′
(−1)𝑥𝑦+𝑦𝑥 ′𝜔𝑥−𝑥 ′ |𝑥 ′⟩ =

∑︁
𝑦,𝑥 ′
(−1)𝑦 (𝑥⊕𝑥 ′ )𝜔𝑥−𝑥 ′ |𝑥 ′⟩

(H)
−−−→Cliff 𝜔𝑥−𝑥 |𝑥⟩ = |𝑥⟩ .

The Strengthen algorithm uses this equality to strengthen the transition ideal by setting 𝐴 :=
⊤ ⊓ ⟨𝑥 ′ ⊕ 𝑥⟩ = ⟨𝑥 ′ ⊕ 𝑥⟩. Finally, Strengthen reduces all phase conditions modulo 𝐴, where in
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particular reduce(𝐴, 𝑥) = 𝑥 = reduce(𝐴, 𝑥 ′) and the algorithm hence returns the stronger result
( [𝑥 ↦→ {ℓ, ℓ ′}], ⟨𝑥 = 𝑥 ′⟩) which shows the t and t† gate can be merged.

In the above example, the optimization could be achieved in a forward-manner similar to
Section 4.4. In particular, after the second Hadamard gate the path integral is

|𝑥⟩ ↦→ 1
2

∑︁
𝑦,𝑥 ′
(−1)𝑥𝑦+𝑦𝑥 ′𝜔𝑥 |𝑥 ′⟩ = |𝑥⟩

which reduces via (H) to |𝑥⟩, at which point applying the final t† to |𝑥⟩ will merge with the first
t. Strengthen works instead by first computing a path integral for the entire block, and then
applying path sum reductions to strengthen the analysis. This is for technical reasons owing to
the fact that the rewriting system of Figure 12 is non-confluent in general. The example below
illustrates this fact and its impact on phase folding.

Example 23. Consider the circuit below, which occurs in the 8-bit adder circuit of [50].
𝑥1 •

ℓ
•
ℓ ′

•
ℓ ′′

𝑥 ′1
𝑥2 • • • 𝑥 ′2
𝑥3 𝐻 𝑦1 • 𝐻 𝑦2 • 𝐻 𝑦3 • 𝐻 𝑦4 • 𝐻 𝑦5 • 𝐻 𝑦6 𝑥 ′3
𝑥4 𝑥 ′4

Intermediate variables corresponding to the outputs of Hadamard gates are labeled in the circuit
for convenience. Recall that the ccz gates depicted as ••• implement the diagonal transformation
ccz : |𝑥1, 𝑥2, 𝑥3⟩ ↦→ (−1)𝑥1𝑥2𝑥3 |𝑥1, 𝑥2, 𝑥3⟩. The result of the phase folding analysis, extended to this
gate set, is a pair (𝑡, 𝐴) where

𝑡 = [𝑥1𝑥2𝑦1 ↦→ {ℓ}, 𝑥1𝑥2𝑦3 ↦→ {ℓ ′}, 𝑥1𝑥2𝑦5 ↦→ {ℓ ′′}],
𝐴 = ⟨𝑥 ′1 = 𝑥1, 𝑥

′
2 = 𝑥2, 𝑥

′
3 = 𝑦6, 𝑥

′
4 = 𝑥4 ⊕ 𝑦2 ⊕ 𝑦4⟩.

Computing the circuit’s path integral, we similarly get

|𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ ↦→
∑︁
®𝑦∈F6

2

(−1)𝑦1 (𝑥3⊕𝑥1𝑥2⊕𝑦2 )+𝑦3 (𝑦2⊕𝑥1𝑥2⊕𝑦4 )+𝑦5 (𝑦4⊕𝑥1𝑥2⊕𝑦6 ) |𝑥1, 𝑥2, 𝑦6, 𝑥4 ⊕ 𝑦2 ⊕ 𝑦4⟩ ,

where the phase polynomial is factored to show the three possible contractions on 𝑦1, 𝑦3, and 𝑦5,
witnessing the constraints 𝑥3 ⊕𝑥1𝑥2 ⊕𝑦2 = 0, 𝑦2 ⊕𝑥1𝑥2 ⊕𝑦4 = 0, and 𝑦4 ⊕𝑥1𝑥2 ⊕𝑦6 = 0, respectively.
Strengthen hence computes

