Verified compilation of space-efficient reversible
circuits

Matthew Amy" 2, Martin Roetteler?, and Krysta M. Svore3

! Institute for Quantum Computing, Waterloo, Canada
2 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada
3 Microsoft Research, Redmond, USA

Abstract. The generation of reversible circuits from high-level code is
an important problem in several application domains, including low-
power electronics and quantum computing. Existing tools compile and
optimize reversible circuits for various metrics, such as the overall cir-
cuit size or the total amount of space required to implement a given
function reversibly. However, little effort has been spent on verifying the
correctness of the results, an issue of particular importance in quantum
computing. There, compilation allows not only mapping to hardware, but
also the estimation of resources required to implement a given quantum
algorithm, a process that is crucial for identifying which algorithms will
outperform their classical counterparts. We present a reversible circuit
compiler called REVERC, which has been formally verified in F* and
compiles circuits that operate correctly with respect to the input pro-
gram. Our compiler compiles the REVs language |21] to combinational
reversible circuits with as few ancillary bits as possible, and provably
cleans temporary values.

1 Introduction

The ability to evaluate classical functions coherently and in superposition as part
of a larger quantum computation is essential for many quantum algorithms. For
example, Shor’s quantum algorithm [26] uses classical modular arithmetic and
Grover’s quantum algorithm [11] uses classical predicates to implicitly define
the underlying search problem. There is a resulting need for tools to help a
programmer translate classical, irreversible programs into a form which a quan-
tum computer can understand and carry out, namely into reversible circuits,
which are a special case of quantum transformations [19]. Other applications of
reversible computing include low-power design of classical circuits. See [15] for
background and a critical discussion.

Several tools have been developed for synthesizing reversible circuits, ranging
from low-level methods for small circuits such as |14}§16}/17/25/29] (see also [23] for
a survey) to high-level programming languages and compilers [1021}/28]/31/)33]. In
this paper we are interested in the latter class—i.e., methods for compiling high-
level code to reversible circuits. Such compilers commonly perform optimization,

as the number of bits quickly grows with the standard techniques for achieving
reversibility (see, e.g., [24]). The question, as with general purpose compilers, is
whether or not we can trust these optimizations.

In most cases, extensive testing of compiled programs is sufficient to estab-
lish the correctness of both the source program and its translation to a target
architecture by the compiler. Formal methods are typically reserved for safety-
(or mission-) critical applications. For instance, formal verification is an essen-
tial step in modern computer-aided circuit design due largely to the high cost of
a recall. Reversible — specifically, quantum — circuits occupy a different design
space in that 1) they are typically “software circuits,” i.e., they are not intended
to be implemented directly in hardware, and 2) there exist few examples of hard-
ware to actually run such circuits. Given that there are no large-scale universal
quantum computers currently in existence, one of the goals of writing a quantum
circuit compiler at all is to accurately gauge the amount of physical resources
needed to perform a given algorithm, a process called resource estimation. Such
resource estimates can be used to identify the “crossover point” when a problem
becomes more efficient to solve on a quantum computer, and are invaluable both
in guiding the development of quantum computers and in assessing their poten-
tial impact. However, different compilers give wildly different resource estimates
for the same algorithms, making it difficult to trust that the reported numbers
are correct. For this reason compiled circuits need to have some level of formal
guarantees as to their correctness for resource estimation to be effective.

In this paper we present REVERC, a lightly optimizing compiler for the
REvs language [21] which has been written and proven correct in the depen-
dently typed language F* [27]. Circuits compiled with REVERC are certified
to preserve the semantics of the source REVS program, which we have for the
first time formalized, and to reset or clean all ancillary (temporary) bits used so
that they may be used later in other computations. In addition to formal ver-
ification of the compiler, REVERC provides an assertion checker which can be
used to formally verify the source program itself, allowing effective end-to-end
verification of reversible circuits.

Contributions The following is a summary of the contributions of our paper:

— We give a formal semantics of REVS.

— We present a compiler for REVS called REVERC, written in F*. The compiler
currently has three modes: direct to circuit, eager-cleaning, and Boolean
expression compilation.

— We develop a new method of eagerly cleaning bits to be reused again later,
based on cleanup expressions.

— Finally, we verify correctness of REVERC with machine-checked proofs that
the compiled reversible circuits faithfully implement the input program’s
semantics, and that all ancillas used are returned to their initial state.

Related work Due to the reversibility requirement of quantum computing, quan-
tum programming languages and compilers typically have methods for gener-

ating reversible circuits. Quantum programming languages typically allow com-
pilation of classical, irreversible code in order to minimize the effort of porting
existing code into the quantum domain. In QCL [20], “pseudo-classical” opera-
tors — classical functions meant to be run on a quantum computer — are written
in an imperative style and compiled with automatic ancilla management. As
in REVS, such code manipulates registers of bits, splitting off sub-registers and
concatenating them together. The more recent Quipper [10] automatically gen-
erates reversible circuits from classical code by a process called lifting: using
Haskell metaprogramming, Quipper lifts the classical code to the reversible do-
main with automated ancilla management. However, little space optimization is
performed [24].

Verification of reversible circuits has been previously considered from the
viewpoint of checking equivalence against a benchmark circuit or specification
[30,/32]. This can double as both program verification and translation validation,
but every compiled circuit needs to be verified separately. Moreover, a program
that is easy to formally verify may be translated into a circuit with hundreds of
bits, and is thus very difficult to verify. Recent work has shown progress towards
verification of more general properties of reversible and quantum circuits via
model checking |4], but to the authors’ knowledge, no verification of a reversible
circuit compiler has yet been carried out. By contrast, many compilers for general
purpose programming languages have been formally verified in recent years —
most famously, the CompCert optimizing C compiler [13], written and verified
in Coq. Since then, many other compilers have been developed and verified in a
range of languages and logics including Coq, HOL, F*| etc., with features such
as shared memory [6], functional programming [7,9] and modularity [18}22].

