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Peephole optimizations
» Re-writing some small segment of code
» Classical: re-write rules on assembly code
» Quantum: templates, peephole re-synthesis
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Compiler optimizations

Peephole optimizations
» Re-writing some small segment of code
» Classical: re-write rules on assembly code
» Quantum: templates, peephole re-synthesis

Code generation
» Compiling efficient code
» Classical: Register allocation, instruction scheduling, etc.
» Quantum: Oracle synthesis, gate synthesis, routing, etc.

Analysis-based optimizations
» Proving some facts about code
» Classical: Constant propagation, common subexpression
elimination, dead code elimination, etc.
» Quantum: 777

In this talk:
Tools for writing analysis-based optimizations
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Analysis-based optimizations

» Uses (some form of) abstract interpretation
» e.g., data-flow analysis, symbolic execution, etc.
» Basic recipe: (semantics + facts) x
» e.g., In every execution, the read of variable x at location ¢
may read the definitions of x at locations in M
» Often uses set-based collecting semantics with an abstraction

function and/or abstract transformers

Semantics Facts
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At each location in the program, we want to know which
definitions to variables can reach that point

1 x=1;
2y = 2;

3 if (x<=1y) {
4 x = 0;
5 } else {

6 x = 3;
7}

8

9 if (x> 0) {
10

1 }
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At each location in the program, we want to know which
definitions to variables can reach that point

1 x =1,

2y = 2;

3 if (x<=1y) { // x =1, y =2 reach
4 x = 0;

5 } else {

6 x = 3;

7}

8

9 if (x> 0) { // x =0 or x = 3 reach
10 /% error x/

1}
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At each location in the program, we want to know which
definitions to variables can reach that point

1 x = 1;

2 y = 2;

3 x = 0;

4

5 if (x> 0) { // x = 0 reaches
6

7}
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The linear-algebraic view

A state of n qubits is a unit vector in C?"

) = erzg axlx),  xe€{0,1}" =73

Computations change the state by applying unitary matrices to
states
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The path integral view

A quantum process is a collection of (classical) paths

The amplitude of a state is the sum of the amplitudes of all
paths leading to it

A= (a+B+7v)B+dC
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As an object, we can represent a path integral by
» a collection I of paths 7 : x — x’ between basis states, and
» an amplitude function ¢ : 1 — C

The action is the mapping

)= D e(m)x)

mix—x' €My
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Composition of computations or circuits is path composition

B B
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Composition

Composition of computations or circuits is path composition

Syntactically, corresponds to relational composition
MoN={rr":x—=x|7:x=>x"eNAr :x"—>x eN}

(' 0 ®) (7' o) = B(m)d' (')
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We can encode a unitary U : |i) — jezs Ujjlj) as a path integral:

Ny = {mli,j € Z3}
Py(my) = Uy
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Recovering the linear algebraic view
We can encode a unitary U : |i) — ez Ujjlj) as a path integral:
I_IU = {ﬂ-U‘I?J € Zg}
®y(mi) = Uj

We can also recover a matrix by summing over all paths for each
beginning and end point:

U= > ¢(n)

mii—jel
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Recovering the linear algebraic view
We can encode a unitary U : |i) — ez Ujjlj) as a path integral:
My = {myli.j € Z3}
®y(mi) = Uj

We can also recover a matrix by summing over all paths for each
beginning and end point:

Uj= Y ¢(m)

mii—jel

Can be viewed as delayed matrix multiplication

(VU); = > du(m)pv ()

7r:i—>jel'lu,7r’:j—>kel'lv

—> BQP C PSPACE, BQP C PP
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Symbolic path integrals

For d-dimensional systems we can
» label each path 7 by a length k > n bit string x € ZZ
» write the end point as a function f : Z’C‘, /A
> write the amplitude ¢ : ij — C as a function of this bit string
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Phase gates, e.g.

S= [(1) (1)] ., T= E g] . Rz(8) = [3 e?o]

apply a phase conditional on certain paths

0) T—— 0)
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Phase gates, e.g.