𝐴′ := 𝐴 ⊓ ⟨𝑥3 ⊕ 𝑥1𝑥2 ⊕ 𝑦2, 𝑦2 ⊕ 𝑥1𝑥2 ⊕ 𝑦4, 𝑦4 ⊕ 𝑥1𝑥2 ⊕ 𝑦6⟩.
Applying the contraction on 𝑦1 and substituting 𝑦2 ← 𝑥1𝑥2 ⊕ 𝑥3 then yields∑︁

(−1)𝑦3 (𝑥3⊕𝑦4 )+𝑦5 (𝑦4⊕𝑥1𝑥2⊕𝑦6 ) |𝑥1, 𝑥2, 𝑦6, 𝑥4 ⊕ 𝑥3 ⊕ 𝑥1𝑥2 ⊕ 𝑦4⟩ .
Contraction on either 𝑦3 or 𝑦5 yields no new equations, as both 𝑥3 ⊕𝑦4 ∈ 𝐴′ and 𝑦4 ⊕ 𝑥1𝑥2 ⊕𝑦6 ∈ 𝐴′.
Picking 𝑦3 to contract on next and substituting 𝑦4 ← 𝑥3 yields∑︁

(−1)𝑦5 (𝑥3⊕𝑥1𝑥2⊕𝑦6 ) |𝑥1, 𝑥2, 𝑦6, 𝑥4 ⊕ 𝑥1𝑥2⟩ .
Again, 𝑥3 ⊕ 𝑥1𝑥2 ⊕ 𝑦6 ∈ 𝐴′ and the final contraction on 𝑦5 produces the precise transition relation
|𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ ↦→ |𝑥1, 𝑥2, 𝑥3 ⊕ 𝑥1𝑥2, 𝑥4 ⊕ 𝑥1𝑥2⟩. The final step is to reduce 𝑡 with respect to 𝐴′, which
we can do by computing a reduced Gröbner basis (in grevlex order)

𝐴′ = ⟨𝑥3 ⊕ 𝑦2 ⊕ 𝑥1𝑥2, 𝑥3 ⊕ 𝑦2 ⊕ 𝑥2𝑥3 ⊕ 𝑥2𝑦2, 𝑥3 ⊕ 𝑦2 ⊕ 𝑥1𝑥3 ⊕ 𝑥1𝑦2, 𝑥3 ⊕ 𝑦4, 𝑦2 ⊕ 𝑦6⟩.
Reducing 𝑡 modulo 𝐴′ then gives [𝑥3𝑦1 ⊕ 𝑦1𝑦2 ↦→ {ℓ}, 𝑥3𝑦3 ⊕ 𝑦2𝑦3 ↦→ {ℓ ′}, 𝑥3𝑦5 ⊕ 𝑦2𝑦5 ↦→ {ℓ ′′}]
and hence no gates can be merged.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 37. Publication date: January 2025.



Linear and Non-linear Relational Analyses for Quantum Program Optimization 37:25

If however the first contraction chosen was n 𝑦3, we get the following path integral∑︁
(−1)𝑦1𝑥3+𝑦4 (𝑦1⊕𝑦5 )+𝑦5𝑥1𝑥2+𝑦5𝑦6 |𝑥1, 𝑥2, 𝑦6, 𝑥4 ⊕ 𝑥1𝑥2⟩ .

We now see that interference on𝑦4 witnesses the constraint𝑦1 ⊕𝑦5 = 0. Setting𝐴′′ := 𝐴′⊓ ⟨𝑦1 ⊕𝑦5⟩
and reducing 𝑡 modulo 𝐴′′ we get

[𝑥3𝑦3 ⊕ 𝑦2𝑦3 ↦→ {ℓ ′}, 𝑥3𝑦1 ⊕ 𝑦1𝑦2 ↦→ {ℓ, ℓ ′′}]
which in particular allows the elimination of the ccz gates at locations ℓ and ℓ ′′.