2 Reversible computing

Reversible functions are Boolean functions f : {0,1}" — {0,1}" which can
be inverted on all outputs, i.e., precisely those functions which correspond to
permutations of a set of cardinality 2", for some n € N. As with classical circuits,
reversible functions can be constructed from universal gate sets — for instance, it
is known that the Toffoli gate which maps (z,y, z) — (z,y,2® (z Ay)), together
with the controlled-NOT gate (CNOT) which maps (z,y) — (z,z @ y) and the
NOT gate which maps x + x @ 1, is universal for reversible computation [19|.
An important metric that is associated with a reversible circuit is the amount
of scratch space required to implement a given target function, i.e., temporary
bits which store intermediate results of a computation. In quantum computing
such bits are commonly denoted as ancilla bits. A very important difference to
classical computing is that scratch bits cannot just be overwritten when they are
no longer needed: any ancilla that is used as scratch space during a reversible
computation must be returned to its initial value—commonly assumed to be
0—computationally. Moreover, if an ancilla bit is not “cleaned” in this way,
in a quantum computation it may remain entangled with the computational

registers which in turn can destroy the desired interferences that are crucial for
many quantum algorithms.

Figure [I] shows a reversible circuit over NOT, CNOT, and Toffoli gates com-
puting the NOR function. Time flows left to right, with input values listed on
the left and outputs listed on the right. NOT gates are depicted by an &, while
CNOT and Toffoli gates are written with an @ on the target bit (the bit whose
value changes) connected by a vertical line to, respectively, either one or two
control bits identified by solid dots. Two ancilla qubits are used which both ini-
tially are 0; one of these ultimately holds the (otherwise irreversible) function
value, the other is returned to zero. For larger circuits, it becomes a non-trivial
problem to assert a) that indeed the correct target function f is implemented
and b) that indeed all ancillas that are not outputs are returned to 0.

REvVS From Bennett’s work on re-
versible Turing machines it follows

that any function can be imple- a a
mented by a suitable reversible cir- b f % b
cuit [5]: if an n-bit function x — 0 0
f(z) can be implemented with K 0 D B avb

gates over {NOT, AND}, then the re-
versible function (z,y) — (z,y® f(x))
can be implemented with at most
2K + n gates over the Toffoli gate
set. The basic idea behind Bennett’s
method is to replace all AND gates
with Toffoli gates, then perform the
computation, copy out the result, and undo the computation. This strategy is
illustrated in Figure [2] where the box labelled Uy corresponds to f with all
AND gates substituted with Toffoli gates and the inverse box is simply obtained
by reversing the order of all gates in U;. Bennett’s method has been used to
perform classical-to-reversible circuit compilation in the quantum programming
language Quipper [10]. One potential disadvantage of Bennett’s method is the
large number of ancillas it requires as the required memory scales proportional
to the circuit size of the initial, irreversible function f.

In recent work, an attempt was
made with the REvVS compiler (and
programming language of the same

Fig.1. A Toffoli network computing the
NOR function f(a,b) =aV b.

X — %1 .
) . name) [21] to improve on the space-
. Ur ’ Ut | . complexity of Bennett’s strategy by
o || | - gene.ratlng 01r§u1ts thajc are space-
Copy efficient — that is, REVS is an optimiz-
0 —| L F Ot) ing compiler with respect to the num-

ber of bits used. Their method makes
Fig.2. A reversible circuit computing us.e of a'depe.ndency grap.h 'to deter-
f(z1,...,2m) using the Bennett trick. In- MINe which bits may be eligible to be

put lines with slashes denote an arbitrary cleaned eagerly, before the end of the
number of bits.

Var z, Boolbe {0,1} =B, Nati:,jeN, LocleN
Valv c:=unit|l|regli...ln | Ax.t
Term t :=let x = ¢1 in ta | Azt | (t1 t2) | tiste |z |t L2 |b|t1 B ta | t1 At
| clean ¢ | assert ¢ |reg ¢1...tn| t.[7] | t.[i..7] | append t1 t2]| rotate i ¢

Fig. 3. Syntax of REVS.

computation and hence be reused again. We build on their work in this paper,
formalizing REVS and developing a verified compiler without too much loss in
efficiency. In particular, we take the idea of eager cleanup and develop a new
method analogous to garbage collection.

3 Languages

In this section we give a formal definition of REVS, as well as the intermediate
and target languages of the compiler.

3.1 The Source

The abstract syntax of REVS is presented in Figure |3] The core of the language
is a simple imperative language over Boolean and array (register) types. The
language is further extended with ML-style functional features, namely first-
class functions and let definitions, and a reversible domain-specific construct
clean which asserts that its argument evaluates to 0 and frees a bit.

In addition to the basic syntax of Figure [3| we add the following derived
operations:

t21@t, V2 AL) S St),

if 11 then ¢ else {3 2 (11 Ats) @ (=1 Ats),
for z in 4.5 do tét[xl—> iy s tlr g

Note that REVS has no dynamic control — i.e. control dependent on run-time
values. In particular, every REVS program can be transformed into a straight-line
program. This is due to the restrictions of our target architecture (see below).

The REVERC compiler uses F# as a meta-language to generate REVS code
with particular register sizes and indices, possibly computed by some more com-
plex program. Writing an F# program that generates REVS code is similar in
effect to writing in a hardware description language [8]. We use F#'s quotations
mechanism to achieve this by writing REVS programs in quotations <@...@>.
Note that unlike languages such as Quipper, our strictly combinational target
architecture doesn’t allow computations in the meta-language to depend on com-
putations within REVS.

