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Compiler optimizations

Peephole optimizations
I Re-writing some small segment of code
I Classical: re-write rules on assembly code
I Quantum: templates, peephole re-synthesis

Code generation
I Compiling efficient code
I Classical: Register allocation, instruction scheduling, etc.
I Quantum: Oracle synthesis, gate synthesis, routing, etc.

Analysis-based optimizations
I Proving some facts about code
I Classical: Constant propagation, common subexpression

elimination, dead code elimination, etc.
I Quantum: ???

In this talk:

Tools for writing analysis-based optimizations
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Analysis-based optimizations

I Uses (some form of) abstract interpretation
I e.g., data-flow analysis, symbolic execution, etc.

I Basic recipe: (semantics + facts) × soundness relation
I e.g., In every execution, the read of variable x at location `

may read the definitions of x at locations in M
I Often uses set-based collecting semantics with an abstraction

function and/or abstract transformers

Semantics Facts

τ1

τ2
f
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Example
Constant propagation

At each location in the program, we want to know which
definitions to variables can reach that point

1 x = 1 ;
2 y = 2 ;
3 i f ( x <= y ) {
4 x = 0 ;
5 } e l s e {
6 x = 3 ;
7 }
8
9 i f ( x > 0) {

10 . . .
11 }
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1 x = 1 ;
2 y = 2 ;
3 i f ( x <= y ) { // x = 1 , y = 2 r e a c h
4 x = 0 ;
5 } e l s e {
6 x = 3 ;
7 }
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10 /∗ e r r o r ∗/
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Semantics of quantum computing
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The linear-algebraic view

A state of n qubits is a unit vector in C2n

|ψ〉 =
∑

x∈Zn
2

αx|x〉, x ∈ {0, 1}n = Zn
2

Computations change the state by applying unitary matrices to
states

X = X =

[
0 1
1 0

]
H = H =

1√
2

[
1 1
1 −1

]

S = S =
1√
2

[
1 0
0 i

]
T = T =

[
1 0

0 ω = e i
π
4

]

CNOT =
•

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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The path integral view

A quantum process is a collection of (classical) paths

C

B

A

α

β

γ

δ

The amplitude of a state is the sum of the amplitudes of all
paths leading to it

A 7→ (α + β + γ)B + δC
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Formal path integrals

As an object, we can represent a path integral by

I a collection Π of paths π : x→ x′ between basis states, and

I an amplitude function Φ : Π→ C

The action is the mapping

|x〉 7→
∑

π:x→x′∈Πx

Φ(π)|x′〉
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Composition

Composition of computations or circuits is path composition

C

B

A
C

B
D

E

Syntactically, corresponds to relational composition

Π′ ◦ Π = {ππ′ : x→ x′ | π : x→ x′′ ∈ Π ∧ π′ : x′′ → x′ ∈ Π′}

(Φ′ ◦ Φ)(π′ ◦ π) = Φ(π)Φ′(π′)
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Recovering the linear algebraic view

We can encode a unitary U : |i〉 7→
∑

j∈Zn
2
Uij |j〉 as a path integral:

ΠU = {πij |i , j ∈ Zn
2}

ΦU(πij) = Uij

We can also recover a matrix by summing over all paths for each
beginning and end point:

Uij =
∑

π:i→j∈Π

φ(π)

Can be viewed as delayed matrix multiplication

(VU)ij =
∑

π:i→j∈ΠU ,π′:j→k∈ΠV

φU(π)φV (π′)

=⇒ BQP ⊆ PSPACE, BQP ⊆ PP
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Symbolic path integrals

For d-dimensional systems we can

I label each path π by a length k ≥ n bit string x ∈ Zk
d

I write the end point as a function f : Zk
d → Zn

d

I write the amplitude φ : Zk
d → C as a function of this bit string
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Example
Phase gates

Phase gates, e.g.

S =

[
1 0
0 i

]
, T =

[
1 0
0 ω

]
, RZ (θ) =

[
1 0
0 e iθ

]
apply a phase conditional on certain paths

|0〉

|1〉

|0〉

|1〉

T

ω

We can write this symbolically as

T : |x〉 7→ ωx |x〉 for any x ∈ Z2
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Example
Classical gates

Classical gates like

X =

[
0 1
1 0

]
permute the states

|0〉

|1〉

|0〉

|1〉

X

Symbolically,

X : |x〉 7→ |1⊕ x〉 for any x ∈ Z2
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Example
Branching gates

The hadamard gate H branches on a classical value in
superposition with equal weight 1√

2
and varying phase

|0〉

|1〉

|0〉

|1〉

H

−1

Symbolically,

H : |x〉 7→ 1√
2

∑
y∈Z2

(−1)xy |y〉 for x ∈ Z2

y represents the path taken
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Interference

