T-count optimization and Reed-Muller codes

Matthew Amy

Joint work with Michele Mosca Institute for Quantum Computing, University of Waterloo

arXiv:1601.07363 [quant-ph]

BIRS Quantum Computer Science Workshop, Banff April 22 2016

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Why optimize T count?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Why optimize T count?

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

 $\{CNOT, T\} circuits$ Recall $(x, y \in \mathbb{F}_2)$: $(NOT : |xy\rangle \mapsto |x(x \oplus y)\rangle$

$$T: |x\rangle \mapsto \omega^{x} |x\rangle, \qquad \omega = e^{i\pi/4}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\begin{array}{l} \{\mathsf{CNOT}, \, T\} \text{ circuits} \\ \text{Recall } (x, y \in \mathbb{F}_2): \\ \\ \mathsf{CNOT} : |xy\rangle \mapsto |x(x \oplus y)\rangle \\ \\ T : |x\rangle \quad \mapsto \omega^x |x\rangle, \qquad \omega = e^{i\pi/4} \end{array}$

Proposition

A unitary U can be implemented over CNOT and T gates if and only if

 $U: |\mathbf{x}\rangle \mapsto \omega^{P(\mathbf{x})} |f(\mathbf{x})\rangle$

where:

 $\begin{array}{l} \{\text{CNOT}, T\} \text{ circuits} \\ \text{Recall } (x, y \in \mathbb{F}_2): \\ \\ \text{CNOT} : |xy\rangle \mapsto |x(x \oplus y)\rangle \\ \\ T : |x\rangle \mapsto \omega^x |x\rangle, \qquad \omega = e^{i\pi/4} \end{array}$

Proposition

A unitary U can be implemented over CNOT and T gates if and only if

$$U: |\mathbf{x}
angle \mapsto \omega^{P(\mathbf{x})} |f(\mathbf{x})
angle$$

where:

1.
$$P(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}} a_{\mathbf{y}}(x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n), \quad a_{\mathbf{y}} \in \mathbb{Z}$$

 $\begin{array}{l} \{\text{CNOT}, T\} \text{ circuits} \\ \text{Recall } (x, y \in \mathbb{F}_2): \\ \\ \text{CNOT} : |xy\rangle \mapsto |x(x \oplus y)\rangle \\ \\ T : |x\rangle \mapsto \omega^x |x\rangle, \qquad \omega = e^{i\pi/4} \end{array}$

Proposition

A unitary U can be implemented over CNOT and T gates if and only if

$$U: |\mathbf{x}
angle \mapsto \omega^{P(\mathbf{x})} |f(\mathbf{x})
angle$$

where:

1.
$$P(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}} a_{\mathbf{y}}(x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n), \quad a_{\mathbf{y}} \in \mathbb{Z}$$

2. *f* is linear (= implementable with just CNOT gates)

 $\begin{array}{l} \{\text{CNOT}, T\} \text{ circuits} \\ \text{Recall } (x, y \in \mathbb{F}_2): \\ \\ \text{CNOT} : |xy\rangle \mapsto |x(x \oplus y)\rangle \\ \\ T : |x\rangle \quad \mapsto \omega^x |x\rangle, \qquad \omega = e^{i\pi/4} \end{array}$

Proposition

A unitary U can be implemented over CNOT and T gates if and only if

$$U: |\mathbf{x}
angle \mapsto \omega^{P(\mathbf{x})} |f(\mathbf{x})
angle$$

where:

1.
$$P(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}} a_{\mathbf{y}}(x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n), \quad a_{\mathbf{y}} \in \mathbb{Z}$$

2. *f* is linear (= implementable with just CNOT gates)

Notation: $P_{\mathbf{a}}(\mathbf{x})$ denotes the (unique) "polynomial" with coefficients $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$

Consider the 1-bit full adder:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the 1-bit full adder:

 $|x_1x_2x_3x_4\rangle$

Consider the 1-bit full adder:

