Verified compilation of space-efficient reversible circuits

Matthew Amy! Martin Roetteler? Krysta Svore?

L University of Waterloo
2 Microsoft Research

July 25, 2017

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 1/1

Quantum computing
Theory:

arvxturrrw Cryptography Will Break The Bank
006I8B66606i ‘

The Quantum Algorithm

P¢ That Could Break the

% Internet

The Clock Is Ticking for Encryption

The tidy world of cryptography may be upended by the
arrival ofquamum computers.

When does a quantum computer start to get o o o
“ Your Encryption Will Be Useless seany? =
ty Colste i

B Against Hackers with Quantum

r scientist at the Massachusetts Insttute o Technology, explains why

& 9 QUANTUM COMPUTING KILLS imfor qusntum computr tha could unrave our onln dats
J ENCRYPTION

I by: Etliot Willia

. N . ent e
Online security braces for quantum revolution oF e e =

Quantum Computer Comes Closer to
Cracking RSA Encryption

Encryption fix begins in preparation for arivalof uturistic computers.

Chris Cesare

i CE=1

Quantum Computers And The End Of
{ Security

By
Posted 3 Mar 20151 19:03 GMT

2101100101011001010101
1

Quantum computing and quantum communlcations; these c«

oo NSA SWITCHES TO QUANTUM-RESISTANT
Senimconpie. CRYPTOGRAPHY

1010010111001011
I) EREE o 110010119#64101110010401
0100 101:
0101111010¢

B n a recently published FAQ, the NSA outlines the switch for NSS (National
1 h (Commercial

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

Quantum computing

Reality:

Quantum computing is weakened by the high degree of overhead
required to perform classical computations reversibly
(and to correct errors)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 3/1

Reversible computing

Every operation must be invertible
e xNy=0 = x=777y =777

@ Can't re-use memory without “uncomputing” its value first

To perform classical functions reversibly, embed in a larger space
e Toffoli(x,y,z) = (x,y,z 7 (x /\y))
e Toffoli(x,y,0) = (x,y,x / y)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

4/1

Reclaiming space
Naive “reversibilification”: replace every AND gate with a Toffoli

@ Temporary bits are called ancillas

@ Uses space linear(!) in the number of AND gates

Bennett's trick: copy out result of a computation & uncompute

X1 — — X1
: 1 :
Xp — Ur fol— Xp
0 — — 0
0 & f(X]_, . aXn)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

5/1

Resource estimation

Quantum compilers = resource estimators

@ Estimate how much overhead a real implementation incurs

Typical design flow (e.g. Quipper, QCL):

High-level code
with irreversible
functions as oracles

Use compiled circuit
metrics to estimate
error correction

—

Expand oracles into
reversible circuits

Y

Combine into
one large circuit

H

Ex. The QLS algorithm has an estimated

Matthew Amy (uWaterloo)

ReVerC

space blowup of x10°!

CAV July 25, 2017

6/1

Why verify?
Resource estimates vary wildly between compilers

Typical hardware verification doesn't scale, since reversible circuits are
monolithic & generally not reusable

@ Think assembly without labels or jumps

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 7/1

REVERC

o Compiler for the F# embedded DSL REvsS
@ Performs optimizations for space-efficiency
@ Formally verified in F*
°

Includes a BDD-based assertion-checker for program verification

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 8/1

Compiler architecture

[F# quotation]

T
E Parser,
i Integer evaluator
r * 1 RE\]ER(j Core
REVsS
L J
Parameter inference
()
R et A Typed REVS
N |)
Dependence analysis ! :])
h Partial evaluation
\2 :
o Bool]
: oolean
MDD : .
abstract machine
T :
E ¢ Circuit Eager cleanup Flattening
Circuit synthesis | synthesis synthesis
1 M
! :
|
|

-------------- »[Reversible circuit]4—[Boolean expression]