Linear algebraically, HH = I , but symbolically,

HH|x〉 =
1

2

∑
y ,z∈Z2

(−1)xy+yz |z〉 for any x ∈ Z2

In particular, the internal paths indexed by y interfere

|0〉

|1〉

|0〉

|1〉

H

−1

H

−1
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Symbolic path integrals

RZ (θ) : |x〉 7→ e iθx |x〉, CNOT : |x〉|y〉 7→ |x〉|x ⊕ y〉,

H : |x〉 7→ 1√
2

∑
y∈Z2

(−1)xy

Theorem

Any circuit∗ over Clifford+RZ can be represented symbolically as

|x〉 7→ 1
√

2
k

∑
y∈Zk

2

e iP(x,y)|f (x, y)〉

where f is affine and P : Zn+k
2 → R/2π is a phase polynomial

P(x, y) =
∑
z∈Zn

azχz(x, y), χz(x) = x1z1 ⊕ · · · ⊕ xnzn

Moreover, this representation is poly-time and -space computable.
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Optimization
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Merging gates

A standard way to remove phase gates is by merging adjacent ones

T T † =

T T = S

In some cases we have to commute gates to merge them

T

T †
=

T T †

=
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Commutations

What about more complicated cases?

T •
=

• T

•
T

=
• T •

T S†

• • T

T • •
= ???
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Paths & phases

t
• • T

T • •

|

= |x〉|y〉 7→ ix⊕y |x〉|y〉

As a collection of paths:

|00〉

|01〉

|10〉

|11〉

|00〉

|01〉

|10〉

|11〉
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Paths & phases

t
• • S

I • •

|

= |x〉|y〉 7→ ix⊕y |x〉|y〉

As a collection of paths:

|00〉

|01〉

|10〉

|11〉

|00〉

|01〉

|10〉

|11〉

i

i
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Quantum Phase folding

We could re-synthesize1 |x〉|y〉 7→ ix⊕y |x〉|y〉
I Each RZ gate contributes to exactly one term

I Synthesis produces one RZ gate per term

I Profit!

Alternatively, only need to know which gates would be merged

I want to prove that two RZ gates “rotate” the same paths

I replacing them with a single aggregate RZ gate will then leave
the semantics unchanged

I do this by executing the circuit symbolically to see which
phase gates add to the same term of P

Need path integrals to (easily) prove correctness!

1M. Amy, D. Maslov, M. Mosca, Polynomial-Time T-Depth Optimization
of Clifford+T Circuits via Matroid Partitioning. IEEE Tr. CAD (2014).
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Symbolic execution

Recall:

S |x〉 = ix |x〉

T |x〉 = ωx |x〉, ω = e
πi
4

CNOT|x〉|y〉 = |x〉|x ⊕ y〉

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6

|x〉 • • T

|y〉 T • •

P = 0
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Symbolic execution

Recall:

S |x〉 = ix |x〉

T |x〉 = ωx |x〉, ω = e
πi
4

CNOT|x〉|y〉 = |x〉|x ⊕ y〉

We can execute the circuit to identify phases applied to the same
set of paths, along with their location in the program

1 2 3 4 5 6

• • T |x〉
T • • |y〉

P = 2πi [(π4 )2 + (π4 )5](x ⊕ y) =⇒ T gates at locations 2 and 5
can be merged
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Branching gates

Consider the circuit

T H T

|0〉

|1〉

|0〉

|1〉

T

ω

H

−1

T

ω

Symbolically,

|x〉 7→ 1√
2

∑
y∈Z2

ωx+4xy+y |y〉

I phases conditional on the output path can’t be commuted
I the phase −1 is tied to the H gate (i.e. it can’t be merged)

=⇒ it suffices to say H|x〉 = |x ′〉 for some x ′
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Abstraction

Idea of program analysis is to abstract the concrete semantics,
retaining enough information to be able to prove useful facts

Lemma

U|x1 · · · xn〉 = |x ′1 · · · x ′n〉 is a sound approximation of any unitary U
with respect to phase folding.