It remains a direction for future work to determine methods of both confluently rewriting the
path sum, as well as to efficiently find all polynomial constraints witnessed by binary interference
of the form

∑
𝑦 (−1)𝑦𝑃 ( ®𝑥 ) .

Implementation. In practice, Algorithm 2 generates ideals which are too large for our imple-
mentation to feasibly compute reduced Gröbner bases, as the number of intermediate variables is
proportional to the length of the circuit block. Instead, we non-canonically reduce phase conditions
with respect to the full set of generated equations, and hence our implementation theoretically
misses some gates which can be merged with Algorithm 2. For small programs in which Gröbner
bases could be computed, we saw no difference in optimization between the two methods. To speed
up reduction we also experimented with methods of linearizing the ideal and reducing via Gaussian
elimination, but saw little gain in performance.

7 Experimental Evaluation
We implemented our optimizations in the open-source package Feynman2. The sources and bench-
marks used in the experiments are provided in the associated software artifact [4]. We denote the
affine optimization of Section 4 by PFAff , and the polynomial optimization of Section 5 combined
with the Strengthen algorithm of Section 6 by PFPol. We also ran experiments where Strengthen
was limited to quadratic relations, which we denote by PFQuad, in order to ascertain the effectiveness
of highly non-linear relations over those which characterize the Toffoli gate. In both the unbounded
and quadratic cases, reduction in Strengthen was performed using non-canonical multivariate
division, as computing a full Gröbner basis caused almost all benchmarks to time out.

We performed two sets of experiments: program optimization experiments which involve classical
control, and straightline circuit optimization experiments. All experiments were run in Ubuntu
22.04 running on an AMD Ryzen 5 5600G 3.9GHz processor and 64GB of RAM. Optimizations were
given a 2-hour TIMEOUT and 32GB memory limit.

7.1 Program Optimization Benchmarks
For the program optimization benchmarks, a front-end for the quantum programming language
openQASM 3 [13] was written and used to perform optimizations on quantum programs which
combine circuits and classical control. A subset of openQASM 3 which restricts loops to a single
entry and exit point is modeled as a non-deterministic quantumWHILE program by (1) eliminating
any classical computation, (2) replacing branch and loop conditions with ★, and (3) inlining gate
calls. Note that procedure calls are not inlined whereas gate calls are, as most optimizations in
practice occur across sub-circuit boundaries.

The results for our program optimization benchmarks are present in Table 1. As we could not find
a set of suitable optimization benchmarks in openQASM 3, we tested our relational optimization
on a selection of hand-written micro-benchmarks designed to test the ability to compute certain

2github.com/meamy/feynman
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Table 1. Optimization of t-count in hybrid openQASM 3.0 micro-benchmarks. All other non-diagonal gate

counts are left unchanged. The loop invariant computed by PFPol is also given.

Benchmark 𝑛 Original PFAff PFPol Loop invariant
# t t count time (s) # t time (s)

RUS 3 16 10 0.30 8 0.35 ⟨𝑧′ ⊕ 𝑧⟩
Grover 129 1736 × 109 1470 × 109 1.98 TIMEOUT –
Reset-simple 2 2 1 0.15 1 0.23 –
If-simple 2 2 0 0.18 0 0.16 –
Loop-simple 2 2 0 0.17 0 0.16 ⟨𝑥 ′ ⊕ 𝑥, 𝑦 ⊕ 𝑦′ ⊕ 𝑥𝑦 ⊕ 𝑥𝑦′ ⟩
Loop-h 2 2 0 0.16 0 0.16 ⟨𝑦′ ⊕ 𝑦⟩
Loop-nested 2 3 2 0.17 2 0.18 ⟨𝑥 ′ ⊕ 𝑥 ⟩, ⟨𝑥 ′ ⊕ 𝑥 ⟩
Loop-swap 2 2 0 0.30 0 0.20 ⟨𝑥 ′ ⊕ 𝑦′ ⊕ 𝑥 ⊕ 𝑦, 𝑥 ′ ⊕ 𝑥𝑦 ⊕ 𝑥𝑥 ′ ⊕ 𝑦𝑥 ′ ⟩
Loop-nonlinear 3 30 18 0.44 0 0.26 ⟨𝑥 ′ ⊕ 𝑥, 𝑧′ ⊕ 𝑧, 𝑦′ ⊕ 𝑦 ⊕ 𝑥𝑦 ⊕ 𝑥𝑦′ ⟩
Loop-null 2 4 1 0.18 1 0.17 ⟨𝑥 ′ ⊕ 𝑥, 𝑦′ ⊕ 𝑦⟩