S= [(1) (1)] ., T= E 2] . Rz(8) = [3 e?o]

apply a phase conditional on certain paths

0) T—— 0)

1)

Y
Y
=

We can write this symbolically as
T : |x) — w¥|x) for any x € Z»
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Classical gates like

permute the states

13/36



Classical gates like

permute the states

Symbolically,

X :|x) = |1&x) for any x € Zo
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The hadamard gate H branches on a classical value in
superposition with equal weight % and varying phase

0) 0)
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The hadamard gate H branches on a classical value in
superposition with equal weight % and varying phase

H
1 > > 1
v — v
Symbolically,

Z —1)|y) for x € Zy
Y€E€Z>

y represents the path taken
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Linear algebraically, HH = I, but symbolically,

HH|x) = Z (=1yY1¥2|z) for any x € Z;
yaZEZZ

In particular, the internal paths indexed by y interfere

H H
v = Y
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Linear algebraically, HH = I, but symbolically,

HH|x) = Z (—1)Y1¥2|2) for any x € Z,
y,zEZz

In particular, the internal paths indexed by y interfere

H H
1) i i 1)
I+i=1

Amplitudes add
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Linear algebraically, HH = I, but symbolically,

HH|x) = Z (=1yY¥2|z) for any x € Z»
yzeZz

In particular, the internal paths indexed by y interfere

H H
1) = — 1)
,,,,,,,,,,,,,
2 2

Amplitudes cancel
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Linear algebraically, HH = I, but symbolically,

HH|x) = Z (—1)Y1¥2|2) for any x € Z,
y,zEZz

In particular, the internal paths indexed by y interfere

H H
1) — LY
1-3=0

Amplitudes cancel
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Linear algebraically, HH = I, but symbolically,

HH|x) = Z (=1yY¥2|z) for any x € Z»
yzeZz

In particular, the internal paths indexed by y interfere

H H
e R T 1)
I+3=1

Amplitudes add
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Symbolic path integrals

Rz(0) : |x) — e'™|x), CNOT : |x)|y) — |x)|x ® y),
1 X
H:|x) - ﬁzyezz(_l) y

Theorem

Any circuit® over Clifford+Rz can be represented symbolically as

1 i
|x) = ﬁ Zyezg ePeY)|f(x,y))

where f is affine and P : Z’2’+k — R/27 is a phase polynomial

Pioy) = 3 ac(xy),  XelX) = x1z1 @ - @ xozp
zeZ"

Moreover, this representation is poly-time and -space computable.
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A standard way to remove phase gates is by merging adjacent ones

(THT- =
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A standard way to remove phase gates is by merging adjacent ones

= sk

In some cases we have to commute gates to merge them

-
- - X T
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What about more complicated cases?

—q
P
N
—q
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D
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What about more complicated cases?
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pany r§:1 Pany
N i v,

]‘ = [x)ly) = " x)ly)
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yan)
N>

=]

yan)
N>

As a collection of paths:

|00)

]‘ = [x)ly) = " x)ly)

01)

|10)
|11) >< ©

e

|00)

01)
[10)

[11)
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]‘ = [x)ly) = " x)ly)

e
[]
e

S
fan\
N\
[=]
fan\
N\

As a collection of paths:

|oo) |00)

01)

[01)

10) Y " Y 10)
D¢ AN A,
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Quantum Phase folding

We could re-synthesize® |x)|y) — i*®Y|x)|y)
» Each Ry gate contributes to exactly one term

» Synthesis produces one Rz gate per term
» Profit!

M. Amy, D. Maslov, M. Mosca, Polynomial-Time T-Depth Optimization
of Clifford+T Circuits via Matroid Partitioning. IEEE Tr. CAD (2014).
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Quantum Phase folding

We could re-synthesize® |x)|y) — i*®Y|x)|y)
» Each Ry gate contributes to exactly one term
» Synthesis produces one Rz gate per term
» Profit!

Alternatively, only need to know which gates would be merged
> want to prove that two Rz gates “rotate” the same paths
P replacing them with a single aggregate Rz gate will then leave
the semantics unchanged

» do this by executing the circuit symbolically to see which
phase gates add to the same term of P
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Quantum Phase folding

We could re-synthesize® |x)|y) — i*®Y|x)|y)
» Each Ry gate contributes to exactly one term
» Synthesis produces one Rz gate per term
» Profit!

Alternatively, only need to know which gates would be merged
> want to prove that two Rz gates “rotate” the same paths

» replacing them with a single aggregate Rz gate will then leave
the semantics unchanged

» do this by executing the circuit symbolically to see which
phase gates add to the same term of P

Need path integrals to (easily) prove correctness!