 $\omega^{\mathbf{x_1}}|x_1x_2x_3x_4\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2}|x_1x_2x_3x_4\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2+x_4}|x_1x_2x_3x_4\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2+x_4}|(\mathbf{x_1}\oplus\mathbf{x_2})\mathbf{x_2}\mathbf{x_3}\mathbf{x_4}\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2+x_4}|(x_1\oplus x_2)(x_2\oplus x_4)x_3x_4\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2+x_4}|(x_1\oplus x_2)(x_2\oplus x_4)x_3(x_1\oplus x_2\oplus x_4)\rangle$

Consider the 1-bit full adder:

 $\omega^{x_1+x_2+x_4+7(x_1\oplus x_2)}|(x_1\oplus x_2)(x_2\oplus x_4)x_3(x_1\oplus x_2\oplus x_4)\rangle$

 $\omega^{x_1+x_2+x_3+7(x_1\oplus x_2\oplus x_3)+2x_4+7(x_1\oplus x_4)+7(x_2\oplus x_4)+7(x_3\oplus x_4)+(x_1\oplus x_2\oplus x_3\oplus x_4)}$

 $|x_1(x_1\oplus x_2)(x_1\oplus x_2\oplus x_3)x_4
angle$

 $\omega^{x_1+x_2+x_3+7(x_1\oplus x_2\oplus x_3)+2x_4+7(x_1\oplus x_4)+7(x_2\oplus x_4)+7(x_3\oplus x_4)+(x_1\oplus x_2\oplus x_3\oplus x_4)}$

 $|x_1(x_1\oplus x_2)(x_1\oplus x_2\oplus x_3)x_4\rangle$

 $\mathbf{a} = (1, 1, 0, 1, 0, 0, 7, 2, 7, 7, 0, 7, 0, 0, 1)$

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)

2. Apply T^{a_y}

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)

- 2. Apply T^{a_y}
- 3. Uncompute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

- 1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)
- 2. Apply T^{a_y}
- 3. Uncompute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$

Alternatively, use the *T*-par algorithm (arXiv:1303.2042)...

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})}|\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

- 1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)
- 2. Apply T^{a_y}
- 3. Uncompute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$

Alternatively, use the *T*-par algorithm (arXiv:1303.2042)...

Recall: $T^2 := P, T^4 := Z$, so total T count is

$$\sum_{\mathbf{y}\in\mathbb{F}_{2}^{n}\setminus\{\mathbf{0}\}}(a_{\mathbf{y}}\mod2)$$

Given $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$, we can synthesize $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})}|\mathbf{x}\rangle$ as follows: For each non-zero component $\mathbf{a}_{\mathbf{y}}$ of \mathbf{a} ,

- 1. Compute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$ (O(n) CNOT gates)
- 2. Apply T^{a_y}
- 3. Uncompute $x_1y_1 \oplus x_2y_2 \oplus \cdots \oplus x_ny_n$

Alternatively, use the *T*-par algorithm (arXiv:1303.2042)...

Recall: $T^2 := P, T^4 := Z$, so total T count is

$$\sum_{\mathbf{y}\in\mathbb{F}_2^n\setminus\{\mathbf{0}\}}(a_{\mathbf{y}}\mod 2)$$

Notation

- ▶ Res₂(**a**) is the component-wise binary residue of $\mathbf{a} \in \mathbb{Z}_8^n$
- wt(x) is the hamming weight of $\mathbf{x} \in \mathbb{F}_2^n$

Total *T*-count is wt(Res₂(**a**))

Observe for n = 2: $P(x, y) = 4x + 4y + 4(x \oplus y)$ $= 0 \mod 8 \quad \forall x, y \in \mathbb{F}_2$ $\implies |xy\rangle \mapsto \omega^{P(x,y)} |xy\rangle$ is the identity operator

Observe for n = 2: $P(x, y) = 4x + 4y + 4(x \oplus y)$ $= 0 \mod 8 \quad \forall x, y \in \mathbb{F}_2$ $\implies |xy\rangle \mapsto \omega^{P(x,y)}|xy\rangle \text{ is the identity operator}$ More generally, $\omega^{P_a(\mathbf{x})} = \omega^{P_b(\mathbf{x})}$ for all \mathbf{x} if and only if $P_a(\mathbf{x}) - P_b(\mathbf{x}) = P_{a-b}(\mathbf{x}) = 0 \mod 8 \quad \forall \mathbf{x} \in \mathbb{F}_2^n$