Circuit synthesis

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 9/1

REVS

()
F# quotation

L J
T
I
! Parser,
i Integer evaluator
Y

()

REVS
L J

Parameter inference

's N

_______________ Typed REVS

L J

Dependence analysis])
Partial evaluation

; , :
MDD Boolean .
L abstract machine)

E Circuit Eager cleanup Flattening
Circuit synthesis | synthesis synthesis
,
,
,
,

-------------- >[Reversible circuit]4—[Boolean expression J

Circuit synthesis

Matthew Amy (uWaterloo)

CAV July 25, 2017 10/1

REVS by example
n-bit adder

let adder n = <@
fun a b ->
let maj a b c = (a A (b D <)) & (b A
let result = Array.zeroCreate (n)
let mutable carry = false

result.[0] <+ a.[0] & b.[0]

for i in 1 .. n-1 do
carry < maj a.[i-1] b.[i-1] carry
result.[i] «+ a.[i] b.[i] carry
assert result.[i] = (a.[i]l] & b.[i]
result

>

**Note: all control is compile-time static

carry)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 1 /1

REVS by example
n-bit adder

=W N = O
L J
L J
W N = o

o
N
fan)
3V

© o N »
e ® 9 o o

[4n)
>
f4n)
A\
ah)
N

-
[=]
fany
"y
o
"y
N
N
=
o

11
12
13
14

oD
Ay
fah)
V
=
=

m
\v
®
L J
L J
Pany
\v
Fany
\V)
Fan
N

Pany
| N7

o
N
fan)
3V

pany
N5
Pary
&

[4
Pary
&
Sva]
[
te
Py
N>,

-

w

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 12/1

Boolean abstract machine

()
F# quotation

L J
T
I
! Parser,
i Integer evaluator
Y

()

REVS
L J

Parameter inference

's N

_______________ Typed REVS

L J

Dependence analysis])
Partial evaluation

; , :
[MDD J Boolean

abstract machine

E Circuit Eager cleanup Flattening
Circuit synthesis | synthesis synthesis
,
,
,
,

-------------- »[Reversible circuit]<—[Boolean expression]

Circuit synthesis

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 13/1

Boolean abstract machine

We use partial evaluation to reduce REVS to a sequence of assignments
o Lvalue most be a new, O-valued store location
@ RHS is a Boolean expression
@ Semantics & transformation coincide — easier verification!

After expanding & assigning unique locations to a 4-bit adder:

(* result = alloc(4), carrypg = alloc(1l) *)

result. [0] a.[0] b.[0]

carryp (a.[0] (b. [0] carryop)) (b. [0] carryop)
result.[1] a.[1] b.[1] carry;

carryp (a.[1] (b.[1] carryi)) (b.[1] carryi)
result. [2] a.[2] b.[2] carrys

carrys (a.[2] (b.[2] carrys)) (b.[2] carrys)
result . [3] a.[3] b.[3] carrys

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 14 /1

Circuit compilation

()
F# quotation

L J
T
I
! Parser,
i Integer evaluator
Y

()

REVS
L J

Parameter inference

's N

_______________ Typed REVS

L J

Dependence analysis])
Partial evaluation

; , :
MDD Boolean .
L abstract machine)

E Circuit Eager cleanup Flattening
Circuit synthesis | synthesis synthesis
,
,
,
,

-------------- >[Reversible circuit]4—[Boolean expression J

Circuit synthesis

Matthew Amy (uWaterloo)

CAV July 25, 2017 15/1

Eager Cleanup

A.K.A. garbage collection

(¥ result = alloc(4), carryg = alloc (1) x*)

1 result.[0] <« a.[0] b. [0]

2 carryj < (a.[0] AN (b.[o0] carryg)) (b.[0] A carryg)
3 result.[1] « a.[1] b.[1] carryp

4 carrysp « (a.[1] ~ (b.[1] carryi)) (b.[1] N carryp)
5 result.[2] « a.[2] b.[2] carrysp