W N

[esRNoNe N NN

ab
carry_ex a b ¢ = (a (b c)) (b c)
result = Array.zeroCreate(n)
carry =
result . [0] a.[0] b.[0]
i 1 .. n-1
carry carry_ex a.[i-1] b.[i-1] carry
result.[i] a.[i] b.[i] carry
result

Fig. 4. Implementation of an n-bit adder.

Ezample 1. Figure [4] gives an example of a carry-ripple adder written in REVS.
Naively compiling this implementation would result in a new bit being allo-
cated for every carry bit, as the assignment on line 8 is irreversible (note that
carry ex 1 1 0 = 1 = carry ex 1 1 1, hence the value of ¢ can not be
uniquely computed given a, b and the output). REVERC reduces this space
usage by automatically cleaning the old carry bit, allowing it to be reused.

Semantics We designed the semantics of REVS with two goals in mind:

1. keep the semantics as close to the original implementation as possible, and
2. simplify the task of formal verification.

The result is a somewhat non-standard semantics that is nonetheless intuitive for
the programmer. Moreover, the particular semantics naturally enforces a style of
programming that results in efficient circuits and allows common design patterns
to be optimized.

The big-step semantics of REVS is presented in Figure [f] as a relation = C
Config x Config on configuration-pairs — pairs of terms and Boolean-valued stores.
A key feature of our semantics is that Boolean, or bit values, are always allocated
on the store. Specifically, Boolean constants and expressions are modelled by
allocating a new location on the store to hold its value — as a result all Boolean
values, including constants, are mutable.

The allocation of Boolean values on the store serves two main purposes: to
give the programmer fine-grain control over how many bits are allocated, and to
provide a simple and efficient model of registers — i.e. arrays of bits. Specifically,
registers are modelled as static length lists of bits. This allows the programmer
to perform array-like operations such as bit modifications (t1.[i] < t2) as well
as list-like operations such as slicing (¢.[i..j]) and concatenation (append ¢ t2)
without copying out entire registers. We found that these were the most common
access patterns for arrays of bits in low-level bitwise code (e.g. arithmetic and
cryptographic implementations).

The semantics of @ (Boolean XOR) and A (Boolean AND) are also notable
in that they first reduce both arguments to locations, then retrieve their value.
This results in statements whose value may not be immediately apparent — e.g.,

Store 0 : N— B {t1,0) = (v1,0") {ta[r — v1],0") = (v2,0")

Config ¢ ::= (t,0) [LET] (let @ = t1 in t2,0) = (v2,0”)
REFL <t1,0’> = <l1,0'/> <t2,0'/> = <l2,0'//> I3 gé dom(o”)
[o } <U’U> = <U’U> [BEXP] <t1 *tz,o’) = <1370'”[13 — 0’”(11) *O’”(lz)])
beB [¢dom(o) (t1,0) = Az.ty,0")(t2,0") = (v2,0”)
[BOOL] <b, 0’> N <l, O’H[l — b]) [App] <t/1 [:E — 1}2]’ o—”> = <v7 0_///>
(t1,0) = (unit,o’) (s t2),0) = (0,07
jsq)— 21 = (.07) bt 3 i%
(ite,0) = o0 SN (it o = 7 ()]}
(APPEND] (t1,0) = (reg l1 ... lm,0") (t2,0') = (reg lpt1...ln,0")
(append t1 ta,0) = (reg l1...1l,,0")
(t,o) = (reg l1...ln,0") 1<i<n
[INDEX] il o) = (o, o) (t1,0) = (I, 01)
o] {60) = lreg b o’) 1<i<j<n aro) = (2]
(t.[i.jl,0) = (reg l; ... 1;,0") : l
[REG] <tn:‘7> = < n70n>
(reg t1...tn,0) = (reg l1...ln,0on)
(tyo) = (reg lh...ln, 0’y 1<i<n
[ROTATE] (rotate t i,0) = (reg l;...li—1,0")
[CLEAN] {t,o) = {l,0’y o' ()=0 [AsSERI] (t,o) = (l,0') o'(I)=1

(clean t,0) = (unit,a'|d°m(a (assert t,0) = (unit,o’)

’)\{l}>

Fig. 5. Operational semantics of REVS.

x @ (z + y;y), which under these semantics will always evaluate to 0. The
benefit of this definition is that it allows the compiler to perform important
optimizations without a significant burden on the programmer.

3.2 Boolean expressions

Our compiler uses XOR-AND Boolean expressions — single output classical cir-
cuits over XOR and AND gates — as an intermediate language. Compilation
from Boolean expressions into reversible circuits forms the main “code genera-
tion” step of our compiler.

A Boolean expression is defined as an expression over Boolean constants,
variable indices, and logical ® and A operators. Explicitly, we define

BExp B:=0|1|ieN|B, & By | By A B,.

Note that we use the symbols 0,1, @ and A interchangeably with their interpre-
tation in B. We use vars(B) to refer to the set of free variables in B.

We interpret a Boolean expression as a function from (total) Boolean-valued
states to Booleans. In particular, we define State = N — B and denote the
semantics of a Boolean expression by [B] : State — B. The formal definition of
[B] is obvious so we omit it.

3.3 Target architecture

REVERC compiles to combinational, reversible circuits over NOT, controlled-
NOT and Toffoli gates. By combinational circuits we mean a sequence of logic
gates applied to bits with no external means of control or memory — effectively
pure logical functions. We chose this model as it is suitable for implementing
classical functions and oracles within quantum computations [19].