Observe for n = 2: $P(x, y) = 4x + 4y + 4(x \oplus y)$ $= 0 \mod 8 \quad \forall x, y \in \mathbb{F}_2$ $\implies |xy\rangle \mapsto \omega^{P(x,y)} |xy\rangle \text{ is the identity operator}$ More generally, $\omega^{P_{\mathbf{a}}(\mathbf{x})} = \omega^{P_{\mathbf{b}}(\mathbf{x})}$ for all \mathbf{x} if and only if $P_{\mathbf{a}}(\mathbf{x}) - P_{\mathbf{b}}(\mathbf{x}) = P_{\mathbf{a}-\mathbf{b}}(\mathbf{x}) = 0 \mod 8 \quad \forall \mathbf{x} \in \mathbb{F}_2^n$

Alternatively, the class of tuples giving phase polynomials equivalent to $P_{\mathbf{a}}$ is $\mathbf{a} + C_n$, where

$$\mathcal{C}_n = \{ \mathbf{c} \in \mathbb{Z}_8^{2^n-1} \mid P_{\mathbf{c}}(\mathbf{x}) = 0 \mod 8 \quad \forall \mathbf{x} \in \mathbb{F}_2^n \}$$

Observe for n = 2: $P(x, y) = 4x + 4y + 4(x \oplus y)$ $= 0 \mod 8 \quad \forall x, y \in \mathbb{F}_2$ $\implies |xy\rangle \mapsto \omega^{P(x,y)} |xy\rangle \text{ is the identity operator}$ More generally, $\omega^{P_a(\mathbf{x})} = \omega^{P_b(\mathbf{x})}$ for all \mathbf{x} if and only if $P_a(\mathbf{x}) - P_b(\mathbf{x}) = P_{a-b}(\mathbf{x}) = 0 \mod 8 \quad \forall \mathbf{x} \in \mathbb{F}_2^n$

Alternatively, the class of tuples giving phase polynomials equivalent to $P_{\mathbf{a}}$ is $\mathbf{a} + C_n$, where

$$\mathcal{C}_n = \{ \mathbf{c} \in \mathbb{Z}_8^{2^n - 1} \mid P_{\mathbf{c}}(\mathbf{x}) = 0 \mod 8 \quad \forall \mathbf{x} \in \mathbb{F}_2^n \}$$

Proposition

There exists an implementation of $|\mathbf{x}\rangle \mapsto \omega^{P_{\mathbf{a}}(\mathbf{x})} |\mathbf{x}\rangle$ over $\{CNOT, T\}$ with T-count k if and only if there exists $\mathbf{c} \in C_n$ s.t.

 $wt(Res_2(\mathbf{a} + \mathbf{c})) = wt(Res_2(\mathbf{a}) \oplus Res_2(\mathbf{c})) = k$

Coding theory

Definition (Binary linear code)

A binary linear code of length n is a subgroup $C < \mathbb{F}_2^n$ Example: $\text{Res}_2(C_n) < \mathbb{F}_2^{2^n-1}$ is a binary linear code

Coding theory

Definition (Binary linear code)

A binary linear code of length n is a subgroup $C < \mathbb{F}_2^n$ Example: $\text{Res}_2(C_n) < \mathbb{F}_2^{2^n-1}$ is a binary linear code

Definition (Minimum distance decoding)

The minimum distance decoding problem for a binary linear code of length n in C is to find, given a vector $\mathbf{x} \in \mathbb{F}_2^n$, some $\mathbf{y} \in C$ such that for all $\mathbf{z} \in C$,

$$\mathsf{wt}(\mathbf{x} \oplus \mathbf{y}) \leq \mathsf{wt}(\mathbf{x} \oplus \mathbf{z})$$

Coding theory

Definition (Binary linear code)

A binary linear code of length n is a subgroup $C < \mathbb{F}_2^n$ Example: $\text{Res}_2(C_n) < \mathbb{F}_2^{2^n-1}$ is a binary linear code

Definition (Minimum distance decoding)

The minimum distance decoding problem for a binary linear code of length *n* in *C* is to find, given a vector $\mathbf{x} \in \mathbb{F}_2^n$, some $\mathbf{y} \in C$ such that for all $\mathbf{z} \in C$,

$$\mathsf{wt}(\mathbf{x} \oplus \mathbf{y}) \leq \mathsf{wt}(\mathbf{x} \oplus \mathbf{z})$$

 \implies Optimizing the *T*-count for P_a is equivalent to minimally decoding Res₂(a) in Res₂(C_n)!