M. Amy, D. Maslov, M. Mosca, Polynomial-Time T-Depth Optimization

of Clifford+T Circuits via Matroid Partitioning. IEEE Tr. CAD (2014).
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6
[x) o
y)——{TH&
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6
p—————1x) o

A\

—{ T Hxey)—4
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6

x)——{TH—

D TH—1y)

A

P=27i(%)2xDy)

ISE
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6
d—xoy)—{THo—
ST y)——e—
P =2mi(Z)a(x & y)
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6
S THx®y)—p—
ST ly)—e—

P =27i[(Z)2(x ®y) + (Z)s(x B y)]
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Symbolic execution

Recall:

Slx) = #]x)
Tlx) = w¥|x), w=esr
CNOT|x)|y) = |x)|x ® y)

We can execute the circuit to identify phases applied to the same

set of paths, along with their location in the program

1 2 3 4 5 6

S THOx)

ly)

N
L
™
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Symbolic execution

Recall:

Slx) = i*|x)
T|x) = w|x), w=e*

CNOT[x)|y) = [x)x & y)

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6

S THOx)

ly)

N
L
Y

A\

P =2mi[(§)2+ (§)s](x @y) = T gates at locations 2 and 5
can be merged
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Consider the circuit
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Branching gates

Consider the circuit

T H T
0) : 0)
) _ — _ )
Symbolically,
1
)= == Y W y)
ﬁy622

» phases conditional on the output path can’'t be commuted
» the phase —1 is tied to the H gate (i.e. it can't be merged)
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Branching gates

Consider the circuit

T H T
0) : 0)
) _ — _ )
Symbolically,
1
)= == Y W y)
\/E}’EZz

» phases conditional on the output path can’'t be commuted
» the phase —1 is tied to the H gate (i.e. it can't be merged)

— it suffices to say H|x) = |x’) for some x’
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Idea of program analysis is to abstract the concrete semantics,
retaining enough information to be able to prove useful facts

!} is a sound approximation of any unitary U

with respect to phase folding.

U|X1"'Xn>:|X{"'X
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Idea of program analysis is to abstract the concrete semantics,
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!} is a sound approximation of any unitary U
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U|X1"'Xn>:|X{"'X

7] e—{s-o{7}-
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Idea of program analysis is to abstract the concrete semantics,
retaining enough information to be able to prove useful facts

') is a sound approximation of any unitary U
with respect to phase folding.

U|X1"'Xn>:|Xi"'X/

—7] s 5] o {so—
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Existential quantification

To avoid representing all O(n|C|) variables in P, periodically
quantify out variables which are no longer “in scope”

In practice,
» track the state in the form |Ax) for A € GA(Zy, n)

» when a variable is quantified out, re-normalize parities using
a pseudoinverse A8 of A

P set any parities without a solution to L
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Existential quantification

To avoid representing all O(n|C|) variables in P, periodically
quantify out variables which are no longer “in scope”

In practice,
» track the state in the form |Ax) for A € GA(Zy, n)

» when a variable is quantified out, re-normalize parities using
a pseudoinverse A8 of A

P set any parities without a solution to L
E.g.,
P=0,-(x®y) dy.P=0,- L
Az.P =6, - (x®y) dyP=0,-z ifz=xDy

Lemma
dx.P is a sound approximation of P with respect to phase folding.
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We can go even further to mixed quantum/classical programs
using collecting semantics

26/36



Extending to quantum programs

We can go even further to mixed quantum/classical programs
using collecting semantics

Consider a simple quantum WHILE language

Su=Uq | measq | S1; S» | if E then 51 else S, | while E do S

Definition

The (circuit) collecting semantics [S]. can be defined as

[S]c = {7 | 7 is the sequence of gates (& proj.) in a trace of S}

S, is a sound approximation of [S]. with respect to phase folding
if it is a sound approximation of every trace 7
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The analysis

(Informal) phase analysis for a quantum WHILE language

)
(

[RZ 0)]a : eP|x> — eP+9‘X]x>

[X1a eP|x> r—>e‘°]1@x>

[CNOT]. : €”[x)]y) — ePx)|x @ y)

[U]a: eflxixa. .. xn) e xn P X!
[e(V)]a: eP|X1>|X2 e Xp) — eaXQ“'X"'P|x1>|x§ co XD
[meas], : e |x1xo ... xy) s e xn P X!