6 carrys « (a.[2] ~ (b.[2] carryy)) (b.[2] N carry))
7 result.[3] « a.[3] b.[3] carrys

After line 4, we can garbage-collect carry; and reuse its space for carrys
Problem: we can't overwrite carry; with the 0 state
Solution: each location i is associated with an expression x(/) s.t.

i®k(i)=0

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 16 /1

Eager Cleanup

o AW N

c1 + a.[0]l A b.[0]
Cp < (a.[l] A (b-[i]

D oc1)) © (b.[11 A c1)

clean c; (* c1 ¢+ c1 @ w(cy1) *)

c3 < (a.[2] ~ (b.[2]

& c2)) @ (b.[2] A c2)

clean cp (* cy < cap @ K(ca) *)

r(c1)

r(c2)

K(c1)

Matthew Amy (uWaterloo)

ReVerC

Eager Cleanup

o AW N

c1 + a.[0]l A b.[0]
Cp < (a.[l] A (b-[i]

D oc1)) © (b.[11 A c1)

clean c; (* c1 ¢+ c1 @ w(cy1) *)

c3 < (a.[2] ~ (b.[2]

& c2)) @ (b.[2] A c2)

clean cp (* cy < cap @ K(ca) *)

r(c1) K(c2) r(c1)

1 0 0 0

2 | ag A bg 0 0

3

4

5

6
Matthew Amy (uWaterloo) ReVerC

Eager Cleanup

c1 + a.[0]l A b.[0]

cp « (a.[1] N (b.[1] = c1)) & (b.[1] A c1)
clean c; (* c1 + c1 @ w(cy) *)

c3 « (a.[2] N (b.[2] = c2)) & (b.[2] A c2)
clean cp (* co + ca @ k(ca) *)

o AW N

r(c1) r(c2) r(c1)
1 0 0 0
2 | agAbo 0 0

3 | a0 Abo (a1 A (b1 @D c1)) ® (b1 A cr) 0
4

5

6

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 /1

Eager Cleanup

ci < a.[0] N b.[O0]

co + (a.[1] A (b.[1]1 © c1)) & (b.[1]1 A c1)
clean c; (* c1 + c1 @ w(cy) *)

c3 + (a.[2] ~ (b.[2] © c2)) & (b.[2] A c2)
clean cp (* co + ca @ k(ca) *)

o AW N

r(c1) w(c2) r(c1)
1 0 0 0
2 | agAbo 0 0
3 | a0 Abo (a1 A (b1 @D c1)) ® (b1 A cr) 0
4 0 (a1 A (b1 @ (a0 A bo))) @ (b1 A (a0 A bo)) 0
5
6

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 /1

Eager Cleanup

o AW N

ci < a.[0] N b.[O0]
cx « (a.[1] A (b.[1] © c1)) © (b.[1] A c1)
clean c; (* c1 + c1 @ k(c1) *)
c3 «+ (a.[2] A (b.[2] © c2)) & (b.[2] A c2)
clean cy (* cy + c2 @ K(ca) *)
k(c1) K(c2) r(c1)
1 0 0 0
2 | ag A bg 0 0
3 ap N\ by (al/\(bl@cl))@(bl/\cl) 0
4 0 (a1 A (b1 @ (a0 A bp))) @ (b1 A (a0 A bo)) 0
5 0 (31 /\(bléB(ao/\bo)))éB(bl /\(ao/\bo)) (az/\(bz@CQ))GB(bg/\CQ)
6
Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