Reed-Muller codes

Given $f \in \mathbb{F}_2[x_1, x_2, ..., x_n]$, the evaluation vector of f is $\mathbf{f} = (f(1, 0, ..., 0), f(0, 1, ..., 0), ..., f(1, 1, ..., 1))$

Note: the *total degree* of a monomial $x_{i_1}x_{i_2}\cdots x_{i_k}$ is k

Reed-Muller codes

Given $f \in \mathbb{F}_2[x_1, x_2, \dots, x_n]$, the evaluation vector of f is

$$\mathbf{f} = (f(1, 0, \dots, 0), f(0, 1, \dots, 0), \dots, f(1, 1, \dots, 1))$$

Note: the *total degree* of a monomial $x_{i_1}x_{i_2}\cdots x_{i_k}$ is k

Definition (Punctured Reed-Muller code)

$$\mathcal{RM}(r,n)^* = \{\mathbf{f} \mid f \in \mathbb{F}_2[x_1, x_2, \dots, x_n], \deg(f) \leq r\}$$
Main theorem

Theorem

$$Res_2(\mathcal{C}_n) = \mathcal{RM}(n-4, n)^*$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Upper bounds

Covering radius of a code C:

$$\rho(C) = \max_{\mathbf{x} \in \mathbb{F}_2^n} \min_{\mathbf{y} \in C} \operatorname{wt}(\mathbf{x} \oplus \mathbf{y})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Upper bounds

Covering radius of a code C:

$$\rho(C) = \max_{\mathbf{x} \in \mathbb{F}_2^n} \min_{\mathbf{y} \in C} \mathsf{wt}(\mathbf{x} \oplus \mathbf{y})$$

Theorem (Cohen & Litsyn '92) For large n and orders r where $n - r \ge 3$,

$$\rho(\mathcal{RM}(r,n)) \leq \frac{n^{n-r-2}}{(n-r-2)!}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Upper bounds

Covering radius of a code C:

$$ho(C) = \max_{\mathbf{x} \in \mathbb{F}_2^n} \min_{\mathbf{y} \in C} \operatorname{wt}(\mathbf{x} \oplus \mathbf{y})$$

Theorem (Cohen & Litsyn '92) For large n and orders r where $n - r \ge 3$,

$$\rho(\mathcal{RM}(r,n)) \leq \frac{n^{n-r-2}}{(n-r-2)!}.$$

Corollary

Any n-qubit unitary implementable over $\{CNOT, T\}$ can be synthesized with $O(n^2)$ T gates.

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

1. Compute phase coefficients $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

- 1. Compute phase coefficients $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$
- 2. Decode binary residue of **a** in $\mathcal{RM}(n-4, n)^*$ as **w**

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

- 1. Compute phase coefficients $\bm{a} \in \mathbb{Z}_8^{2^n-1}$
- 2. Decode binary residue of **a** in $\mathcal{RM}(n-4, n)^*$ as **w**

3. Find some $\mathbf{c} \in \mathcal{C}_n$ with binary residue equal to \mathbf{w}

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

- 1. Compute phase coefficients $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$
- 2. Decode binary residue of **a** in $\mathcal{RM}(n-4, n)^*$ as **w**

- 3. Find some $\mathbf{c} \in \mathcal{C}_n$ with binary residue equal to \mathbf{w}
- 4. Synthesize circuit with coefficients $\mathbf{a} + \mathbf{c}$

Algorithm: Given *n*-qubit circuit over $\{CNOT, T\}$,

- 1. Compute phase coefficients $\mathbf{a} \in \mathbb{Z}_8^{2^n-1}$
- 2. Decode binary residue of **a** in $\mathcal{RM}(n-4, n)^*$ as **w**

- 3. Find some $\mathbf{c} \in \mathcal{C}_n$ with binary residue equal to \mathbf{w}
- 4. Synthesize circuit with coefficients $\mathbf{a} + \mathbf{c}$

Problem: how do we find c?