invariants and to perform the associated optimizations. The benchmarks are provided in the
Feynman repository3, and include the examples given throughout the paper – notably Figure 2
(RUS), Figure 3 (Loop-swap), and Figure 11 (Loop-nonlinear). For the Grover benchmark, an instance
of Grover’s search on a 64-bit function was generated and the loop (≈ 109 iterations) was modeled
as a non-deterministic loop for optimization. The results in Table 1 confirm that our methods are
able to find some non-trivial optimizations in simple hybrid programs which have interesting
classical control. Moreover, the experiments demonstrate that phase folding can be integrated into
compilers targeting hybrid quantum/classical programming languages.

7.2 Circuit Optimization Benchmarks
To test the impacts of our relational approach and the use of non-linear (classical) reasoning
through the Strengthen algorithm to optimize t-counts, we also performed circuit optimization
experiments using a standard set of circuit benchmarks [35]. We performed two sets of experiments
— ones to isolate the impact of Strengthen on phase folding, and ones to evaluate the overall
effectiveness of our optimizations against other (non-monotone) circuit optimization algorithms.
For the isolation experiments, we compared against PyZX [34] which implements a variant of
phase folding in the ZX-calculus [35]. We chose this version of the phase folding algorithm as it
combines phase folding with Clifford normalization, and in particular reaches the theoretical limits
of phase folding up to equalities and commutations of Clifford circuits [53]. As Clifford compu-
tations implement affine classical state transitions, our hypothesis is that our affine optimization
algorithm PFAff should match PyZX’s optimizations in all cases. To test the overall efficacy of
our optimizations in reducing t-count, we also compared our optimizations against a selection of
circuit optimizers (VOQC [28], PyZX [34], FastTODD [54], QUESO [56]) which implement variants
of phase folding (PyZX, VOQC), peephole-optimizations (VOQC, QUESO), and optimizations based
on Reed-Muller decoding (FastTODD). As Reed-Muller optimizers apply an intrinsically different
class of optimizations than phase folding [46], we also performed experiments comparing Fast-
TODD after first either applying PyZX, or applying PFPol. All circuits optimized by Feynman were
validated for correctness using the method of [1].

Table 2 presents a summary of our experimental results, showing the isolation experiments
and the overall best t-count optimization results. The full experimental results are provided as
supplementary material in the ACM digital library. As noted in [56], peephole optimizations
are generally ineffective at reducing t-count as they are highly local. This is reflected in our
results which show that either PFPol, PyZX+FastTODD, or PFPol+FastTODD always outperform

3github.com/meamy/feynman/tree/ara/benchmarks/qasm3
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Table 2. t-count optimization evaluation. For PyZX and PF results, all other non-diagonal gate counts are left

unchanged. Bolded entries in the PF columns denote entries which outperform PyZX, and the best entry (if it

exists) in the +FastTODD columns is also bolded.