Formally, we define

Circ C = — | NOT i | CNOT i j | Toffoli i j k | Cy :: C,

i.e., Circ is the free monoid over NOT, CNOT, and Toffoli gates with unit —
and the append operator ::. All but the last bit in each gate is called a control,
whereas the final bit is denoted as the target and is the only bit modified or
changed by the gate. We use use(C), mod(C') and control(C) to denote the set
of bit indices that are used in, modified by, or used as a control in the circuit C,
respectively. A circuit is well-formed if no gate contains more than one reference
to a bit — i.e., the bits used in each controlled-NOT or Toffoli gate are distinct.

Similar to Boolean expressions, a circuit is interpreted as a function from
states (maps from indices to Boolean values) to states, given by applying each
gate which updates the previous state in order. The formal definition of the
semantics of a reversible circuit C, given by [C] : State — State, is straight-
forward:

[NOT i]s = s[i — —s(i)]
[CNOT i j]s = s[j — s(i) & s(j)]
[Toffoli i j k]s = sk — (s(i) A s(j)) @ s(k)]
[-]s=s [Ch :: Co]s = ([C2] o [Ch])s
We use s[z +— y] to denote the function that maps = to y, and all other inputs

z to s(z); by an abuse of notation we use [z — y| to denote other substitutions
as well.

4 Compilation

In this section we discuss the implementation of REVERC. The compiler consists
of around 4000 lines of code in a common subset of F* and F#, with a front-end
to evaluate and translate F# quotations into REVS expressions.

4.1 Boolean expression compilation

The core of REVERC’s code generation is a compiler from Boolean expressions
into reversible circuits. We use a modification of the method employed in REVS.

As a Boolean expression is already in the form of an irreversible classical
circuit, the main job of the compiler is to allocate ancillas to store sub-expressions
whenever necessary. REVERC does this by maintaining a (mutable) heap of
ancillas £ € AncHeap called an ancilla heap, which keeps track of the currently
available (zero-valued) ancillary bits. Cleaned ancillas (ancillas returned to the
zero state) may be pushed back onto the heap, and allocations return previously
used ancillas if any are available, hence not using any extra space.

The function COMPILE-BEXP, shown in pseudo-code below, takes a Boolean
expression B and a target bit ¢ and then generates a reversible circuit comput-
ing 7 ® B. Note that ancillas are only allocated to store sub-expressions of A
expressions, since i ® (By ® By) = (i ® B1) ® B and so we compile i ® (B, @ Bs)
by first computing ¢’ = i & By, followed by i’ & Bs.

function COMPILE-BEXP(B, 1, &)
if B =0 then —
else if B =1 then NOT i
else if B = j then CNOT j1¢
else if B = By @ B2 then COMPILE-BEXP(B1, 4, £)::COMPILE-BEXP(B2, i, £)
else // B=B1 A B;
a1 + pop-min(§); C + COMPILE-BEXP(Bi, a1, §);
as < pop-min(§); C’ < cOMPILE-BEXP (B2, a2, &);
C :: C' :: Toffoli a1 as i
end if
end function

Cleanup The definition of COMPILE-BEXP above leaves many garbage bits that
take up space and need to be cleaned before they can be re-used. To reclaim
those bits, we clean temporary expressions after every call to COMPILE-BEXP.
To facilitate the cleanup — or uncomputing — of a circuit, we define the re-
stricted inverse uncompute(C, A) of C with respect to a set of bits A C N by
reversing the gates of C, and removing any gates with a target in A. For instance:

CNOT ¢ j otherwise

The other cases are defined similarly. Note that since uncompute produces a
subsequence of the original circuit C, no ancillary bits are used.

The restricted inverse allows the temporary values of a reversible computa-
tion to be uncomputed without affecting any of the target bits. In particular, if
C' = coMPILE-BEXP(B, 1), then the circuit C' :: uncompute(C, {i}) maps a state
s to s[i — [B]s @ s(i)], allowing any newly allocated ancillas to be pushed back
onto the heap. Intuitively, since no bits contained in the set A are modified, the
restricted inverse preserves their values; that the restricted inverse uncomputes
the values of the remaining bits is less obvious, but it can be observed that if

- if j€ A
uncompute(CNOT i j, A) = { e

the computation doesn’t depend on the value of a bit in A, the computation will
be inverted. We formalize and prove this statement in Section [5}

4.2 REVS compilation

In studying the REVS compiler, we observed that most of what the compiler
was doing was evaluating the non-Boolean parts of the program — effectively
bookkeeping for registers — only generating circuits for a small kernel of cases.
As a result, transformations to different Boolean representations (e.g., circuits,
dependence graphs [21]) and the interpreter itself reused significant portions
of this bookkeeping code. To make use of this redundancy to simplify both
writing and verifying the compiler, we designed REVERC as a partial evaluator
parameterized by an abstract machine for evaluating Boolean expressions. As a
side effect, we arrive at a unique model for circuit compilation similar to staged
computation (see, e.g., [12]).

REVERC works by evaluating the program with an abstract machine provid-
ing mechanisms for initializing and assigning locations on the store to Boolean
expressions. We call an instantiation of this abstract machine an interpretation
#, which consists of a domain D equipped with two operators:

assign: D x N x BExp — D
eval : D x N x State — B.

We typically denote an element of an interpretation domain D by o. A se-
quence of assignments in an interpretation builds a Boolean computation or cir-
cuit within a specific model (i.e., classical, reversible, different gate sets) which
may be simulated on an initial state with the eval function — effectively an oper-
ational semantics of the model. Practically speaking, an element of D abstracts
the store in Figure 5[and allows delayed computation or additional processing
of the Boolean expression stored in a cell, which may be mapped into reversible
circuits immediately or after the entire program has been evaluated. We give
some examples of interpretations below.

Ezample 2. The standard interpretation s 4ndqrq has domain Store = N — B,
together with the operations

aSSignstandard(U’ l7 B) = U[l = [[BHO']

evalstandard(07 la 8) = U(l)

Partial evaluation over the standard interpretation coincides exactly with the
operational semantics of REVS.