A closer look at step 3

Given $f \in \mathbb{F}_2[x_1, x_2, ..., x_n]$, denote by $\overline{f} \in \mathbb{Z}_8[x_1, x_2, ..., x_n]$ the polynomial obtained by replacing addition and multiplication mod 2 with mod 8.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A closer look at step 3

Given $f \in \mathbb{F}_2[x_1, x_2, ..., x_n]$, denote by $\overline{f} \in \mathbb{Z}_8[x_1, x_2, ..., x_n]$ the polynomial obtained by replacing addition and multiplication mod 2 with mod 8.

Example

Suppose $f = x_1x_2 \oplus x_1x_3 \oplus x_5$ Then $\overline{f} = x_1x_2 + x_1x_3 + x_5 \mod 8$

 $\overline{\mathbf{f}}$ denotes the tuple of (non-trivial) *binary* evaluations of \overline{f}

A closer look at step 3

Given $f \in \mathbb{F}_2[x_1, x_2, ..., x_n]$, denote by $\overline{f} \in \mathbb{Z}_8[x_1, x_2, ..., x_n]$ the polynomial obtained by replacing addition and multiplication mod 2 with mod 8.

Example

Suppose
$$f = x_1x_2 \oplus x_1x_3 \oplus x_5$$

Then $\overline{f} = x_1x_2 + x_1x_3 + x_5 \mod 8$

 $\overline{\mathbf{f}}$ denotes the tuple of (non-trivial) *binary* evaluations of \overline{f}

Lemma

For all
$$f \in \mathbb{F}_2[x_1, x_2, \dots, x_n]$$
, if $\mathbf{f} \in \mathcal{RM}(n-4, n)^*$ then $\overline{\mathbf{f}} \in \mathcal{C}_n$

Optimizing the adder

Want to decode $\text{Res}_2(\mathbf{a}) = (1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1)$ in $\text{Res}_2(\mathcal{C}_n) = \mathcal{RM}(0, 4)^*$ with minimum distance

Optimizing an adder

$$\mathsf{Res}_2(\mathbf{a}) = (1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1)$$

We know

So minimum distance (7) decoding of $\text{Res}_2(\mathbf{a})$ is the all-one vector

(ロ)、(型)、(E)、(E)、 E) の(の)

Optimizing an adder

$$\mathsf{Res}_2(\mathbf{a}) = (1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1)$$

We know

So minimum distance (7) decoding of $\text{Res}_2(\mathbf{a})$ is the all-one vector

Now f = 1 (the constant polynomial), so

Optimizing an adder

$$\mathsf{Res}_2(\mathbf{a}) = (1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1)$$

We know

So minimum distance (7) decoding of $\text{Res}_2(\mathbf{a})$ is the all-one vector

Now f = 1 (the constant polynomial), so

Finally synthesize with phase coefficients

 $\bm{a} + \bm{c} = (2, 2, 1, 2, 1, 1, 0, 3, 0, 0, 1, 0, 1, 1, 2)$

・ロト・日本・モート モー うへぐ

Optimizing an adder

Resulting circuit:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Previously: *T*-count 8, *T*-depth 2 Now: *T*-count 7, *T*-depth 3

Applications Complexity

 $\mathrm{MDD}(\mathcal{RM}(n-4,n)^*) - \\$

Minimum distance decoding in $\mathcal{RM}(n-4, n)^*$ T-MIN $(n, {CNOT, T})$ –

T-count minimization over *n*-qubit {CNOT, *T*} circuits

Applications Complexity

 $\mathrm{MDD}(\mathcal{RM}(n-4,n)^*) -$

Minimum distance decoding in $\mathcal{RM}(n-4, n)^*$ T-MIN $(n, {CNOT, T}) -$

T-count minimization over *n*-qubit {CNOT, *T*} circuits

Theorem $MDD(\mathcal{RM}(n, n-4)^*) \leq_P T-MIN(n, \{CNOT, T\})$

Benchmarks (excerpt)