Benchmark 𝑛 Original PyZX PFAff PFQuad PFPol +FastTODD

# t # t time (s) # t time (s) # t time (s) # t time (s) PyZX PFPol

Grover_5 9 336 166 0.26 148 0.18 148 0.2 0 0.47 143 0
Mod 5_4 5 28 8 0.01 8 <0.01 8 <0.01 8 0.47 7 7
VBE-Adder_3 10 70 24 0.02 24 0.01 24 0.01 24 0.01 19 19
CSLA-MUX_3 15 70 62 0.03 60 0.01 60 0.01 60 0.02 39 39
CSUM-MUX_9 30 196 84 0.08 84 0.02 84 0.02 84 0.15 71 71
QCLA-Com_7 24 203 95 0.12 94 0.04 94 0.04 94 0.5 59 61
QCLA-Mod_7 26 413 237 0.38 237 0.17 237 0.19 237 39.13 159 161
QCLA-Adder_10 36 238 162 0.11 162 0.05 162 0.06 162 0.85 109 109
Adder_8 24 399 173 0.51 173 0.18 173 0.21 173 2.31 119 121
RC-Adder_6 14 77 47 0.04 47 0.02 47 0.02 47 0.05 37 37
Mod-Red_21 11 119 73 0.06 73 0.02 73 0.02 73 0.04 51 51
Mod-Mult_55 9 49 35 0.02 35 0.01 35 0.01 35 0.01 17 17
Mod-Adder_1024 28 1995 1011 3 1011 14.01 1005 14.16 923 36.34 – –
GF(24)-Mult 12 112 68 0.06 68 0.02 68 0.02 68 0.02 49 49
GF(25)-Mult 15 175 115 0.08 115 0.03 115 0.04 115 0.04 81 75
GF(26)-Mult 18 252 150 0.13 150 0.07 150 0.07 150 0.04 113 111
GF(27)-Mult 21 343 217 0.25 217 0.11 217 0.11 217 0.09 155 141
GF(28)-Mult 27 448 264 0.63 264 0.4 264 0.4 264 0.46 205 203
GF(29)-Mult 24 567 351 0.5 351 0.37 351 0.38 351 0.44 257 255
GF(210)-Mult 27 700 410 1.06 410 0.61 410 0.6 410 0.7 315 313
GF(216)-Mult 48 1792 1040 5.5 1040 17.05 1040 16.87 1040 18.28 797 803
GF(232)-Mult 96 7168 4128 9.33m 4128 67m 4128 60m 4128 86m – –
Ham_15 (low) 17 161 97 0.46 97 0.31 97 0.3 97 0.44 77 77
Ham_15 (med) 17 574 212 1.8 212 0.3 212 0.31 210 1.59 137 140
Ham_15 (high) 20 2457 1019 35.09 1019 21.33 997 21.23 985 2m – –
HWB_6 7 105 75 0.07 75 0.02 75 0.03 75 0.12 51 51
QFT_4 5 69 67 0.02 67 0.01 65 0.01 65 0.03 53 54
Λ3 (𝑋 ) 5 21 15 0.01 15 <0.01 15 <0.01 15 <0.01 13 13
Λ4 (𝑋 ) 7 35 23 0.01 23 <0.01 23 <0.01 23 <0.01 19 19
Λ5 (𝑋 ) 9 49 31 0.01 31 <0.01 31 0.01 31 0.01 25 25
Λ10 (𝑋 ) 19 119 71 0.04 71 0.01 71 0.02 71 0.01 55 55
Λ3 (𝑋 ) (dirty) 5 28 16 0.01 16 0.01 16 0.01 16 0.01 13 13
Λ4 (𝑋 ) (dirty) 7 56 28 0.02 28 0.01 24 0.01 24 0.01 23 20
Λ5 (𝑋 ) (dirty) 9 84 40 0.03 40 0.01 32 0.01 32 0.01 33 28
Λ10 (𝑋 ) (dirty) 19 224 100 0.11 100 0.05 72 0.03 72 0.06 83 68