Ezxample 3. The reversible circuit interpretation %, cyir has domain De;peyiz =

(N = N) x Circ x AncHeap. In particular, given (p,C, &) € Deireuit, p maps
heap locations to bits in C, and £ is an ancilla heap. Assignment and evaluation

10

are further defined as follows:

assign .;,cuit (€, €), 1, B) = (p[l i), C : 0/75)

where ¢ = pop-min(§),

(C',¢") = comPILE-BEXP (BJ[l’ € vars(B) + p(l')],14,&)
evaleireuit (0, €, €), 1, 5)) = ([C]s) (p(1))

Interpreting a program with .Z.;...;; builds a reversible circuit executing the
program, together with a mapping from heap locations to bits. Since the circuit
is required to be reversible, when a location is overwritten, a new ancilla i is
allocated and the expression B@®1 is compiled into a circuit. Evaluation amounts
to running the circuit on an initial state, then retrieving the value at the bit
associated with a heap location.

Given an interpretation .# with domain D, we define the set of .#-configurati-
ons as Config , = Term x D — that is, .#-configurations are pairs of programs
and elements of D which function as an abstraction of the heap. The relation

= s C Config , x Config ,

gives the operational semantics of REVS over the interpretation .#. We do not
give a formal definition of =, as it can be obtained trivially from the definition
of = (Figure [5) by replacing all heap updates with assign and taking dom(o)
to mean the set of locations on which eval is defined. To compile a program
term ¢, REVERC evaluates t over a particular interpretation .# (for instance,
the reversible circuit interpretation) and an initial heap ¢ € D according to
the semantic relation = ». In this way, evaluating a program and compiling a
program to a circuit look almost identical. This greatly simplifies the problem
of verification (see Section [5)).

REVERC currently supports three modes of compilation, defined by giving
interpretations: a default mode, an eagerly cleaned mode, and a “crush” mode.
The default mode evaluates the program using the circuit interpretation, and
simply returns the circuit and output bit(s), while the eager cleanup mode op-
erates analogously, using instead the garbage-collected interpretation defined
below in Section [£.3] The crush mode interprets a program as a list of Boolean
expressions over free variables, which while unscalable allows highly optimized
versions of small circuits to be compiled, a common practice in circuit synthesis.
We omit the details of the Boolean expression interpretation.

Function compilation While the definition of REVERC as a partial evaluator
streamlines both development and verification, there is an inherent disconnect
between the treatment of a (top-level) function expression by the interpreter
and by the compiler, in that we want the compiler to evaluate the function
body. Instead of defining a two-stage semantics for REVS we took the approach
of applying a program transformation, whereby the function being compiled is
evaluated on special heap locations representing the parameters. This creates a

11

further problem in that the compiler needs to first determine the size of each
parameter; to solve this problem, REVERC performs a static analysis we call
parameter interference. We omit the details of this analysis due to space con-
straints and instead point the interested reader to an extended version of this
paper [3].

4.3 Eager cleanup

It was previously noted that the circuit interpretation allocates a new ancilla
on every assignment to a location, due to the requirement of reversibility. Apart
from REVERC’s additional optimization passes, this is effectively the Bennett
method, and hence uses a large amount of extra space. One way to keep the
space usage from continually expanding as assignments are made is to clean the
old bit as soon as possible and then reuse it, rather than wait until the end of the
computation. Here we develop an interpretation that performs this automatic,
eager cleanup by augmenting the circuit interpretation with a cleanup expression
for each bit. Our method is based on the eager cleanup of [21], and was intended
as a more easily verifiable alternative to mutable dependency diagrams.
The eager cleanup interpretation Zgc has domain

D = (N — N) x Circ x AncHeap x (N — BExp),

where given (p,C, ¢, k) € D, p, C and £ are as in the circuit interpretation. The
partial function x maps individual bits to a Boolean expression over the bits
of C' which can be used to return the bit to its initial state, called the cleanup
expression. Specifically, we have the following property:

Vi € cod(p),s'(i) @ [r(i)]s" = s(i) where s’ = [C]s.

Intuitively, any bit ¢ can then be cleaned by simply computing i — i ® k(4),
which in turn can be done by calling COMPILE-BEXP(k(7),).

Two problems remain, however. In general it may be the case that a bit can
not be cleaned without affecting the value of other bits, as it might result in a loss
of information — in the context of cleanup expressions, this occurs exactly when
a bit’s cleanup expression contains an irreducible self-reference. In particular, if
i € vars(B), then cOMPILE-BEXP(B, ¢) does not compile a circuit computing
1@ B and hence won’t clean the target bit correctly. In the case when a garbage
bit contains a self-reference in its cleanup expression that can not be eliminated
by Boolean simplification, REVERC simply ignores the bit and performs a final
round of cleanup at the end.

The second problem arises when a bit’s cleanup expression references another
bit that has itself since been cleaned or otherwise modified. In this case, the
modification of the latter bit has invalidated the correctness property for the
former bit. To ensure that the above relation always holds, whenever a bit is
modified — corresponding to an XOR of the bit, ¢, with a Boolean expression
B — all instances of bit ¢ in every cleanup expression is replaced with ¢ & B.

12

Specifically we observe that, if s'(i) = s(i) @ [B]s, then
s'(i) @ [B]s = s(i) ® [B]s @ [B]s = s(4).