Benchmark	n	T-count			
		Original	T-par	Majority	Recursive
Grover ₅	9	140	52	52	52
Mod 5 ₄	5	28	16	16	16
VBE-Adder ₃	10	70	24	24	24
CSLA-MUX ₃	15	70	62	62	58
CSUM-MUX ₉	30	196	140	84	76
QCLA-Com ₇	24	203	95	94	153
QCLA-Mod ₇	26	413	249	238	299
Adder ₈	24	399	215	213	249
RC-Adder ₆	14	77	63	47	47
Mod-Red ₂₁	11	119	73	73	73
Mod-Mult ₅₅	9	49	37	35	35
Mod-Adder ₁₀₂₄	28	1995	1011	1011	1011
BCSD ₂	9	14	14	2	2
BCSD ₄	14	20	20	4	4
BCSD ₈	21	32	32	8	8
Cycle 17_3	35	4739	1945	1944	1982
GF(2 ⁴)-Mult	12	112	68	68	68
GF(2 ⁵)-Mult	15	175	111	111	101
GF(2 ⁶)-Mult	18	252	150	150	144
GF(2 ⁷)-Mult	21	343	217	217	208
GF(2 ⁸)-Mult	24	448	264	264	237
HWB ₆	7	105	71	75	75
HWB ₈	12	5887	3551	3531	3531
nth-prime ₆	9	812	402	400	400
nth-prime ₈	12	6671	4047	4045	4045

Generalizations

Given a primitive rotation gate $R(2\pi/2^k)$, define the set of zero-everywhere phase functions as

$${\mathcal C}_n^k = \{ {f c} \in {\mathbb Z}^{2^n-1} \mid P_{f c}({f x}) = 0 \mod 2^k \quad orall {f x} \in {\mathbb F}_2^n \}$$

Theorem

$$Res_2(\mathcal{C}_n^k) = \mathcal{RM}(n-k-1,n)^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalizations

Given a primitive rotation gate $R(2\pi/2^k)$, define the set of zero-everywhere phase functions as

$${\mathcal C}_n^k = \{ {f c} \in {\mathbb Z}^{2^n-1} \mid P_{f c}({f x}) = 0 \mod 2^k \quad orall {f x} \in {\mathbb F}_2^n \}$$

Theorem

$$Res_2(\mathcal{C}_n^k) = \mathcal{RM}(n-k-1,n)^*$$

Going further, we have a characterization of the zero-everywhere functions for any *composite* denominator $R(\pi/q)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exact minimization of T-count over {CNOT, T} – **Done!**

Exact minimization of *T*-count over {CNOT, *T*} – **Done!**

• *T*-count optimization algorithm using any \mathcal{RM} decoder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exact minimization of T-count over {CNOT, T} – **Done!**

- T-count optimization algorithm using any \mathcal{RM} decoder
- Upper bound of $O(n^2)$ *T*-gates per {CNOT, *T*} circuit

Exact minimization of T-count over {CNOT, T} – **Done!**

- T-count optimization algorithm using any \mathcal{RM} decoder
- Upper bound of $O(n^2)$ *T*-gates per {CNOT, *T*} circuit

multi-qubit *T*-count optimization is really hard

Exact minimization of T-count over {CNOT, T} – **Done!**

- T-count optimization algorithm using any \mathcal{RM} decoder
- Upper bound of $O(n^2)$ *T*-gates per {CNOT, *T*} circuit
- multi-qubit *T*-count optimization is really hard

Future work

- Optimization of all phase gates
 - Heuristic optimize $R(\pi/2^k)$ gates in order of decreasing k.

• Preferable – decode directly over C_n^k ...

Exact minimization of T-count over {CNOT, T} – **Done!**

- T-count optimization algorithm using any \mathcal{RM} decoder
- Upper bound of $O(n^2)$ T-gates per {CNOT, T} circuit
- multi-qubit *T*-count optimization is really hard

Future work

- Optimization of all phase gates
 - Heuristic optimize $R(\pi/2^k)$ gates in order of decreasing k.
 - Preferable decode directly over C^k_n...
- ► Optimizing {CNOT, *T*, *H*} circuits
 - About 75% done
 - Requires partial decoding decoding with some bits known

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>