FP-renorm 10 112 94 0.05 81 0.05 81 1.34 71 2.65 69 56

the peephole optimizers, even when phase folding is also applied as a pre-processing step to
QUESO. The peephole optimizers however often produce the best total gate counts, with FastTODD
producing the worst overall gate counts due to a process of gadgetization and re-synthesis. Overall,
our results show that combining PFPol with Reed-Muller optimizations produces on average the best
t counts, and usually outperforms PyZX+FastTODD when PFPol outperforms PyZX. We suspect
cases where PFPol did not improve on PyZX but PyZX+FastTODD outperformed PFPol+FastTODD
to be due to non-determinism in the FastTODD optimization.
Our isolation experiments confirm that affine phase folding is able to match the t gate counts

obtained by PyZX in every case. Thew few instances in which PFAff outperforms PyZX are due to
Feynman’s use of |0⟩-initialized ancillas to further optimize t-counts, which PyZX does not do.
Our experiments further confirm that by adding in non-linear equalities, phase folding is able to
optimize away more t gates in many cases. We detail some of these cases below.

One such class of circuits where PFPol consistently outperforms PyZX and PFAff are the Λ𝑘 (𝑋 )
benchmarks with dirty ancillas, corresponding to an implementation due to [7]. The Λ4 (𝑋 ) bench-
mark is reproduced in Figure 13. Observe that the equality 𝑎′ = 𝑎 can be used to optimize away 4 t
gates from the indicated Toffolis. Discovering the equality via generic means requires non-linear
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𝑥 • • 𝑥
𝑦 • • 𝑦

• • • •
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𝑎 • • 𝑎′′ • • 𝑎′

• •

Fig. 13. Implementation of the 4-control Toffoli gate
with 2 dirty ancillas.

reasoning, as it relies on the intermediate equal-
ities𝑎′′ = 𝑎⊕𝑥𝑦 and𝑎′ = 𝑎′′⊕𝑥𝑦, and hence has
previously been achieved by hand-optimization
[37]. Our results match the t-count scaling of
8(𝑘 − 1) for the hand-optimized Λ𝑘 (𝑋 ) imple-
mentation from [37] — to the best of our knowl-
edge, ours is the first circuit optimization to
reach this t-count via automated means.

Benchmarks where PFPol outperformed both
affine and quadratic phase folding include
Grover_5 and FP-renorm. In the former case, PFPol is able to reduce the t-count to 0, owing
to the fact that rewriting the circuit’s path integral gives the trivial transition |00 · · · 0⟩ ↦→
1
8
∑
®𝑦∈F6

2
(−1)𝑦0 | ®𝑦, 000⟩. It appears this is an error in the implementation of Grover’s algorithm. The

FP-renorm benchmark, taken from [26], was added specifically to provide a separation between
quadratic and higher-degree optimizations. The circuit implements renormalization of the mantissa
in floating point calculations, and it was shown that the effective t-count can be reduced to 70
by using a (programmer-supplied) state invariant which expresses a linear inequality over Z𝑘 . As
expected, our results show a separation between t-count optimizations possible with only quadratic
equations (81) and those possible using higher-degree equations (71), which are generally needed
when reasoning about integer arithmetic at the bit-level.

8 Conclusion
In this paper we have described a generalization of the quantum phase folding circuit optimization
to quantum programs. Our algorithm works by performing an relational analysis approximating
the classical transitions of the program in order to determine where phase gates can be merged.
We gave two concrete domains, one for affine relations based on [18], and the other for polynomial
relations based on Gröbner basis methods. We further showed that abstract transformers for these
domains can be generated by rewriting the circuit sum-over-paths. Our experimental results show
that relational analysis is able to go improve upon existing circuit optimizations in many cases as
well as discover some non-trivial optimizations of looping programs.

Many open questions and avenues for future work remain, particular generation of the most

precise transition relation for a quantum circuit. Other directions include expanding features of
the analysis to include classical logic such as branch conditions, and to experiment with the
many existing classical techniques for relational analysis. A promising direction motivated by
our experimental results is to explore techniques for degree-bounded polynomial relations, for
example [38]. More broadly, this work raises the question of how else might classical program
analysis techniques — particularly, numerical ones — be applied in a quantum setting? One such
avenue is to instead consider numerical invariants over the Z𝑁 , corresponding to themodular basis
{|𝑖⟩ | 𝑖 ∈ Z2𝑛 } of 𝑛 qubits which is frequently used in the analysis of quantum algorithms like
Shor’s seminal algorithm [48]. Yet another direction is to consider how the types of invariants we
generate here may be applied to the formal verification of quantum programs.