T • S T

??? • •
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Existential quantification

To avoid representing all O(n|C |) variables in P, periodically
quantify out variables which are no longer “in scope”

In practice,

I track the state in the form |Ax〉 for A ∈ GA(Z2, n)

I when a variable is quantified out, re-normalize parities using
a pseudoinverse Ag of A

I set any parities without a solution to ⊥

E.g.,

P = θ` · (x ⊕ y)

Lemma

∃x .P is a sound approximation of P with respect to phase folding.
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I when a variable is quantified out, re-normalize parities using
a pseudoinverse Ag of A

I set any parities without a solution to ⊥
E.g.,

P = θ` · (x ⊕ y) ∃y .P = θ` · ⊥
∃z .P = θ` · (x ⊕ y) ∃y .P = θ` · z if z = x ⊕ y

Lemma

∃x .P is a sound approximation of P with respect to phase folding.
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Extending to quantum programs

We can go even further to mixed quantum/classical programs
using collecting semantics

Consider a simple quantum WHILE language

S ::= U q | meas q | S1; S2 | if E then S1 else S2 | while E do S

Definition

The (circuit) collecting semantics JSKc can be defined as

JSKc = {τ | τ is the sequence of gates (& proj.) in a trace of S}

Sa is a sound approximation of JSKc with respect to phase folding
if it is a sound approximation of every trace τ
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The analysis

(Informal) phase analysis for a quantum WHILE language

JR`Z (θ)Ka : eP |x〉 7→ eP+θ`x |x〉
JX Ka : eP |x〉 7→ eP |1⊕ x〉

JCNOTKa : eP |x〉|y〉 7→ eP |x〉|x ⊕ y〉
JUKa : eP |x1x2 . . . xn〉 7→ e∃x1x2...xn.P |x ′1x ′2 . . . x ′n〉

Jc(U)Ka : eP |x1〉|x2 . . . xn〉 7→ e∃x2...xn.P |x1〉|x ′2 . . . x ′n〉
JmeasKa : eP |x1x2 . . . xn〉 7→ e∃x1x2...xn.P |x ′1x ′2 . . . x ′n〉

JU1Ka : |x〉 7→ eP1 |x′〉 JU2Ka : |x〉 7→ eP2 |x′′〉
Jif E then U1 else U2 Ka : |x〉eP 7→ e∃x.P+∃x.P1+∃x.P2 |x′ u x′′〉

JUKa : |x〉 7→ eP
′ |x′〉

Jwhile E do U Ka : |x〉eP 7→ e∃x.P+∃x.P′ |x′〉
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Phase folding optimization

Compute P with a phase analysis. For any term
∑

`∈S θ` of P

1. Select some `0 ∈ S

2. Set θ`0 ←
∑

`∈S θ`

3. Set θ` ← 0 for all ` ∈ S \ {`0}

Theorem (Soundness)

If P contains a term
∑

`∈S θ`, then the gates at locations ` ∈ S
can be replaced with a single RZ (

∑
`∈S θ`) gate

Proof idea:

I establish a soundness relation between abstract states of the
analysis and (sets of) path integrals

I soundness relation encodes the fact that the path integrals are
invariant under the distribution of

∑
`∈S θ`

I show that execution preserves this relation
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Where to go from here?
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Phase polynomial re-synthesis

We can go further by re-synthesizing parts of the phase
polynomial P corresponding to CNOT-dihedral circuits

Z T • T † T † H

T • T † • • •

H T • T • H T Z

I Can power up with a range analysis to get a sequence of
overlapping synthesis problems for extra flexibility

I Phase polynomial synthesis algorithms for T -depth1,
T -count2, CNOT -count3, Routing4, etc. work here

1Amy, Maslov, Mosca, IEEE Tr. CAD (2014).
2Heyfron, Campbell, Quantum Science & Technology (2018).
3Amy, Azimzadeh, Mosca, Quantum Science & Technology (2018).
4Meijer-van de Griend, Duncan, QPL (2020).

30 / 36



Can we take the phase analysis further?

Consider the circuit

T H H T †

Symbolically,

THHT : |x〉 7→ 1

2

∑
y ,z∈Z2

ωx+4xy+4yz+7z |z〉

We could simplify the circuit first, but what about

• • •
• • •

T H • H • H • H • T † H • H
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Interference patterns

We know

HH : |x〉 7→ 1

2

∑
y ,z∈Z2

(−1)xy+yz |z〉

is the identity
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Interference patterns

If we sum over z ∈ {x ,¬x} = Z2 instead,

|x〉 7→ 1

2

∑
y∈Z2,z∈{x ,¬x}

(−1)xy+yz |z〉

we get a simple pattern

|x〉

|x〉

|¬x〉

y = 0

y = 1

−1
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Generalization

Lemma

For any Boolean-valued expression P∑
y ,z

(−1)zy+yP |ψ(z)〉 = 2|ψ(P)〉

In particular only the paths where z = P survive

|ψ(P)〉

|ψ(¬P)〉

y = 0

y = 1

−1
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A slightly more precise analysis

Basic idea:

I Apply phase analysis to get P

I Compute the circuit’s path integral

I Apply interference reductions to get a list of equalities zi = Pi

I Normalize P with respect to the list of equalities

• • •
• • •

T H • H • H • H • T † H • H
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Conclusion

Take-away:

Classical program analysis tools can be applied in the quan-
tum domain by taking a more operational view of quantum
computation
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Thank you!
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