The function CLEAN, defined below, performs the cleanup of a bit 7 if possible,
and validates all cleanup expressions in a given element of D:
function CLEAN((p, C,¢&, k),)
if ¢ € vars(k(i)) then return (p,C, ¢, k)
else
C’ + COMPILE-BEXP(k(i),,)
if 7 is an ancilla then insert(i, &)
K k[i' € dom(k) — k()i — 1 D K(7)]]
return (p,C :: C' &, k')
end if
end function
Assignment and evaluation are defined in the eager cleanup interpretation as
follows. Both are effectively the same as in the circuit interpretation, except the
assignment operator calls CLEAN on the previous bit mapped to [.

assignac((p, C, &, k), 1, B) = CLEAN((p[l — 4], C :: C", &, k[i — B']), 1)
where i = pop-min(¢),
B' = B[l € vars(B) + p(l")]
C' = comPILE-BEXP(B',,¢§)
evalGC((p> C,¢, '%)7 , 5)) = ([[CHS) (p(l))

The eager cleanup interpretation coincides with a reversible analogue of
garbage collection for a very specific case when the number of references to
a heap location (or in our case, a bit) is trivially zero. In fact, the CLEAN func-
tion can be used to eagerly clean bits that have no reference in other contexts.
We intend to expand REVERC to include a generic garbage collector that uses
cleanup expressions to more aggressively reclaim space — for instance, when a
bit’s unique pre-image on the heap leaves the current scope.

4.4 Optimizations

During the course of compilation it is frequently the case that more ancillas
are allocated than are actually needed, due to the program structure. For in-
stance, when compiling the expression ¢ < B, if B can be factored as i & B’
the assignment may be performed reversibly rather than allocating a new bit to
store the value of B. Likewise if ¢ is provably in the 0 or 1 state, the assignment
may be performed reversibly without allocating a new bit. Our implementation
identifies some of these common patterns, as well as general Boolean expression
simplifications, to further minimize the space usage of compile circuits. All such
optimizations in REVERC have been formally verified.

13

5 Verification

In this section we describe the formal verification of REVERC and give the
major theorems proven. All theorems given in this section have been formally
specified and proven using the F* compiler [27]. We first give theorems about
our Boolean expression compiler, then use these to prove properties about whole
program compilation. The total verification of the REVERC core’s approximately
2000 lines of code comprises around 2200 lines of F* code, and took just over
1 person-month. We feel that this relatively low-cost verification is a testament
to the increasing ease with which formal verification can be carried out using
modern proof assistants. Additionally, the verification relies on only 11 unproven
axioms regarding simple properties of lookup tables and sets, such as the fact
that a successful lookup is in the codomain of a lookup table.

Rather than give F* specifications, we translate our proofs to mathematical
language as we believe this is more enlightening. The full source code of REVERC
including proofs can be obtained at |https://github.com/msr-quarc/ReVerC.

5.1 Boolean expression compilation

Correctness Below is our main theorem establishing the correctness of the func-
tion COMPILE-BEXP with respect to the semantics of reversible circuits and
Boolean expressions. It states that if the variables of B, the bits on the ancilla
heap and the target are non-overlapping, and if the ancilla bits are O-valued,
then the circuit computes the expression i & B.

Theorem 1. Let B be a Boolean expression, £ be an ancilla heap, i € N, C €
Circ and s be a map from bits to Boolean values. Suppose vars(B), & and {i}
are all disjoint and s(j) =0 for all j € £&. Then

([comPILE-BEXP(B,,&)]s) (i) = s(i) @ [B]s.

Cleanup As remarked earlier, a crucial part of reversible computing is cleaning
ancillas both to reduce space usage, and in quantum computing to prevent en-
tangled qubits from influencing the computation. Moreover, the correctness of
our cleanup is actually necessary to prove correctness of the compiler, as the
compiler re-uses cleaned ancillas on the heap, potentially interfering with the
precondition of Theorem [1} We use the following lemma to establish the correct-
ness of our cleanup method, stating that the uncompute transformation reverses
all changes on bits not in the target set under the condition that no bits in the
target set are used as controls.

Lemma 1. Let C be a well-formed reversible circuit and A C N be some set of
bits. If ANcontrol(C) = () then for all states s, s’ = [C :: uncompute(C, A)]s and
any i ¢ A,

s(i) = /(i)
Lemma [If largely relies on the following important lemma stating in effect that
the action of a circuit is determined by the values of the bits used as controls:

14

https://github.com/msr-quarc/ReVerC

Lemma 2. Let A C N and s,s’ be states such that for all i € A, s(i) = §'(i). If
C' is a reversible circuit where control(C) C A, then

(ICTs)(i) = (ICTs")(4)
for alli € A.

LemmalT] together with the fact that COMPILE-BEXP produces a well-formed
circuit under disjointness constraints, gives us our cleanup theorem below that
Boolean expression compilation with cleanup correctly reverses the changes to
every bit except the target.

Theorem 2. Let B be a Boolean expression, & be an ancilla heap and i € N such
that vars(B), £ and {i} are all disjoint. Suppose COMPILE-BEXP(B,,§) = C.
Then for all j # i and states s we have

([C o uncompute(C, {i})]s) () = s(4).

5.2 REVs compilation

It was noted in Section [that the design of REVERC as a partial evaluator
simplifies proving correctness. We expand on that point now, and in particular
show that if a relation between elements of two interpretations is preserved by
assignment, then the evaluator also preserves the relation. We state this formally
in the theorem below.

Theorem 3. Let %1, .95 be interpretations and suppose whenever (o1,02) € R
for some relation R C % X Sy,

(assign, (01,1, B), assigny (02,1, B)) € R

for anyl, B. Then for any term t, if (t,01) =g, (v1,07) and (t,02) =4, (va,0h),
then v1 = vy and (0}, 0%) € R.

Theorem [3] lifts properties about interpretations to properties of evaluation
over those abstract machines — in particular, we only need to establish that
assignment is correct for an interpretation to establish correctness of the cor-
responding evaluator/compiler. In practice we found this significantly reduces
boilerplate proof code that is otherwise currently necessary in F* due to a lack
of automated induction.