8.1 Related Work
Quantum circuit optimization. The concept of phase folding originated in the phase-polynomial

optimization of [5] and was later generalized from a re-synthesis algorithm to an in-place opti-
mization in [40]. The optimization was later re-formulated [35, 59] in the Pauli exponential and
ZX-calculus frameworks, which extended the optimization to perform equivalent optimizations
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over all Pauli bases. Both methods can be seen as phase folding “up to Clifford equalities”, which is
reflected in their experimental validation which curiously produced identical 𝑇 -counts across all
benchmarks. Our method of rewriting the path integral, when restricted to affine relations, can
be seen as performing the same process of Clifford normalization, a fact which is mirrored in our
experimental results for PFAff which coincide with [35, 59]. By using the symbolic nature of path
integrals, we extend optimization further to non-Clifford equivalences.
If the problem of phase folding is relaxed to include re-synthesis, another avenue of phase gate

reduction opens up — notably, techniques based on Reed-Muller codes [6]. Many recent phase gate
optimization methods [16, 27, 46] make use of these techniques to often achieve lower t-counts
than those reported here. However, these methods rely on gadgetization whereby 𝑂 ( |𝐶 |) ancillas
are added to the circuit𝐶 , and are generally orthogonal to phase folding [35]. We do note that even
recent gadget-based work [46] was unable to find the optimizations of the dirty ancilla Toffoli gates
found by our methods.

Quantum program optimization. Unlike circuit optimization, quantum program optimization is
relatively unstudied. The work of [29] explicitly broaches the subject of dataflow optimization
for quantum programs, developing a single static assignment (SSA) form for quantum programs
and applying optimizations like gate cancellation on top of it. This notion differs from our notion
of dataflow as their dataflow is explicitly classical, corresponding to the flow of quantum values
through a classical control flow graph executing quantum operations at the nodes. In contrast, our
model corresponds to classical values with flow that is either either quantum (in superposition) or

classical (out of superposition).
The work of [26] shares many similarities with our approach. In particular, they use assertions

expressed on the classical support of the quantum state to perform a number of local gate elimination
optimizations. While their assertions are more expressive than the invariants we generate, as they
include among other properties numerical inequalities over the modular basis {|𝑖⟩ | 𝑖 ∈ Z2𝑛 }, their
assertions are user-supplied and not checked by a compiler. By contrast, our invariants are provably
safe, generated automatically and as relational invariants apply to non-local gate optimizations.

Relational program analysis. Our work can be viewed as applying existing classical methods
of relational, specifically algebraic, program analysis to the quantum domain. Our affine analysis
directly uses the domain due to [33] and [18], which can be traced back to its origins in [31].
Likewise, our polynomial analysis uses the theory of transition ideals from the recent work [14] and
the algebraic foundations of [44]. Further analogies with relational analysis can be made between
our method of generating precise transition relations and the notion of computing the best symbolic

transformer in [43], though the methods themselves share little similarities.

Quantum abstract interpretation. Abstract interpretation has previously been applied to the
problems of simulating circuits [9] or verifying properties of circuits including separability [42]
and projection-based assertions [21, 58]. The work of [58] gave an abstract domain of products of
subspaces on subsets of qubits and applied this to the verification of assertions in static (but large)
quantum circuits. Later work [21] defined a subspace domain S(HQ) consisting of subspaces of
a Hilbert space HQ and gave operators for the interpretation of quantum WHILE programs, as
well as translations to and from Hoare logics based on Birkhoff von-Neumann (subspace) logic. In
contrast to these works, we abstract subspaces of the classical states CQ = F | Q |2 , which crucially
admits a polynomial-size basis and hence remains tractable. While the local subspace domain of
[58] likewise remains polynomial-size, our methods apply to general quantum programs and are
able to prove the assertions for both the BV and GHZ test cases, as both circuits are precisely
simulable using affine transformer semantics.
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