[Ui]a : |x) — eP1|x’> [Uz]a : |x) — eP2]x”)

[if E then Uy else U, ||, : |x)e” s @@ PHax-PitaxPayl my/hy

[U] : [x) = e”'[x)

[[Whi/e E doU ]]a : ’x>eP s eEIx.P+EIx.P/’x/>
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Compute P with a phase analysis. For any term >, s 0, of P
1. Select some /g € S
2. Set 9@0 — ZZGS 0y
3. Set Oy <O forall £ € S\ {lo}
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Phase folding optimization

Compute P with a phase analysis. For any term >, ¢ 6, of P
1. Select some ¢y € S
2. Set 9(0 = ZKGS 0,
3. Set Oy« 0 forall £ € S\ {lo}

Theorem (Soundness)

If P contains a term ), 0y, then the gates at locations £ € S
can be replaced with a single Rz(>_,.5 0¢) gate

Proof idea:

> establish a soundness relation between abstract states of the
analysis and (sets of) path integrals

» soundness relation encodes the fact that the path integrals are
invariant under the distribution of ), s 6;

» show that execution preserves this relation
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Phase polynomial re-synthesis

We can go further by re-synthesizing parts of the phase
polynomial P corresponding to CNOT-dihedral circuits

= T T e L e 71
AzZ—{T—e{re{rer—H]
| | | |
| T ey [+1 | [ e 1
TT T T
L LT — ‘
HIT Fany 71 Fan T THZ1 !
(T AT —— o {Ai{THz

» Can power up with a range analysis to get a sequence of
overlapping synthesis problems for extra flexibility

» Phase polynomial synthesis algorithms for T-depth?,
T-count?, CNOT-count3, Routing?, etc. work here

! Amy, Maslov, Mosca, IEEE Tr. CAD (2014).

Heyfron, Campbell, Quantum Science & Technology (2018).
3Amy, Azimzadeh, Mosca, Quantum Science & Technology (2018).
*Meijer-van de Griend, Duncan, QPL (2020).
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Consider the circuit

Symbolically,

1
. - x+4xy+4yz+7z
THHT : |x) — 5 E S |Z)
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Can we take the phase analysis further?

Consider the circuit

Symbolically,

. 1 x+4xy+4yz+7z
THHT : |x) = > Z%Z% w |z)

We could simplify the circuit first, but what about

a
>
a
>
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We know
1

. ht _1)yvtyz
HH : |x) QZ%Z%( 1)9+2|2)

is the identity
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We know 1
. - _1yvtyz
HH : |x) — 5 g y,zEZz( 1) |Z)

is the identity

To analyze the interference, we can expand it out:

1
2 ZzeZz |Z>

% Zzezz(_l)z|z>
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We know

1
. - _1)xvt+yz
HH: b= 537 (-172)

is the identity

To analyze the interference, we can expand it out:
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If we sum over z € {x, ~x} = Z, instead,

1l Xy+yz
2 2 2yt

we get a simple pattern

=)
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If we sum over z € {x, ~x} = Z, instead,

1 Xy+yz
0 22 et retna I

=)
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If we sum over z € {x, ~x} = Z instead,

1 xy—+yz
x) = 5 Zy%ze e D)

we get a simple pattern

=)
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For any Boolean-valued expression P

Zy,z(—l)z”yplw(Z)) = 2[$(P))

In particular only the paths where z = P survive

[ (P))

y=1 $(~P))
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A slightly more precise analysis

Basic idea:
» Apply phase analysis to get P
» Compute the circuit's path integral
» Apply interference reductions to get a list of equalities z; = P;

» Normalize P with respect to the list of equalities
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A slightly more precise analysis

Basic idea:
» Apply phase analysis to get P
» Compute the circuit's path integral
» Apply interference reductions to get a list of equalities z; = P;

» Normalize P with respect to the list of equalities

x {HFHH A H H ] HH A

N
U

A
A\
A
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A slightly more precise analysis

Basic idea:
» Apply phase analysis to get P
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» Apply interference reductions to get a list of equalities z; = P;
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x {HyH A H A F- A

A
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A\
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A slightly more precise analysis

Basic idea:
» Apply phase analysis to get P
» Compute the circuit's path integral
» Apply interference reductions to get a list of equalities z; = P;

» Normalize P with respect to the list of equalities
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Take-away:

Classical program analysis tools can be applied in the quan-
tum domain by taking a more operational view of quantum
computation
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Thank you!
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