Given two interpretations ., ¢’ we say elements o and ¢’ of .# and .#’
are observationally equivalent with respect to a supplied set of initial values
s € State if for all i € N, eval#(0,i,8) = eval g (0/,i,5). We say o ~; o
if 0 and o’ are observationally equivalent with respect to s. As observational
equivalence of two domain elements o, ¢’ implies that any location in scope has
the same valuation in either interpretation, it suffices to show that any compiled
circuit is observationally equivalent to the standard interpretation. The following
lemmas are used along with Theorem 3| to establish this fact for the default and
eager-cleanup interpretations — a similar lemma is proven in the implementation
of REVERC for the crush mode.

15

Lemma 3. Let 0,0’ be elements of Fstandard 014 Feireuit, respectively. For all
l € N, B € BExp, s € State, if 0 ~5 ¢’ and s(i) = 0 whenever i € £, then

aSSignstandard(U’ l7 B) ~s aSSigncir(zuit(U,? la B)
Moreover, the ancilla heap remains 0-filled.

We say that (p, C, &) € Deireuir is valid with respect to s € State if and only
if s(z) = 0 for all ¢ € &. For elements of Dge the validity conditions are more
involved, so we introduce a relation, ¥V C Dgc X State, defining the set of valid
domain elements:

(p,C,&,K),8) €V < Vie & s(i) =0AVL,1" €dom(p),p(l) # p(l')
AVi € cod(p), [i @ k(i)]([C]s) = s(i)

Informally, V specifies that all bits on the heap have initial value 0, that p is a
one-to-one mapping, and that for every active bit ¢, XORing ¢ with k(i) returns
the initial value of ¢ — that is, i ® k(i) cleans 1.

Lemma 4. Let 0,0’ be elements of siandara and Fgc, respectively. For all
1 € N, B € BExp, s € State, if 0 ~; ¢/ and (¢’,s) € V, then

aSSignstandard(U’ l7 B) ~s aSSignGC(U/7 l7 B)
Moreover, (assigngc(o’,1,B),s) € V.

By setting the relation Rgc as
(0'1,0'2) € Ragec <= 032 €V A0 ~g, 02

for 01 € Dstandard, by Theorem [3] and Lemma [] it follows that partial eval-
uation/compilation preserves observational equivalence between Zgiqandara and
SFac. A similar result follows for 2., cuit-

To formally prove correctness of the compiler we need initial values in each
interpretation (and an initial state) which are observationally equivalent. We
don’t describe the initial values here as they are dependent on the program
transformation applied to expand top-level functions.

6 Experiments

We ran experiments to compare the bit, gate and Toffoli counts of circuits com-
piled by REVERC to the original REVS compiler. The number of Toffoli gates
in particular is distinguished as such gates are generally much more costly than
NOT and controlled-NOT gates — at least 7 times as typical implementations use
7 CNOT gates per Toffoli [19], or up to hundreds of times in most fault-tolerant
architectures [2]. We compiled circuits for various arithmetic and cryptographic
functions written in REVS using both compilers and reported the results in Ta-
ble [1} Experiments were run in Linux using 8 GB of RAM.

The results show that both compilers are more-of-less evenly matched in
terms of bit counts across both modes, despite REVERC being certifiably correct.

16

Benchmark REVS REVS (eager) REVERC REVERC (eager)

bits gates Toffolis bits gates Toffolis bits gates Toffolis bits gates Toffolis

carryRippleAdd 32 129 281 62 129 467 124 128 281 62 113 361 90
carryRippleAdd 64 257 569 126 257 947 252 256 569 126 225 745 186
mult 32 128 6016 4032 128 6016 4032 128 6016 4032 128 6016 4032
mult 64 256 24320 16256 256 24320 16256 256 24320 16256 256 24320 16256

carryLookahead 32 160 345 103 109 1036 344 165 499 120 146 576 146
carryLookahead 64 424 1026 307 271 3274 1130 432 1375 336 376 1649 428

modAdd 32 65 188 62 65 188 62 65 188 62 65 188 62
modAdd 64 129 380 126 129 380 126 129 380 126 129 380 126
cucarroAdder 32 65 98 32 65 98 32 65 98 32 65 98 32
cucarroAdder 64 129 194 64 129 194 64 129 194 64 129 194 64
mad4 17 24 8 17 24 8 17 24 8 17 24 8
SHA-2 round 449 1796 594 353 2276 754 452 1796 594 449 1796 594
MD5 7841 81664 27520 7905 82624 27968 4833 70912 27520 4769 70912 27520

Table 1. Bit and gate counts for both compilers in default and eager cleanup modes.
In cases when not all results are the same, entries with the fewest bits used or Toffolis
are bolded.

REVERC'’s eager cleanup mode never used more bits than the default mode, as
expected, and in half of the benchmarks reduced the number of bits. Moreover,
in the cases of the carryRippleAdder and MD5 benchmarks, REVERC’s eager
cleanup mode produced circuits with significantly fewer bits than either of REVS’
modes. On the other hand, REVS saw dramatic decreases in bit numbers for
carryLookahead and SHA-2 with its eager cleanup mode compared to REVERC.

While the results show there is clearly room for optimization of gate counts,
they appear consistent with other verified compilers (e.g., |[13]) which take some
performance hit when compared to unverified compilers. In particular, unverified
compilers may use more aggressive optimizations due to the increased ease of
implementation and the lack of a requirement to prove their correctness com-
pared to certified compilers. In some cases, the optimizations are even known to
not be correct in all possible cases, as in the case of fast arithmetic and some
loop optimization passes in the GNU C Compiler [1].