17 /1

Eager Cleanup

o AW N

ci < a.[0] N b.[O0]
cx « (a.[1] A (b.[1] © c1)) © (b.[1] A c1)
clean c; (* c1 + c1 @ k(c1) *)
c3 « (a.[2] A (b.[2] © c2)) © (b.[2] A c2)
clean cy (* cy + c2 @ K(ca) *)
k(c1) K(c2) r(c1)
1 0 0 0
2 | ag A bg 0 0
3 ap N\ by (al/\(bl@cl))@(bl/\cl) 0
4 0 (a1 A (b1 @ (a0 A bp))) @ (b1 A (a0 A bo)) 0
5 0 (31 /\(bléB(ao/\bo)))EB(bl /\(ao/\bo)) (az/\(bz@CQ))GB(bg/\CQ)
6 0 0 777
Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

17 /1

Verification

Formal verification of REVERC! carried out in F*
~ 2000 lines of code
~ 2200 lines of proof code, written in 1"person month”

Main theorems:
@ Circuit synthesis produces correct output
@ Circuit synthesis cleans all intermediate ancillas
@ Each abstract machine compiler preserves the semantics

@ All optimizations correct, etc.

https://github.com/msr-quarc/ReVerC
Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

18/1

https://github.com/msr-quarc/ReVerC

Verifying Bennett

The Bennett trick:

X1 —] — X1
: 1 :
Xp — Ur Us™ | Xn
0 — — 0
0 D (X1, yXn)

Works because the middle gate does not affect bits used in Uy

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017

19/1

Verifying Bennett

A generalized Bennett method

Given a circuit C and set of bits A, we can uncompute C on A if no bits of
A are used as controls in C

C uncompute(C, A)

x —Fq - :_ _: X
| |

y D D 1D D |
| N U | I\J U |
| |

z MM | M M z
[\ U ||____:J__\J_,
| A |
| U |

A

| () |
L - ____ _l

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 20/1

Verifying Bennett
bennett : C:circuit copy:circuit st:state
Lemma (requires (wfCirc C disjoint (uses C) (mods copy)))
(ensures (agree_on st
(evalCirc (C@copy@(rev C)) st)
(uses C)))
bennett C copy st =
st’, st’’ = evalCirc C st, evalCirc (CQ@copy) st
eval_mod st’ copy;
ctrls_sub_uses (rev C);
evalCirc_state_swap (rev C) st’ st’’ (uses C);
rev_inverse C st

uncompute_mixed_inverse : C:circuit A:set int st:state
Lemma (requires (wfCirc C disjoint A (ctrls C)))
(ensures (agree_on st
(evalCirc (rev (uncompute C A)) (evalCirc C st))
(complement A))
uncompute_mixed_inverse C A st =
uncompute_agree C A st;
uncompute_ctrls_subset C A;
evalCirc_state_swap (rev (uncompute C A))
(evalCirc C st)
(evalCirc (uncompute C A) st)
(complement A);
rev_inverse (uncompute C A) st

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 21 /1

Experiments

Bit counts with eager cleanup ~ to state-of-the-art compiler

Benchmark REVS (eager) REVERC (eager)

bits gates Toffolis bits gates Toffolis

carryRippleAdd 32 129 467 124 113 361 90
carryRippleAdd 64 257 947 252 225 745 186
mult 32 128 6016 4032 128 6016 4032
mult 64 256 24320 16256 256 24320 16256
carryLookahead 32 109 1036 344 146 576 146
carryLookahead 64 271 3274 1130 376 1649 428
modAdd 32 65 188 62 65 188 62
modAdd 64 129 380 126 129 380 126
cucarroAdder 32 65 98 32 65 98 32
cucarroAdder 64 129 194 64 129 194 64
ma4 17 24 8 17 24 8
SHA-2 round 353 2276 754 449 1796 594
MD5 7905 82624 27968 4769 70912 27520

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 22 /1

Conclusion

@ Formalized an irreversible language REVS
@ Designed a new eager cleaning method based on cleanup expressions
@ Implemented & formally verified a compiler (REVERC) in F*

Take aways

@ Proving theorems about real code is not unreasonably difficult

@ Design code in such a way to minimize the scope of difficult logic

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 23 /1

Thank you!

Questions?

Matthew Amy (uWaterloo) ReVerC