7 Conclusion

We have described our verified compiler for the REVS language, REVERC. Our
method of compilation differs from the original REVS compiler by using par-
tial evaluation over an interpretation of the heap to compile programs, forgoing
the need to re-implement and verify bookkeeping code for every internal trans-
lation. We described two interpretations implemented in REVERC, the circuit
interpretation and a garbage collected interpretation, the latter of which refines
the former by applying eager cleanup.

While REVERC is verified in the sense that compiled circuits produce the
same result as the program interpreter, as with any verified compiler project
this is not the end of certification. The implementation of the interpreter may
have subtle bugs, which ideally would be verified against a more straightforward

17

adaptation of the semantics using a relational definition. We intend to address
these issues in the future, and to further improve upon REVERC’s space usage.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Using the GNU Compiler Collection. Free Software Foundation, Inc. (2016), https:
//gcc.gnu.org/onlinedocs/gcc/

Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems 32(6), 818-830 (2013)

Amy, M., Roetteler, M., Svore, K.M.: Verified compilation of space-efficient re-
versible circuits. arXiv e-prints (2016), https://arxiv.org/abs/1603.01635
Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs
verification: From Quipper circuits to QPMC. In: Proceedings of the 8th interna-
tional Conference on Reversible Computation (RC’16). pp. 213-219 (2016)
Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525-532 (1973)

. Beringer, L., Stewart, G., Dockins, R., Appel, A.: Verified compilation for shared-

memory C. In: Programming Languages and Systems, vol. 8410, pp. 107-127.
Springer LNCS (2014)

Chlipala, A.: A verified compiler for an impure functional language. In: Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’10). pp. 93-106. ACM (2010)

Claessen, K.: Embedded Languages for Describing and Verifying Hardware. PhD
thesis, Chalmers University of Technology and Goteborg University (2001)
Fournet, C., Swamy, N., Chen, J., Dagand, P.E., Strub, P.Y., Livshits, B.:
Fully abstract compilation to javascript. In: Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’13). pp. 371-384. ACM (2013)

Green, A.S., LeFanu Lumsdaine, P., Ross, N.J., Selinger, P., Valiron, B.: Quipper:
a scalable quantum programming language. In: Proceedings of the 34th annual
ACM SIGPLAN conference on Programming Language Design and Implementa-
tion (PLDI'13). ACM (2013)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC’96). pp. 212-219. ACM (1996)

Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993)

Leroy, X.: Formal certification of a compiler back-end or: Programming a com-
piler with a proof assistant. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’06). pp.
42-54. ACM (2006)

Lin, C.C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of reversible
logic circuits. Journal on Emerging Technologies in Computing Systems 10(2), 14
(2014)

Markov, I.L.: Limits on fundamental limits to computation. Nature 512, 147-154
(2014)

Maslov, D., Miller, D.M., Dueck, G.W.: Techniques for the synthesis of reversible
Toffoli networks. ACM Transactions on Design Automation of Electronic Systems
12(4), 42 (2007)

18

https://gcc.gnu.org/onlinedocs/gcc/
https://gcc.gnu.org/onlinedocs/gcc/
https://arxiv.org/abs/1603.01635

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Proceedings of the 40th Annual Design Automation
Conference (DAC’03). pp. 318-323 (2003)

Neis, G., Hur, C.K., Kaiser, J.O., McLaughlin, C., Dreyer, D., Vafeiadis, V.: Pil-
sner: A compositionally verified compiler for a higher-order imperative language.
In: Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’15). pp. 166-178. ACM (2015)

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK (2000)

Omer, B.: Quantum programming in QCL. Master’s thesis, Technical University
of Vienna (2000)

Parent, A., Roetteler, M., Svore, K.M.: Reversible circuit compilation with space
constraints. arXiv e-prints (2015), https://arxiv.org/abs/1510.00377
Perconti, J., Ahmed, A.: Verifying an open compiler using multi-language seman-
tics. In: ACM Transactions on Programming Languages and Systems, vol. 8410,
pp. 128-148. Springer LNCS (2014)

Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits. ACM
Computing Surveys 45(2), 21 (2013)

Scherer, A., Valiron, B., Mau, S.C., Alexander, S., van den Berg, E., Chapuran,
T.E.: Resource analysis of the quantum linear system algorithm. arXiv e-prints
(2015), https://arxiv.org/abs/1505.06552

Shafaei, A., Saeedi, M., Pedram, M.: Reversible logic synthesis of k-input, m-output
lookup tables. In: Proceedings of the Conference on Design, Automation and Test
in Europe (DATE’13). pp. 1235-1240 (2013)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. STAM Journal on Computing 26(5), 1484-1509
(1997)

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F*. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’16). pp. 256-270. ACM (2016)

Thomsen, M.K.: A functional language for describing reversible logic. In: Pro-
ceedings of the 2012 Forum on Specification and Design Languages (FDL’12). pp.
135-142. IEEE (2012)

Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer
(2010)

Wille, R., Grosse, D., Miller, D., Drechsler, R.: Equivalence checking of reversible
circuits. In: Proceedings of the 39th IEEE International Symposium on Multiple-
Valued Logic (ISMVL’09). pp. 324-330 (2009)

Wille, R., Offermann, S., Drechsler, R.: Syrec: A programming language for syn-
thesis of reversible circuits. In: Proceedings of the 2010 Forum on Specification and
Design Languages (FDL’10). pp. 1-6 (2010)

Yamashita, S., Markov, I.: Fast equivalence-checking for quantum circuits. In:
Proceedings of the 2010 IEEE/ACM Symposium on Nanoscale Architectures
(NANOARCH’10). pp. 23-28 (2010)

Yokoyama, T., Gliick, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of the 2007 Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’07). pp. 144-153. ACM (2007)

19

https://arxiv.org/abs/1510.00377
https://arxiv.org/abs/1505.06552

	Verified compilation of space-efficient reversible circuits

